
On Request-Partitioning-Based Processor
Allocation in Two-Dimensional Mesh-based

Multicomputers
Sulieman Bani‐Ahmad

Department of Information Technology. Al‐Balqa Applied University. Jordan
sulieman@bau.edu.jo

Abstract‐ Request­Partitioning­Based (RPB) allocation
strategies remedy the problem of fragmentation by
allowing requests to be partitioned and allocated non­
contiguously. Two RPB allocation schemes are proposed
in literature; the Adaptive Non­Contiguous Allocation
(ANCA) and the Bounded­Gradual­Partitioning (BGP)
allocation. In ANCA, the frame requested by the parallel
job is divided into two subframes of equal sizes at the
longest dimension of the request. In BGP, requests are
gradually partitioned into one large and another small
subframe of multicomputers. In this paper, ANCA and
BGP based allocation strategies are comparatively
evaluated through exhaustive simulation­based
experiments. Our experimental results also showed that
the ANCA scheme can sustain higher system and
communication loads compared to BGP in terms of major
system performance metrics. We also observed that, in
the BGP approach, increasing the partitioning bound
value can slightly improve the performance of the
parallel system. Comparatively, increasing the
partitioning bound in the ANCA approach could
significantly improve the performance of the parallel
system.
Keywords: Non-contiguous allocation; 2D-Mesh
Multicomputers; Request-Partitioning; ANCA; BGP.

I. INTRODUCTION
Multicomputer systems are cost-effective alternatives of
the traditional supercomputers [7]. The interconnection of
multicomputers come in different styles called topologies.
The two-dimensional (2D) and three-dimensional (3D)
mesh-based topologies are probably the most common
topologies because they are simple, regular and scalable
[1; 5; 6]. Several recent commercial and experimental
parallel computers have been built based these two
architectures such as the IBM BlueGene/L and the Intel
Paragon [1; 5; 6].
Contiguous allocation strategies of mesh-connected
multicomputers attempt to locate a contiguous portion of
the computing units for the execution of a parallel job [21;
1; 11; 8]. Contiguity of multicomputers helps in
minimizing the distance of interprocessor communication
path and in avoiding the interprocess interference that
creates communication contention.
Another feature of contiguous processor allocation is that
all the multicomputers allocated to a parallel job retain the
same exact topology as the underlying multicomputer
system. Further, the number of multicomputers allocated
to a particular parallel job is determined according to the
requirement of that parallel job [7]. Thus, in a mesh-
connected multicomputer, jobs are allocated to submeshes

[7; 1; 11; 8]. A parallel job retains all the multicomputers
of the submesh for the entire duration of its life time. Once
a parallel job is allocated, it runs till completion (i.e., no
time-sharing) [1; 5; 6].
The processor allocator module in a multicomputer system
applies allocation strategies or algorithms to identify and
assign unallocated multicomputers to parallel jobs [7].
Allocation strategies with better recognition ability for
available submeshes of unallocated multicomputers can
improve the chance of assigning a parallel job into the
system and, thus, reduce the job waiting delay [7; 1; 5; 6].
Studies showed that performance improvement cannot be
obtained by refining the contiguous allocation strategies
[7; 1]. Because of fragmentation problem, the average
percent system utilization of a system can significantly
degrade [7; 1]. Fragmentation occurs when there are
enough unallocated multicomputers in the parallel
multicomputer system but the allocator module fails to
allocate these multicomputers to the waiting parallel jobs
as they are non-contiguous or dispersed. This, in turn,
limits the performance of contemporary allocation
schemes. Consequently, contiguous allocation strategies
fail to reduce the effect of fragmentation and hence
provide very limited performance.
Request-Partitioning-Based (RPB) processor allocation
strategies remedy the problems of fragmentation and low
system utilization by allowing requests of parallel jobs to
be partitioned and allocated non-contiguously into smaller
subframes in case contiguous allocation fails [5; 6; 2; 3;
4]. Notice that small subframes are usually easy to be
successfully allocated; the probability of successfully
allocating a parallel job is increased. Studies show that
RPB allocation strategies can successfully combine the
advantages of both contiguous and non-contiguous
allocation strategies through preserving some level of
contiguity within allocated parallel job. Two RPB
allocation schemes are proposed and studied in literature;
the Adaptive Non-Contiguous Allocation (ANCA) [7; 4]
and the Bounded-Gradual-Partitioning (BGP) allocation
[5; 6; 2; 3].
Both RPB schemes try to solve the problem of
fragmentation by allowing parallel jobs to be allocated
non-contiguously. In ANCA, allocation of jobs is done by
splitting the frame requested by the parallel job in hand
into two subframes of equal sizes. Splitting is done at the
longest dimension of the request [7; 4]. In BGP, however,
allocation of jobs is achieved by gradually partitioning the
frame requested into one large and another small subframe

