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Abstract‐  Request­Partitioning­Based  (RPB)  allocation 
strategies  remedy  the  problem  of  fragmentation  by 
allowing  requests  to  be  partitioned  and  allocated  non­
contiguously. Two RPB allocation schemes are proposed 
in  literature;  the  Adaptive  Non­Contiguous  Allocation 
(ANCA)  and  the  Bounded­Gradual­Partitioning  (BGP) 
allocation.  In ANCA, the  frame requested by  the parallel 
job  is  divided  into  two  subframes  of  equal  sizes  at  the 
longest  dimension  of  the  request.  In BGP,  requests  are 
gradually partitioned  into  one  large  and  another  small 
subframe  of multicomputers.  In  this  paper,  ANCA  and 
BGP  based  allocation  strategies  are  comparatively 
evaluated  through  exhaustive  simulation­based 
experiments. Our experimental results also showed that 
the  ANCA  scheme  can  sustain  higher  system  and 
communication loads compared to BGP in terms of major 
system performance metrics. We  also observed  that,  in 
the  BGP  approach,  increasing  the  partitioning  bound 
value  can  slightly  improve  the  performance  of  the 
parallel  system.  Comparatively,  increasing  the 
partitioning  bound  in  the  ANCA  approach  could 
significantly  improve  the  performance  of  the  parallel 
system.  
Keywords: Non-contiguous allocation; 2D-Mesh 
Multicomputers; Request-Partitioning; ANCA; BGP. 

I. INTRODUCTION 
Multicomputer systems are cost-effective alternatives of 
the traditional supercomputers [7]. The interconnection of 
multicomputers come in different styles called topologies. 
The two-dimensional (2D) and three-dimensional (3D) 
mesh-based topologies are probably the most common 
topologies because they are simple, regular and scalable 
[1; 5; 6]. Several recent commercial and experimental 
parallel computers have been built based these two 
architectures such as the IBM BlueGene/L and the Intel 
Paragon [1; 5; 6]. 
Contiguous allocation strategies of mesh-connected 
multicomputers attempt to locate a contiguous portion of 
the computing units for the execution of a parallel job [21; 
1; 11; 8]. Contiguity of multicomputers helps in 
minimizing the distance of interprocessor communication 
path and in avoiding the interprocess interference that 
creates communication contention.  
Another feature of contiguous processor allocation is that 
all the multicomputers allocated to a parallel job retain the 
same exact topology as the underlying multicomputer 
system. Further, the number of multicomputers allocated 
to a particular parallel job is determined according to the 
requirement of that parallel job [7]. Thus, in a mesh-
connected multicomputer, jobs are allocated to submeshes 

[7; 1; 11; 8]. A parallel job retains all the multicomputers 
of the submesh for the entire duration of its life time. Once 
a parallel job is allocated, it runs till completion (i.e., no 
time-sharing) [1; 5; 6]. 
The processor allocator module in a multicomputer system 
applies allocation strategies or algorithms to identify and 
assign unallocated multicomputers to parallel jobs [7]. 
Allocation strategies with better recognition ability for 
available submeshes of unallocated multicomputers can 
improve the chance of assigning a parallel job into the 
system and, thus, reduce the job waiting delay [7; 1; 5; 6].  
Studies showed that performance improvement cannot be 
obtained by refining the contiguous allocation strategies 
[7; 1]. Because of fragmentation problem, the average 
percent system utilization of a system can significantly 
degrade [7; 1]. Fragmentation occurs when there are 
enough unallocated multicomputers in the parallel 
multicomputer system but the allocator module fails to 
allocate these multicomputers to the waiting parallel jobs 
as they are non-contiguous or dispersed. This, in turn, 
limits the performance of contemporary allocation 
schemes. Consequently, contiguous allocation strategies 
fail to reduce the effect of fragmentation and hence 
provide very limited performance.  
Request-Partitioning-Based (RPB) processor allocation 
strategies remedy the problems of fragmentation and low 
system utilization by allowing requests of parallel jobs to 
be partitioned and allocated non-contiguously into smaller 
subframes in case contiguous allocation fails [5; 6; 2; 3; 
4]. Notice that small subframes are usually easy to be 
successfully allocated; the probability of successfully 
allocating a parallel job is increased. Studies show that 
RPB allocation strategies can successfully combine the 
advantages of both contiguous and non-contiguous 
allocation strategies through preserving some level of 
contiguity within allocated parallel job. Two RPB 
allocation schemes are proposed and studied in literature; 
the Adaptive Non-Contiguous Allocation (ANCA) [7; 4] 
and the Bounded-Gradual-Partitioning (BGP) allocation 
[5; 6; 2; 3].  
Both RPB schemes try to solve the problem of 
fragmentation by allowing parallel jobs to be allocated 
non-contiguously. In ANCA, allocation of jobs is done by 
splitting the frame requested by the parallel job in hand 
into two subframes of equal sizes. Splitting is done at the 
longest dimension of the request [7; 4]. In BGP, however, 
allocation of jobs is achieved by gradually partitioning the 
frame requested into one large and another small subframe 



