
A Scalable Hybrid Architecture based SKOS

Ontology for Resource Discovery in Grid

Nabila Chergui

MISC laboratory

 Mentouri University

 Constantine, Algeria

chergui.nabila@gmail.com

Salim Chikhi

MISC laboratory

 Mentouri University

 Constantine, Algeria

slchikhi@yahoo.com

Abstract—Resource discovery is an important service in a grid,

since a grid enables the sharing and collaborating of a wide

variety of resources which should be fully exploited. Based on

Semantic Web technologies and the idea of resources clustering,

this paper presents a comprehensive hybrid architecture based

on SKOS lightweight ontology to organize and discover resources

in an efficient and scalable manner. "odes with the same domain

of interest get together into collections called federations in a

hybrid grid, in which intra-federation adopts centralized

management and inter-federation form a distributed one. The

architecture strikes a balance between high efficiency of total

centralized management and good scalability of distributed

disposal. We propose an efficient process of query routing

between semantically related federations, which decreases the

cost of resource discovery, and an efficient and fault tolerant

mechanism to leader’s federation election that minimizes the

overhead between leaders during the process of updating

information about the other leaders’ federations.

Keywords-component: Resource discovery, SKOS, Hybrid

architecture, Semantic query processing.

I. INTRODUCTION

Grid Computing is a virtualized distributed environment,
aimed at enabling the sharing of geographically spread
resources. Resource discovery mechanism is one of the
fundamental requirements for grid computing systems, as it
aids in resource management and applications scheduling.
Resource discovery involves searching for resources that
match the user’s applications' requirement. An efficient
resource discovery mechanism depends on two factors: first,
the architecture of the system, hence the mechanism used to
query processing across this architecture; second, the structure
used to represent resources and consequently, the structure of
queries.

In this work, we focus on the first factor of resource
discovery. In this issue, various kinds of solutions to grid
resource discovery have been proposed, the centralized one is
efficient, although has some shortages as the central server in
centralized architecture has a single point of failure, and it can
create a bottleneck due to the sent messages to a single point,
which may render such a system poor scalability.

The introduction of P2P and DHT techniques into grids
brings some benefits like adaptation, self organization, fault
tolerance; however, they are less efficient and have several

limitations such as a risk of network congestion and overhead
due to the sent messages for updating dynamic data on
resources, and while searching for a resource, and the risk of
churn effect if a large number of nodes want to update their
data at the same time.

To address these problems, we propose a mechanism based
on semantic nodes clustering into federations using a
SKOS(Simple Knowledge Organization Scheme) [1]
lightweight ontology to regroup nodes having the same
domain of interest and to process queries between them, which
performs an effective searching according to the semantic
distribution of nodes into federations and thus their resources.
SKOS compared to OWL [2], has the ability to describe
synonyms and associative relationships, to add information to
concepts which can be easily used for defining ontological
terminologies and enriched them by supplementary
information about context. We will use a hybrid architecture
composed of three layers, which combines the advantages
offered by the above types of architectures. Clustering, is the
most popular technique for creation of hybrid overlay
networks, the main aim of clustering is to keep such desirable
properties of distributed and centralized architectures [3]. Our
approach supports a semantic organization of nodes in a
hybrid way, and used semantic to handle queries between
federations. By the integration of Semantic Web techniques
and hybrid architecture, this approach speeds up the
information query, and it guaranties, the scalability and the
flexibility of the system.

By analogy to the real-world, countries are gathered in
federations according to their interests. Under one federation,
these last works on collaboration, share their resources to
achieve their objectives. We draw inspiration from this to
organize nodes. Nodes in the grid environment correspond to
countries on the real-world, each node has a domain of interest
such as mathematics, biology; to construct our federations we
need to extract the domain of interest from node, then a
measure of semantic similarity is applied between node and
concepts in a SKOS lightweight ontology, to affect the node to
its adequate federation.

The remainder of this paper is organized as follows:

Section II presents related works in this topic. Section III
provides in a clear manner an explanation of the system, the
construction of semantic federations and the three layered
architecture based on SKOS. Section IV proposes algorithms

to explain how query processing is semantically performed,
the leader is elected and federations are maintained.
Theoretical performance evaluation is given in Section V.
Conclusion and future works are provided in Section VI.