of multicomputers [5; 6; 2; 3]. Both ANCA and BGP
schemes prevent over-partitioning by placing a limit to the
maximum number of non-contiguous blocks of
multicomputers or subframes that can be assigned to any
parallel job. This maximum number is referred to as the
partitioning-bound [3; 4].
In this paper we comparatively evaluate both RPB
schemes using computer-based simulation. The ANCA
allocation strategy tested in this paper is the
implementation proposed in [4]. Our experimental results
also showed that the ANCA scheme could sustain higher
system and communication loads compared to BGP in
terms of major system performance metrics. We also
observed that, in the BGP approach, increasing the
partitioning bound value could slightly improve the
performance of the parallel system. Comparatively,
increasing the partitioning bound in the ANCA approach
could significantly improve the performance of the parallel
system.

II. PREVIOUS ALLOCATION STRATEGIES
Contiguous processor allocation strategies focus on
finding the requested submesh according to the request of
a job in terms of shape (and in orientation in some
strategies). Non-contiguous allocation strategies alleviate
the constraint of contiguity to achieve higher system
utilization [5; 6; 2; 3]. Next we outline several non-
contiguous allocation strategies for 2D-mesh
multicomputers proposed in the literature.
Hardware advances such as wormhole routing and faster
switching techniques have made the communication
latency less sensitive to the distance between the
communicating nodes [15; 7, 1; 5; 6]. This makes
allocating a parallel job to a non-contiguous set of
multicomputers plausible. By alleviating the restriction of
contiguity, parallel jobs can get allocated and executed
early. Several non-contiguous allocation algorithms are
proposed in literature. Examples are: the random, the
Multiple Buddy System (MBS) [13] and the Paging
algorithms [12].
Non-contiguous allocation algorithms can be (i) totally
non-contiguous and (ii) partially non-contiguous [4; 6]. In
a totally non-contiguous allocation, a parallel job can be
allocated as long as the number of available processing
units is sufficient for its execution. In a partially non-
contiguous allocation, the processing units allocated to a
job retain a certain degree of contiguity.
Partially non-contiguous allocations can successfully
provide higher performance than the totally non-
contiguous allocations as they that reduce jobs dispersal
[4; 12; 14]. In Paging algorithm, there is some degree of
contiguity because of the indexing schemes used.
Contiguity can also be increased by increasing the index
parameter. However, this may produce internal processor
fragmentation for large index sizes [12]. In MBS,
contiguous allocation is explicitly sought only for requests
with sizes of the form 22n, where n is a positive integer [4].
Request-Partitioning-Based (RPB) processor allocation
strategies are partially non-contiguous allocation strategies
that remedy the problems of fragmentation and low system