of multicomputers [5; 6; 2; 3]. Both ANCA and BGP 
schemes prevent over-partitioning by placing a limit to the 
maximum number of non-contiguous blocks of 
multicomputers or subframes that can be assigned to any 
parallel job. This maximum number is referred to as the 
partitioning-bound [3; 4]. 
In this paper we comparatively evaluate both RPB 
schemes using computer-based simulation. The ANCA 
allocation strategy tested in this paper is the 
implementation proposed in [4]. Our experimental results 
also showed that the ANCA scheme could sustain higher 
system and communication loads compared to BGP in 
terms of major system performance metrics. We also 
observed that, in the BGP approach, increasing the 
partitioning bound value could slightly improve the 
performance of the parallel system. Comparatively, 
increasing the partitioning bound in the ANCA approach 
could significantly improve the performance of the parallel 
system. 

II. PREVIOUS ALLOCATION STRATEGIES  
Contiguous processor allocation strategies focus on 
finding the requested submesh according to the request of 
a job in terms of shape (and in orientation in some 
strategies). Non-contiguous allocation strategies alleviate 
the constraint of contiguity to achieve higher system 
utilization [5; 6; 2; 3]. Next we outline several non-
contiguous allocation strategies for 2D-mesh 
multicomputers proposed in the literature.  
Hardware advances such as wormhole routing and faster 
switching techniques have made the communication 
latency less sensitive to the distance between the 
communicating nodes [15; 7, 1; 5; 6]. This makes 
allocating a parallel job to a non-contiguous set of 
multicomputers plausible. By alleviating the restriction of 
contiguity, parallel jobs can get allocated and executed 
early. Several non-contiguous allocation algorithms are 
proposed in literature. Examples are: the random, the 
Multiple Buddy System (MBS) [13] and the Paging 
algorithms [12].  
Non-contiguous allocation algorithms can be (i) totally 
non-contiguous and (ii) partially non-contiguous [4; 6]. In 
a totally non-contiguous allocation, a parallel job can be 
allocated as long as the number of available processing 
units is sufficient for its execution. In a partially non-
contiguous allocation, the processing units allocated to a 
job retain a certain degree of contiguity. 
Partially non-contiguous allocations can successfully 
provide higher performance than the totally non-
contiguous allocations as they that reduce jobs dispersal 
[4; 12; 14]. In Paging algorithm, there is some degree of 
contiguity because of the indexing schemes used. 
Contiguity can also be increased by increasing the index 
parameter. However, this may produce internal processor 
fragmentation for large index sizes [12]. In MBS, 
contiguous allocation is explicitly sought only for requests 
with sizes of the form 22n, where n is a positive integer [4]. 
Request-Partitioning-Based (RPB) processor allocation 
strategies are partially non-contiguous allocation strategies 
that remedy the problems of fragmentation and low system 