II. RELATED WORKS

In the literature, it exists many different approaches
addressing the problem of resource discovery on grid
environment. We can classify them on non semantic
approaches, and semantic ones.

In non semantic approaches we find, centralized
techniques like Condor [4], which uses a matchmaker with a
centre server to process queries; it has a single point of failure
and scale poorly. P2P techniques like [5] organize information
nodes into a flat unstructured P2P network and random-walk
based methods are used for query forwarding. Random-walks
are not efficient in response time for a very large system. [6]
Proposes a hierarchical structure to organize information
nodes to reduce redundant messages. However, a well-defined
hierarchy does not always exist, and the global hierarchy is
hard to maintain in a dynamic environment.

Semantic techniques are those that use Semantic Web
technologies. Semantic Web [7] attempts to define the
metadata information model for the World Wide Web to aid in
information retrieval and aggregation. Currently, many P2P
applications have leveraged Semantic Web technologies to
add semantics to P2P systems. Edutella [8] is a P2P network
for searching Semantic Web metadata. Each Edutella peer can
make its metadata information available as a set of RDF
statements. The distributed individual RDF peers register the
queries they may be asked through the query service, and
queries are sent through the Edutella network to the subset of
peers who have registered with the service to be interested in
this kind of query. To forward queries between nodes,
Edutella uses JXTA to broadcast queries to a HyperCup
topology. Similarly, [9, 10] use broadcast/flooding to search
semantic metadata. The simple P2P broadcast structure used
by these systems makes them very difficult to scale to large-
scale networks. Our system solves this problem by topology
adaptation and semantics-based routing.

Semantic clustering or semantic hybrid approaches have
appeared with the idea of grouping nodes with similar contents
together to facilitate searching. [11, 12] Use a centralized
server or super-peers to cluster nodes. However, the efficient
communication mechanism between super-peers is absent in
these systems. [13] Proposes to cluster nodes with similar
interest together into communities, without discussing how to
define the interest similarity among peers and how to form
clusters. [14, 15] Add semantic short-cuts to group nodes. The
short-cut approach relies on the presence of interest-based
locality. Each peer builds a shortcut list of nodes that
answered previous queries. To find content, a peer first queries
the nodes on its shortcut list and only if unsuccessful, floods
the query. [16] Uses semantic clustering to organize the
network topology and reduce search space to semantically
related clusters; instead it uses a complex and costly
mechanism to construct clusters each time it needs to add new
node to the system.

III. OVERVIEW OF THE SYSTEM

This section illustrates how to provide efficient
construction of federations, and gives a detailed explanation of
the system architecture.

A. Semantic Federations Construction Based on SKOS

Ontology Domain Description

As we have mentioned above, the computing grids can
create federations in scientific domains, such as physics, earth
science and so on; each federation is formed by a collection of
nodes with the same domain of interest because we believe
that more nodes shares the same interest, more their resources
tend to be similar. A federation is managed by a leader and
consists of members that serve as workers. Communication
and collaboration can operate on top of the federations. With
federations, grid users can easily share resources and
knowledge within the federation.

 To create grid federations, we need a classification
technique to classify nodes. Since each node has a specific
domain of interest, Ontology of Domains Description OntDD
is used to classify grid domain applications in general. This
ontology is a lightweight ontology; we used SKOS [1]
vocabulary, SkosEd editor [17], Skos API [18] and Protégé 4
[19] to formalize it.

SKOS Used to represent term lists and controlled
vocabularies, to provide a simple machine-understandable.
Technologies such as RDF and OWL are seen as key elements
for building a Semantic Web. The SKOS model is built in
accordance with these technologies and has a serialization to
the Resource Description Framework (RDF). (See Table I for
an example). In general, KOS differs significantly from formal
ontologies represented using OWL, as they do not contain
detailed intentional descriptions of concepts [20] SKOS
provides looser semantics than OWL [21].