utilization by allowing requests of parallel jobs to be
partitioned and allocated non-contiguously into smaller
subframes in case contiguous allocation fails [5; 6; 2; 3;
4]. Studies show that RPB allocation strategies combine
the advantages of both contiguous and non-contiguous
allocation strategies through preserving some level of
contiguity within allocated parallel job [4].
Two RPB allocation schemes are proposed in literature;
the Adaptive Non-Contiguous Allocation (ANCA) [7; 4]
and the Bounded-Gradual-Partitioning (BGP) allocation
[5; 6; 2; 3]. In ANCA, allocation of jobs is done by
splitting the frame requested by the parallel job in hand
into two subframes of equal sizes. Splitting is done at the
longest dimension of the request [7; 4]. In BGP, however,
allocation of jobs is achieved by gradually partitioning the
frame requested into one large subframe and another small
subframe [5; 6; 2; 3]. Both ANCA and BGP schemes
prevent over-partitioning by placing a limit to the
maximum number of non-contiguous blocks of
multicomputers or subframes that can be assigned to any
parallel job. This maximum number is referred to as the
partitioning-bound [3; 4]. Next we describe the RPB
allocation schemes in more detailed manner.
A. The ANCA and Modified ANCA Schemes
The ANCA algorithm attempts to allocate the job at hand
contiguously. If the it fails, it partitions the request into
two equi-sized sub-requests. These subframes are then
allocated to available locations, if possible; otherwise,
each of these sub-requests is recursively further partitioned
into two equi-sized sub-requests, and then ANCA tries to
map these sub-requests to available locations [4; 7].
In [4] a modified version of the ANCA approach is
presented and evaluated, the ANCA-based allocator tries
to allocate the parallel job in hand using some given
contiguous allocation strategy (e.g., the first-fit or best-fit).
This contiguous method is recommended to be selected to
be of a good free-submesh recognition capability. If the
allocator module fails to allocate the parallel job, it splits
the job into two subframes that are as equal as possible in
terms of size and topology [4]. This is done by splitting
the request at its longest dimension. Given that the request
is of dimensions AxB. Assume that A>B. If the value of
the length of the longest dimension of the request is even,
then the two subframes will be of exactly-equal sizes (A/2
x B). If the length is odd, the original implementation of
the ANCA algorithm [7] tries to allocate two submeshes
each of size of Ceiling(A/2) x B. This causes having
internal fragmentation of size 1 x B. The original
implementation of the ANCA strategy solves this problem
of internal fragmentation by bookkeeping of idle nodes [7].
In the modified implementation of the ANCA algorithm
the request in hand divided into two with the following
dimensions: the first is Ceiling(A/2) x B and floor(A/2) x B.
As a result, no need for bookkeeping.
B. The Gradual-Request-Partitioning-Based (GRP)

allocation schemes
In [2; 3; 6], a family of adaptive non-contiguous allocation
algorithms for 2D-mesh multicomputers are proposed. These
algorithms are all utilizes a contiguous allocation strategy
implicitly. These algorithms try to find a contiguous set of

processing units of the same shape and size to the request in
hand using the contiguous allocation algorithm. If they fail,
the request in hand is divided into two sub-requests after
removing one from the longest dimension of the request. That
is, for a given request of size αxβ and assuming β>α, the two
partition-sizes are αx(β-1) and αx1 after removing one from
the longest dimension of the request. The two new sub-
requests are then allocated using the contiguous allocation
algorithm again. This procedure continues recursively until
the request is fulfilled. These algorithms are referred to as
PALD-based approaches. PALD stands for PArtitioning at
the Longest Dimension [2; 3].

III. PERFORMANCE EVALUATION
The BGP and ANCA allocation algorithms is implemented in
the C language, and later integrated with the ProcSimity
simulation tool [20; 17]. Each simulation run consists of 1000
completed jobs. Simulation results are averaged over enough
independent runs so that the confidence level is 95% and the
relative errors do not exceed 5%. Parallel jobs usually
communicate with each other using all-to-all communication
pattern [19; 10; 13]. We did our experiments using this
communication pattern as it produces high message collision
is known to be a weak point for non-contiguous allocation
algorithms [5; 1]. The processor allocation strategies were
tested under the scheduling strategy First-Come-First-Serve.
The simulated parallel system is of size 20x20 computing
units. The size of the simulated parallel job follows the
exponential distribution with an average of 10 units for each
dimension.