utilization by allowing requests of parallel jobs to be 
partitioned and allocated non-contiguously into smaller 
subframes in case contiguous allocation fails [5; 6; 2; 3; 
4]. Studies show that RPB allocation strategies combine 
the advantages of both contiguous and non-contiguous 
allocation strategies through preserving some level of 
contiguity within allocated parallel job [4]. 
Two RPB allocation schemes are proposed in literature; 
the Adaptive Non-Contiguous Allocation (ANCA) [7; 4] 
and the Bounded-Gradual-Partitioning (BGP) allocation 
[5; 6; 2; 3]. In ANCA, allocation of jobs is done by 
splitting the frame requested by the parallel job in hand 
into two subframes of equal sizes. Splitting is done at the 
longest dimension of the request [7; 4]. In BGP, however, 
allocation of jobs is achieved by gradually partitioning the 
frame requested into one large subframe and another small 
subframe [5; 6; 2; 3]. Both ANCA and BGP schemes 
prevent over-partitioning by placing a limit to the 
maximum number of non-contiguous blocks of 
multicomputers or subframes that can be assigned to any 
parallel job. This maximum number is referred to as the 
partitioning-bound [3; 4]. Next we describe the RPB 
allocation schemes in more detailed manner. 
A. The ANCA and Modified ANCA Schemes 
The ANCA algorithm attempts to allocate the job at hand 
contiguously. If the it fails, it partitions the request into 
two equi-sized sub-requests. These subframes are then 
allocated to available locations, if possible; otherwise, 
each of these sub-requests is recursively further partitioned 
into two equi-sized sub-requests, and then ANCA tries to 
map these sub-requests to available locations [4; 7]. 
In [4] a modified version of the ANCA approach is 
presented and evaluated, the ANCA-based allocator tries 
to allocate the parallel job in hand using some given 
contiguous allocation strategy (e.g., the first-fit or best-fit). 
This contiguous method is recommended to be selected to 
be of a good free-submesh recognition capability. If the 
allocator module fails to allocate the parallel job, it splits 
the job into two subframes that are as equal as possible in 
terms of size and topology [4]. This is done by splitting 
the request at its longest dimension. Given that the request 
is of dimensions AxB. Assume that A>B. If the value of 
the length of the longest dimension of the request is even, 
then the two subframes will be of exactly-equal sizes (A/2 
x B). If the length is odd, the original implementation of 
the ANCA algorithm [7] tries to allocate two submeshes 
each of size of Ceiling(A/2) x B. This causes having 
internal fragmentation of size 1 x B. The original 
implementation of the ANCA strategy solves this problem 
of internal fragmentation by bookkeeping of idle nodes [7]. 
In the modified implementation of the ANCA algorithm 
the request in hand divided into two with the following 
dimensions: the first is Ceiling(A/2) x B and floor(A/2) x B. 
As a result, no need for bookkeeping. 
B. The Gradual-Request-Partitioning-Based (GRP) 

allocation schemes 
In [2; 3; 6], a family of adaptive non-contiguous allocation 
algorithms for 2D-mesh multicomputers are proposed. These 
algorithms are all utilizes a contiguous allocation strategy 
implicitly. These algorithms try to find a contiguous set of 



processing units of the same shape and size to the request in 
hand using the contiguous allocation algorithm. If they fail, 
the request in hand is divided into two sub-requests after 
removing one from the longest dimension of the request. That 
is, for a given request of size αxβ and assuming β>α, the two 
partition-sizes are αx(β-1) and αx1 after removing one from 
the longest dimension of the request. The two new sub-
requests are then allocated using the contiguous allocation 
algorithm again. This procedure continues recursively until 
the request is fulfilled. These algorithms are referred to as 
PALD-based approaches. PALD stands for PArtitioning at 
the Longest Dimension [2; 3].  

III. PERFORMANCE EVALUATION  
The BGP and ANCA allocation algorithms is implemented in 
the C language, and later integrated with the ProcSimity 
simulation tool [20; 17]. Each simulation run consists of 1000 
completed jobs. Simulation results are averaged over enough 
independent runs so that the confidence level is 95% and the 
relative errors do not exceed 5%. Parallel jobs usually 
communicate with each other using all-to-all communication 
pattern [19; 10; 13]. We did our experiments using this 
communication pattern as it produces high message collision 
is known to be a weak point for non-contiguous allocation 
algorithms [5; 1]. The processor allocation strategies were 
tested under the scheduling strategy First-Come-First-Serve. 
The simulated parallel system is of size 20x20 computing 
units. The size of the simulated parallel job follows the 
exponential distribution with an average of 10 units for each 
dimension.  