The SKOS model can be used to structure and represent
any knowledge that contains statements about concepts and
the relationships between them. The shared features of these
KOS are primarily in the form of a lexical resource along with
some semantic relationships between each resource. The
semantic relationships between resources are typified by
broader, narrower, and related. SKOS provides a data model
that can be used to express these kinds of relationships
between resources and is designed to be extensible and
modular. Central to SKOS is the core vocabulary deemed
sufficient to represent most of the common features found in
concept schemes. A concept can be considered any unit of
cognitive thought. Lexical labels allow the association of
lexical forms (preferred labels, alternative labels and so on)
with each concept. Semantic relations capture relationships
between concepts including hierarchical broader-narrower
relationships and general associative relationships [22]. For
example, a domain "Biology” is an individual of Skos:Concept
in this ontology. We refer to individuals in this work by
concepts. “Biology” may have subbed domains like “Ecology”
and “Botany". Each of them is an individual of Skos:Concept
too. They are related to “Biology” by narrower (more specific)
and broader (more general) relations. We consider each
concept as one federation.

TABLE I. THE SKOS ENCODING, IN TURTLE NOTATION [23], FOR THE

ONTDD CONCEPT.

We enhance and enrich the semantic meaning of concepts
by the creation of different alternate label relations to
represent its synonyms, and another property assertion called
associated_term, which represents terms associated to the
concept other than its synonyms.

 A classification technique will classify each node
according to its interest into a concept of OntDD. It will affect
each node to the appropriate federation. We believe that if
concepts are well defined, the use of a simple measure of
similarity will be efficient and precise. Concepts in OntDD are
already enriched by their semantic synonyms according to the
context extracted from Word*et [24]. The Levenshtein
measure will be used to calculate similarity between the
domain of interest of node * wishes to join the grid and each
federation F of OntDD. The similarity between * and F is the
max of similarities between * and the set of all labels and
associated terms of F. The node will be affected to the
federation with the high similarity.

After a classification algorithm has been determined, the
system can classify nodes and create federations. Figure 1
shows the system architecture.

B. Layred Architecture based Semantic Federation

As illustrated in Figure 1, we propose a hybrid layered
architecture in which, each federation is structured following
leader-workers paradigm to perform data retrieval of available
resources.

From the bottom to the up, we have:

• The physical layer: represents nodes in a real network
as unstructured network architecture. Edges in this
layer represent physical connections.

• The federations’ layer: represents the overlay network
applied in this work to maintain federations and
process queries. Each federation captures a concept
defined in OntDD and has a leader and workers. A
leader is a representative of its federation, which is
selected among the other nodes; each leader node has
links to all leader nodes, and links to all of its own
worker nodes. Communication is limited on two sorts
between leaders and between a leader and its workers,
which reduce the overhead.

• The leaders’ layer: since each concept in OntDD
represents one node which is the leader of the
federation, leaders can be organized as a hierarchical
structure. This hierarchy between federations leaders is
generated by traversing the configured properties
Skos:narrower and Skos:broader, which are used to
express the hierarchical relations between concepts in

our case federations' leaders. In addition, with SKOS,
we could organize federations (which are individuals
of Skos:Concept) into categories using subclasses of
Skos:Concept, we called them
MajorDomainFederation. A category serves as
grouping mechanism for concepts (leaders’
federations) of the same inherent category, concepts
being an instance of one of those categories. E.g.:
“MajorBiologyFedation” is a category of all
federations with their domain is one field of Biology.

Figure 1. The hybrid layered architecture.

This hierarchy organization aids to limit the query search
space from the entire grid to a federation through a single step
and resource location inside the federation in the next step. If
the federation is unable to respond to the query, it forwards the
query to its relative hierarchy leaders that may satisfy the
query. This forwarding mechanism between federation leaders
achieves high resource discovery efficiency by keeping
resource discovery scope at the federation leader level.

IV. ALGORITHMS FOR THE SYSTEM

In this section, we will present the algorithmic details of
this system. We will discuss in detail how federations are
maintained in terms of add and remove nodes. How a leader is
elected and how queries are handled.

A. *odes Joining and Leaving

When a node joins the network, it connects to any existing
node in the network by sending a subscribe message, if this
last node is not a leader node, it transfers the request to its
leader. The leader calculates the similarity between the
domain of interest of node and concepts of OntDD, then
assigns it to the appropriate federation following the Table II.