IV. RESULTS AND OBSERVATIONS
Figure 1 and 2 show how increasing the load of the
parallel system affects the Finish Time (FT) of the ten runs
of simulator and the Mean Job Response Time (MJRT),
respectively. Two observations can be made of figure 1;
the first is that increasing the Partitioning Bound (PB)
value allows the parallel system to serve parallel jobs
earlier and thus increase the system throughput.
Consequently, the simulator FT is expected to be less for
higher PB values (notice that non-contiguity of request
allocated processing nodes does not significantly affect the
service time of parallel jobs as they are not severely
dispersed as clearly noticed in figure 2).
The other observation on figure 1 is that, considering the
same PB values for the ANCA and BGP schemes, the ANCA
scheme showed lower FT values. This can be explained as
follows: ANCA splits parallel jobs in two subframes of equal
sizes. The BGP, however, splits jobs into one relatively large
subframe and another small subframe. Notice that the
probability of successfully allocating the large subframe of
the BGP scheme is less than that of allocating the two smaller
subframes produced by the ANCA scheme. Taking into
consideration that the allocation of a parallel job is successful
if and only if both subframes are allocated, it is expected that
the ANCA algorithm is expected to produce lower FT (figure
1) and also lower MJRT values (figure 2) for the same PB
value enforced. For the same above reason, it is expected that
the ANCA scheme to be superior over the BGP scheme in
terms of Average System Utilization (ASU) as shown in
figure 3 that proves that ANCA can sustain higher system
loads and produce higher system utilization compared to
BGP.

Both ANCA and BGP schemes can allocate parallel jobs
in a non-contiguous manner. Thus, it is expected that both
will disperse parallel jobs. Figure 4 shows how increasing
the load of the system affects the mean number of blocks
per parallel job (MBPJ). Figure 4 shows that, for the same
partitioning bound value, The ANCA scheme usually
allocates parallel jobs to more blocks than the BGP
approach in average. More MBPJ values imply longer jobs
service time. Figure 5 shows that, when the partitioning
bound is small, the BGP approach produces lower mean
job service time value (MJST) than that produced by the
ANCA approach. However, for higher PB values, the
performance of the BGP approach degrades$ and the
ANCA approach produces less job service time in average.

Figure 1: Finish time vs. system load in ANCA-BF and BGP-BF

allocation strategies with partitioning bound of 8 and 4 BPJ.

Figure 2: Mean job response time vs. system load in ANCA-BF and
BGP-BF allocation strategies with partitioning bound of 8 and BPJ.

Figure 3: Percent system utilization vs. system load in ANCA-BF and
BGP-BF allocation strategies with partitioning bound of 8 and 4 BPJ.

Figure 4: Mean number of blocks per job vs. system load in ANCA-BF

and BGP-BF allocation strategies with partitioning bound of 8 and 4 BPJ.

Figure 5: Mean job service time vs. system load in ANCA-BF and BGP-

BF allocation strategies with partitioning bound of 8 and 4 BPJ.

Figure 6: Finish time vs. mean number of messages per job in ANCA-BF
and BGP-BF allocation strategies with partitioning bound of 8 and 4 BPJ.

Figure 6 shows how increasing the communication load of
the parallel system affects its performance in terms of
finish time. In general, increasing the communication load
increases FT because the service times of parallel jobs
increase. The increase rate is higher for BGP approach.
Figure 7 shows how the communication load affects
MBPJ. Similar to what we observed in figure 4, the
ANCA approach is expected to allocate jobs to more
blocks compared to the BGP approach. The ANCA
approach can successfully allocate parallel jobs earlier
than the BGP approach. The reason is that allocating the
large subframe produced by the BGP allocator is more
difficult to allocate the two smaller subframes produced by
the ANCA approach. Consequently, the ANCA approach
produces lower MJRT (as proven by figure 8). Further, as

observed in figure 5, for low PB values, the BGP approach
is expected to be superior to the ANCA approach in terms
of MJST (as proven by figure 9). However, for higher PB
values, the ANCA approach is superior to the BGP
approach.
Figures 10 and 11 show how increasing the
communication load of the parallel system affects the
performance of the interconnection network linking the
multicomputers in terms of mean packet blocking time
(MPBT) and mean packet latency (MPL). It can be
observed from the two figures that, in general, the ANCA
approach is superior to the BGP approach in terms of
MPBT at high communication loads (figure 10).