<#Ecology>

a skos:Concept;
skos:altLabel “Bionomics”@en, “Environmental science”@en;

skos:broader <#Biology>;

skos:definition “the branch of biology concerned with the relations
between organisms and their environment.”@en;

skos:narrower <#Paleoecology>;

skos:prefLabel “Ecology”@en, “Ecologie”@fr;

TABLE II. THE ALGORITHM OF JOINING THE GRID.

To leave the grid, the node just sends a message of
unsubscribing to its leader. If the leader wants to leave, a
replacement of a leader occurs by selecting a new leader to
preserve the federation’s knowledge, and then the leader can
unsubscribe.

B. The Process of Leader’s Election

A good resource discovery mechanism based on leader-
workers, should be able to select the best node to be a leader,
to periodically check if the actual leader is the most pertinent,
and to prevent leader failure to make the mechanism fault-
tolerant. It should have the ability to detect the failure and to
replace dynamically a failed leader. It exists several works on
the leader election problem. [25] Proposed an election method
where each node is assigned a unique steady ID and the node
with the highest ID wins the election. The stability of ID even
if the resources’ node changes may render the current leader
performances less than existing nodes. [26] Used a voting
based system where each node casts a vote for which node it
prefers for the leader role. In such a system, a mechanism for
determining when the election begins and ends must be
designed, since distributed election algorithms depend on a
clearly defined exchange of information between nodes in
order for each node to unanimously agree on the new leader
[27, 28]. [29] Used a distributed mechanism of election where
all nodes should agree on the future leader, it doesn’t handle
the case when a leader node was failed, and it uses a gossip
messages to elect a leader and to inform all the other leader’s
groups about a new leader in order to update their information,
this method is very expensive.

These mechanisms may generate a lot of traffic,
particularly if the elections need to be restarted due to
corrupted packets of intermittent network failures. A central
leader election algorithm [30] is more striking to distributed
leader election, since the leader choice is performed by a
single node. In our approach, we will adopt this mechanism.

The election of leaders takes place periodically to check if
the current leader is the most suitable. At the first time, the
node that triggered the creation of the federation will be a
leader of this federation. Later, each node in the federation can
participate to this process; it has to calculate its proper

reputation score. Every time the process is started nodes send
their reputation score to the leader, this last selects the three
nodes with the highest scores, the leading will be the new
leader and the others will become the safeties nodes, then it
informs the whole federation about them. Safety nodes act as
workers, they are introduced to be as a secure in case where
the actual leader was failed or want to leave. This mechanism
avoids performance degradation and federation dissolution if a
leader fails, because the whole system has already prepared its
future leaders, which make the system fault tolerant. The
leader sends copies of information to safety nodes every time
it makes an update. Once the failure of leader is detected, a
safety node with the high reputation score will be a new
leader. The reputation score is calculated based on nodes
characteristics such stability (it means that node doesn’t leave
or fail frequently) and the interne characteristics like CPU
speed, RAM and HDD sizes, bandwidth.

To overcome the problem of communication overhead
between leader’s federations each time a new leader is elected.
We give for each federation, independently on the real address
of its leader, a virtual static address, using another asserted
property into OntDD to assign to federations their virtual
addresses. The leader then must associate its own address with
the virtual one of its federation. The virtual address is stable, if
a new leader is elected; all it has to do is to assign its proper
address to the virtual one of the federations, without need to
communicate and to publish it to the other leaders, for them,
the address of the leader federation is not modified even if the
leader was changed.

C. Semantic Query Processing Mechanism

The mechanism used in this work, uses OntDD to
semantically propagate the query between semantic related
federations. It decides where the query must be sent in the
next step using the different semantic relationships seen in
Section 3. This mechanism divides the space of query search
on three spaces. It limits the query search space from the
entire grid to these three spaces.

• Space 1: it represents the federation itself, the leader
and its workers. In this space, the leader supports the
search of resources in respond of the query in its
knowledge base.

• Space 2: it represents federations inside the
MajorDomainFederation. Where federations are
related by hierarchical relationships narrower/broader
and they are members of the same
MajorDomainFederation. These federations are likely
capable of responding on query, since they have close
domains of interest as the leader who sent the query.

• Space 3: it represents federations related to the actual
federation by the associative relationship Skos:related.
In SKOS, an associative link between two concepts
indicates that the two are inherently "related", but that
one is not in any way more general than the other.eg.
Business is related to Statistics. Biology is related to
Medicine and Business. These federations are possibly
capable of responding on the query because their
domains of interest are related to the leader who sent
the query.