Figure 7: Mean number of blocks per job vs. mean number of messages
per job in ANCA-BF and BGP-BF allocation strategies with partitioning

bound of 8 and 4 BPJ.

Figure 8: MJRT vs. mean number of messages per job in ANCA-BF and

BGP-BF allocation strategies with partitioning bound of 8 and 4 BPJ.

Figure 9: MJST vs. mean number of messages per job in ANCA-BF and

BGP-BF allocation strategies with partitioning bound of 8 and 4 BPJ.

Figure 10: MPBT vs. mean number of messages per job in ANCA-BF

and BGP-BF allocation strategies with partitioning bound of 8 and 4BPJ.
Figure 11 shows how FT changes as the PB values
increases. Figure 11 shows that, as expected, FT decreases
as PB value increases for both ANCA and BGP schemes.
However, FT decays faster in the ANCA approach over
increasing the PB value. The reason is that the ANCA
approach is more successful in allocating parallel jobs
early compared to the BGP approach as observed in fig. 1.

Figure 11: Finish Time vs. partitioning bound in ANCA-BF and BGP-BF

allocation strategies.

V. 5. CONCLUSION
In this paper, the ANCA and BGP based allocation
strategies are comparatively evaluated through exhaustive
simulation-based experiments. Our experimental results
shows that the ANCA and BGP allocation schemes are
both flexible and tunable as it allows the allocator module
to choose an optimal partitioning-bound value while
allowing parallel jobs to be allocated early without having
them over-partitioned. Our experimental results also
showed that the ANCA scheme could sustain higher
system and communication loads compared to BGP.

REFERENCES
[1]. Ababneh, I. (2006), “An efficient free-list submesh allocation

scheme for two-dimensional mesh-connected multicomputers”,
Journal of Systems and Software, vol. 79, no. 8, Elsevier Science
Inc., New York, NY, USA, August 2006, pp. 1168-1179.

[2]. Bani-Ahmad, S. (2010a), “Intra-job Communication Contention
and Request-Partitioning-Based Allocation Strategies in 2D-Mesh
Multicomputers”. Third International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP'10). December
18-20, 2010, Dalian, LiaoNing, P. R. China.

[3]. Bani-Ahmad, S. (2010b), “Submesh Allocation in 2D-Mesh
Multicomputer: Partitioning at the Longest Dimension of
Requests”. Proceedings of the Fourth International Conference on
Advanced Engineering Computing and Applications in Sciences
(ADVCOMP 2010). October 25-30, 2010, Florence, Italy.

[4]. Bani-Ahmad, S. (2011). “Processor Allocation with Reduced
Internal and External Fragmentation in 2D Mesh-based
Multicomputers”. Submitted to Journal of Applied Sciences.

[5]. Bani-Mohammad, S.; Ould-Khaoua , M.; Ababneh, I., and
Machenzie, L. (2006), “Non-contiguous Processor Allocation
Strategy for 2D Mesh Connected Multicomputers Based on Sub-
meshes Available for Allocation”, Proceedings of the 12th
International Conference on Parallel and Distributed Systems
(ICPADS’06), vol. 2, IEEE Computer Society Press, USA, 2006,
pp. 41-48.

[6]. Bani-Mohammad, S.; Ould-Khaoua, M.; Ababneh, I.; and
Machenzie, L. (2007), “A Fast and Efficient Processor Allocation
Strategy which Combines a Contiguous and Non-contiguous
Processor Allocation Algorithms”, Technical Report; TR-2007-229,
DCS Technical Report Series, Department of Computing Science,
University of Glasgow, January 2007.

[7]. Chang, C. Y. and Mohapatra, P. (1998), “Performance
improvement of allocation schemes for mesh-connected
computers”, Journal of Parallel and Distributed Computing, vol. 52,
no. 1, Academic Press, Inc. Orlando, FL, USA, July 1998, pp. 40-
68.