Algorithm Join (*, X): Node * joins the Grid through
node X

 If X.isleader = true then

 Calculate the similarity between * and concepts of OntDD;

 Assign it to its appropriate federation.

 If * ∈ this-fedration then

 Update (addition) knowledge base of resources.

 Else

 If * ∈ other-federation then

 Send a message to its leader’s federation.

 Else /* there is no adequate match*/
 * creates a new federation with itself as leader.

 End if

 End if

Else /* X is not a leader*/

 Transfer a subscribe message to the leader.

End if

TABLE III. ALGORITHM OF QUERY PROCESSING.

These three layers of search spaces achieve high resource
discovery efficiency by keeping resource discovery scope at
the federation layer and its related leaders, and will reduce the
network traffic and the number of messages compared to the
simple query flooding, or random-walk.

A query request is submitted to a leader node from one of
its workers or another leader node. The leader follows two
behaviors depending on the source of the request, with its
workers it tries to find in its federation a worker node able to
satisfy the query based on the leader’s knowledge. If such a
worker is not available, the leader sends the query to leaders’
federations in its MajorDomainFederation, which they are
likely to satisfy the query. If it doesn’t receive any response
after a while, it forwards the query to its related leaders’
federations as the last resort. If a leader is solicited, it tries to
find workers that respond to the request; otherwise, it ignores
the query. This strategy of semantic query processing reduces
the search time and decrease the network traffic by
minimizing the number of messages circulating among nodes
and federations. Table III, resumes this strategy.

V. PERFORMANCE EVALUATION

In this section, we present a theoretical study to evaluate
the performance efficiency of our algorithm of query
processing. With semantic federations' topology, resource
discovery can be efficiently performed. In most cases, a
resource can be located, within querying nodes with the same
domain, and semantically related nodes that are within the
neighborhood of the querying node in terms of related
federations and MojorDomainFederation.

 Supposing the number of grid nodes is * and the resource
searched is r. We divide the whole grid according to our
algorithm into M federations, K MajorDomainFederations,

each MajorDomainFederation has P federations, L nodes per
federation, Q related federations (if they exist) for each
federation, and R messages as responses if they exist.

We evaluate the performance of our algorithm by
comparisons with flooding based algorithm, [31], Random
walk and [32]. We evaluate these algorithms by estimating the
number of messages propagated in the network, and the
number of hops needed to find a resource during one cycle of
searching, and we discuss the theoretical efficiency of each
one.

With flooding-based, node X that searches for a resource r
checks its resource list, and if the resource is not found there,
X contacts all its neighbors. In turn, X’s neighbors check their
resource lists and if the resource is not found locally, they
propagate the search message to all their neighbors. The
method ends when either the resource is found or a TTL is
expired, in this case, the number of messages increases
exponentially to the number of nodes. The number of hops is
estimated as T>>*, thus it is not scalable.

With randomize walk strategy in pure P2P model, the
number of nodes visited during the searching process is
log�*� , the number of hops is O(log(*)), so a good
performance is expected; However, this kind of algorithm is
slow and no guarantee of actually finding the resource even if
it exists, thus not efficient.

For [31], it uses a super-peer topology.

• Best case: one message with one hop. The resource is
inside the requested cluster.

• Average case: 1+ O (log (P)) hops. As it uses a
random walk for searching, the number of messages is
logarithmic in the number of clusters P in the super
cluster called Resource Classified Space, P
corresponds to the number federations per
MajorDomainFederation in our case.

• Worst case: 1+ O (log (K)) + O (log (P)) hops. In this
stage, it uses a random walk and chord algorithms for
searching, the number of messages is logarithmic in
the number of clusters P in the super cluster, and the
number of nodes K in the routing table of entry nodes,
K corresponds to the number MajorDomainFederation
in our case.

For [32], it uses a super-peer topology; it organizes nodes
into groups with a leader-worker approach using KNN
algorithm.

• Best case: one message with one hop. The resource is
inside the requested group.

• Worst case: two hops with 1+M+R messages. It
forwards the query to all the other groups in the grid.
M is the number of groups in the grid; it corresponds
to the number of federations in our approach.