[8]. Chuang, P. J. and Tzeng, N. F. (1994), Allocating precise submesh
in mesh-connected systems, IEEE Transactions Parallel and
Distributed Systems (Feb. 1994), 211217.

[9]. Ding, J. and Bhuyan, L. N. (1993), An adaptive submesh allocation
strategy for two-dimensional mesh connected systems, Proc. Int.
Conf. Parallel Process. II (Aug. 1993), 193200.

[10]. Kumar, V.; Grama, A.; Gupta, A.; and Karypis, G. (2003),
Introduction To Parallel Computing, The Benjamin/Cummings
publishing Company, Inc., Redwood City, California, 2003.

[11]. Li, K. and Cheng, K. H. (1991), “A Two-Dimensional Buddy
System for Dynamic Resource Allocation in a Partitionable Mesh
Connected System”, Journal of Parallel and Distributed Computing,
vol. 12, no. 1, Elsevier Science, CA, USA, May 1991, pp. 79-83.

[12]. Liu, T.; W. Huang, K.; Lombardi, F. and Bhuyan, L. N. (1995), A
submesh allocation scheme for mesh-connected multiprocessor
systems, Proc. Int. Conf. Parallel Process. II (Aug. 1995), 159163.

[13]. Lo, V.; Windisch, K.; Liu, W.; and Nitzberg, B. (1997), “Non-
contiguous processor allocation algorithms for mesh-connected
multicomputers”, IEEE Transactions on Parallel and Distributed
Systems, vol. 8, no. 7, IEEE Press, Piscataway, NJ, USA, July
1997, pp. 712-726.

[14]. Min, D. and Mutka, M. W. (1995), Effect of job interactions due to
scattered processor allocations in 2-D wormhole networks, in
``Proc. of Int. Conf. on Parallel and Distributed Computing
Systems,'' (Sept. 1995), pp. 262267.

[15]. Ni, L. M. and McKinley, P. K. (1993), “A Survey of Wormhole
Routing Techniques in Direct Networks”. Computer 26, 2 (Feb.
1993), pp 62-76. DOI= http://dx.doi.org/10.1109/2.191995.

[16]. Niedermeier, R.; K. Reinhardt; and P. Sanders (1997). Towards
optimal locality in mesh indexings. In Proc. 11th Intl Symp on
Fund. Computation Theory, volume 1279 of LNCS, pages 364-375,
1997.

[17]. ProcSimity V4.3 User’s Manual, University of Oregon, 1997.
[18]. Suzaki, K.; Tanuma, H.; Hirano, S.; Ichisugi, Y.; Connelly, C.; and

Tsukamoto, M. (1996), “Multi-tasking Method on Parallel
Computers which Combines a Contiguous and Non-contiguous
Processor Partitioning Algorithm”, Proceedings of the Third
International Workshop on Applied Parallel Computing, Industrial
Computation and Optimization, Springer-Verlag, UK, 1996, pp.
641-650.

[19]. Windisch, K.; Miller, J. V.; and Lo, V. (1995), “ProcSimity: an
experimental tool for processor allocation and scheduling in highly
parallel systems”, Proceedings of the Fifth Symposium on the
Frontiers of Massively Parallel Computation (Frontiers'95), IEEE
Computer Society Press, Washington, USA, 6-9 Feb 1995, pp. 414-
421.

[20]. Yoo , B. S. and Das, C. R. (2002), “A Fast and Efficient Processor
Allocation Scheme for Mesh-Connected Multicomputers”, IEEE
Transactions on Parallel & Distributed Systems, vol. 51, no. 1,
IEEE Computer Society, Washington, USA, January 2002, pp. 46-
60.

[21]. Zhu, Y. (1992), “Efficient processor allocation strategies for mesh-
connected parallel computers”, Journal of Parallel and Distributed
Computing, vol. 16, no. 4, Elsevier, San Diego, CA, 1992, pp. 328-
337.