Our strategy divides the space of search on three; this will
conduct us to these situations:

• Best case: one message with one hop. The resource is
inside the requested federation.

• Average case: two hops with 1+P+R messages. The
resource is inside the MajorDomainFederation.

Algorithm Handle_Query (Q): Q is sent to leader L from node n

 If n.isWorker = false then

 Find node(s) * in the federation that satisfy Q.

 If * ≠ {} then

 The search is succeeded; send a response to a requester.

 End if

 Else /* n is one worker of L*/

 Find node(s) * in the federation that satisfy Q.
 If * ≠ φ then

 The search is succeeded; send a response to a requester .

 Else /* no node was found*/
 Forward the query, direct Q to leaders’ in MajorDomainFederation

 Wait responses for a time T.

 If T=0 and no response then
 Forward the query, direct Q to the related leaders’ .

 Wait responses for a time T’.

 If T’=0 and no response then

 The search is failed.

 Else /*one or more related leader could satisfy the query*/

 The search is succeeded; send a response to a requester.

 End if
 Else /*one or more leader from the MajorDomainFederation

 could satisfy the query */
 The search is succeeded; send a response to a requester .

 End if

 End if

End if

• Worst case: three hops with 1+P+Q+R messages. The
resource is inside the related federations. This number
represents the total number of messages generated
during the whole process, it is the cumulative of the
first, the second and the third case, in other words, this
step generates just Q+R messages at a time.

By comparing the estimated performance efficiency
(number of messages and hops) of several algorithms, we
could assume that our algorithm outperforms the flooding-
based algorithm, randomize walk algorithm and algorithms
presented in [31] and [32].

VI. CONCLUSION AND FUTURE WORKS

As more and more the scale of grid growing, there is a
convincing need to find an effective and efficient way to
organize nodes in order to facilitate the discovering and the
querying of resources of these nodes. In this paper, we have
presented a novel semantic approach of regrouping nodes into
federations using SKOS ontology, to construct a three layered
architecture. As shown; the propagation of query in this
architecture is scalable and efficient since the space of
querying is diminished from the entire grid to a smaller range
consisting of three semantically related spaces in the worst
case, which decreases the cost of resource searching. In
addition, this architecture is helpful to enlarge the scale of
grid. We have discussed the problem of leader election, and
proposed an efficient process that rendered our system more
scalable and fault tolerant.

However, this work is limited to theoretical discussion; the

study to evaluate the performance of our algorithm in practice

is our future work.

REFERENCES

[1] A. Miles, and S. Bechhofer, “SKOS simple knowledge organization
system reference”. W3C, available at http://www.w3.org/TR/skos-
reference. January 25 2008.

[2] D.L McGuinness, F.van Harmelen, “OWL Web Ontology Language
overview”. Recommendation, W3C, http://www.w3.org/TR/owl-
features/. February 10. 2004.

[3] E. Meshkova, J. Riihiarvi, M. Petrova, and P. Mahonen, “A survey on
resource discovery mechanisms, peer-to-peer and servicediscovery
frameworks”, Computer Networks 52, 2008, pp. 2097–2128.

[4] R. Raman, M. Livny, and M. Solomon,” Matchmaking: Distributed
Resource Management for high Throughput Computing”, Proc Of the
7th IEEE HPDC, IEEE Computer Society Press, Washington DC, 1998,
pp.140-146.

[5] A. Iamnitchi, and I. Foster, “On Fully Decentralized Resource Discovery
in Grid Environments”,Proc The 2nd IEEE/ACM International
Workshop on Grid Computing, Denver, November 2001.

[6] H. Lican, W. Zhaohui, and P. Yunhe. “A scalable and effective
architecture for Grid Services discovery”, Proc of the 1st Workshop on
Semantics in Peer-to-Peer and Grid Computing, in conjunction with the
Twelfth International World Wide Web Conference,2003.

[7] T. Berners-Lee, J. Hendler, and O. Lassila, "The semantic web".
Scientific American 284(5),2001,pp.34–43.

[8] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. SIntek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch, “Edutella: A P2P networking infrastructure
based on RD”, Proc of the International World Wide Web
Conference,WWW, Honolulu, Hawaii, USA, 2002, pp. 604_15.

[9] M. Arumugam, A. Sheth, and I.B. Arpinar, “Towards peer-to-peer
semantic web: A distributed environment for sharing semantic
knowledge on the web”, Proc of the International World Wide Web
Conference,WWW, Honolulu, Hawaii, USA, 2002.

[10] A. Halevy, Z. Ives, J. Madhavan, P. Mork, and D. Suciu, “The Piazza
Peer Data Management System”, 2004 pp.787-798.

[11] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M.T. Schlosser, I.
Brunkhorst, and A. Lser, ”Super-peer-based routing and clustering
strategies for RDF-based peer-to-peer networks”, Proc of International
World Wide Web Conference,WWW, 2003, pp. 536-543.

[12] A. Crespo, and H. Garcia-Molina,”Semantic overlay networks for p2p
systems”,Technical report, Stanford University, 2002.

[13] A. Iamnitchi, M. Ripeanu, and I.T. Foster, “Locating data in (small-
world) peer-to peer scientific collaborations”, Proc of International
Workshop on Peer-to-Peer Systems, IPTPS, 2002, pp. 232-241.

[14] X. Tempich, S. Staab, and A. Wranik, “REMINDIN': semantic query
routing in peer to peer networks based on social metaphors”, Proc of
International World Wide Web Conference, WWW, New York, USA,
2004, pp. 640-649.

[15] S. Castano, A. Ferrara, Montanelli, D. Zucchelli, and Helios: “A general
framework for ontology-based knowledge sharing and evolution in P2P
systems”, Proc of DEXA WEBS Workshop, IEEE, Prague, Czech
Republic, 2003, pp.597-603.

[16] J. Li, “Grid resource discovery based on semantically linked virtual
organizations”, Future Generation Computer Systems 26, 2010, pp.361-
373.

[17] http://code.google.com/p/skoseditor/

[18] https://sourceforge.net/projects/skosapi/

[19] http://protege.stanford.edu

[20] I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen, “From SHIQ
and RDF to OWL: The making of a web ontology language”. Journal of
Web Semantics, 2003, pp.7–26.

[21] S. Bechhofer, Y. Yesilada, R. Stevens, S. Jupp, and B. Horan, “Using
Ontologies and Vocabularies for Dynamic Linking”. Internet
Computing, 2008, pp. 32–39.

[22] S. Jupp, S. Bechhofer, and R. Stevens, “A Flexible API and Editor for
SKOS”, ESWC, Springer 2009, pp. 506–520.

[23] D. Beckett, T. Berners-Lee, “Turtle - Terse RDF triple language”. Team
submission available at http://www.w3.org/TeamSubmission/turtle/, w3c
, 2008.

[24] http://wordnet.princton.edu/

[25] Garcia-Molina, “ Elections in a Distributed Computing System”. IEEE
Trans. Computers, pp. 48–59, 1982.

[26] S. Singh and J. Kurose, ”Electing leaders based upon performance: The
delay model”, 11th International Conference on Distributed Computing
Systems, 1991, pp. 464–471.

[27] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S.
Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, S.
Spring, A. Su, and D. Zagorodnov, “Adaptive computing on the grid
using apples”, 2003.

[28] J. L. Kim and G. G. Belford, “A robust, distributed election
protocol”,Symposium on Reliable Distributed Systems, 1988, pp. 54–60.

[29] A. Padmanabhan, S. Ghosh, and S. Wang J, “A Self-Organized
Grouping (SOG) Framework for Efficient Grid Resource Discovery”,
Grid Computing, Springer, 2009.

[30] T. W. Kim, E. H. Kim, J. K. Kim, and T. Y. Kim, “A Leader Election
Algorithm in a Distributed Computing System”, FTDCS, 1995, pp. 481–
487.

[31] X. Wang, L.F. Kong, “Resource Clustering Based Decentralized
Resource Discovery Scheme in Computing Grid”, Proc of the 6th
International Conference on Machine Learning and Cybernetics, IEEE,
Hong Kong, August 2007, pp. 19-22.

[32] Y. Zhang, Y. Jia, X. Huang, B. Zhou, and J. Gu, “A grid Resource
Discovery Method Based on Adaptive k-Nearesr Neighbors Clustering”,
COCOA, Springer, 2007, pp. 171-181.