IV. RESULTS AND OBSERVATIONS 
Figure 1 and 2 show how increasing the load of the 
parallel system affects the Finish Time (FT) of the ten runs 
of simulator and the Mean Job Response Time (MJRT), 
respectively. Two observations can be made of figure 1; 
the first is that increasing the Partitioning Bound (PB) 
value allows the parallel system to serve parallel jobs 
earlier and thus increase the system throughput. 
Consequently, the simulator FT is expected to be less for 
higher PB values (notice that non-contiguity of request 
allocated processing nodes does not significantly affect the 
service time of parallel jobs as they are not severely 
dispersed as clearly noticed in figure 2). 
The other observation on figure 1 is that, considering the 
same PB values for the ANCA and BGP schemes, the ANCA 
scheme showed lower FT values. This can be explained as 
follows: ANCA splits parallel jobs in two subframes of equal 
sizes. The BGP, however, splits jobs into one relatively large 
subframe and another small subframe. Notice that the 
probability of successfully allocating the large subframe of 
the BGP scheme is less than that of allocating the two smaller 
subframes produced by the ANCA scheme. Taking into 
consideration that the allocation of a parallel job is successful 
if and only if both subframes are allocated, it is expected that 
the ANCA algorithm is expected to produce lower FT (figure 
1) and also lower MJRT values (figure 2) for the same PB 
value enforced. For the same above reason, it is expected that 
the ANCA scheme to be superior over the BGP scheme in 
terms of Average System Utilization (ASU) as shown in 
figure 3 that proves that ANCA can sustain higher system 
loads and produce higher system utilization compared to 
BGP. 

Both ANCA and BGP schemes can allocate parallel jobs 
in a non-contiguous manner. Thus, it is expected that both 
will disperse parallel jobs. Figure 4 shows how increasing 
the load of the system affects the mean number of blocks 
per parallel job (MBPJ). Figure 4 shows that, for the same 
partitioning bound value, The ANCA scheme usually 
allocates parallel jobs to more blocks than the BGP 
approach in average. More MBPJ values imply longer jobs 
service time. Figure 5 shows that, when the partitioning 
bound is small, the BGP approach produces lower mean 
job service time value (MJST) than that produced by the 
ANCA approach. However, for higher PB values, the 
performance of the BGP approach degrades$ and the 
ANCA approach produces less job service time in average. 

 
Figure 1: Finish time vs. system load in ANCA-BF and BGP-BF 

allocation strategies with partitioning bound of 8 and 4 BPJ. 

 
Figure 2: Mean job response time vs. system load in ANCA-BF and 
BGP-BF allocation strategies with partitioning bound of 8 and BPJ. 

 
Figure 3: Percent system utilization vs. system load in ANCA-BF and 
BGP-BF allocation strategies with partitioning bound of 8 and 4 BPJ. 



 
Figure 4: Mean number of blocks per job vs. system load in ANCA-BF 

and BGP-BF allocation strategies with partitioning bound of 8 and 4 BPJ. 

 
Figure 5: Mean job service time vs. system load in ANCA-BF and BGP-

BF allocation strategies with partitioning bound of 8 and 4 BPJ. 

 
Figure 6: Finish time vs. mean number of messages per job in ANCA-BF 
and BGP-BF allocation strategies with partitioning bound of 8 and 4 BPJ. 

Figure 6 shows how increasing the communication load of 
the parallel system affects its performance in terms of 
finish time. In general, increasing the communication load 
increases FT because the service times of parallel jobs 
increase. The increase rate is higher for BGP approach.   
Figure 7 shows how the communication load affects 
MBPJ. Similar to what we observed in figure 4, the 
ANCA approach is expected to allocate jobs to more 
blocks compared to the BGP approach. The ANCA 
approach can successfully allocate parallel jobs earlier 
than the BGP approach. The reason is that allocating the 
large subframe produced by the BGP allocator is more 
difficult to allocate the two smaller subframes produced by 
the ANCA approach. Consequently, the ANCA approach 
produces lower MJRT (as proven by figure 8). Further, as 

observed in figure 5, for low PB values, the BGP approach 
is expected to be superior to the ANCA approach in terms 
of MJST (as proven by figure 9). However, for higher PB 
values, the ANCA approach is superior to the BGP 
approach. 
Figures 10 and 11 show how increasing the 
communication load of the parallel system affects the 
performance of the interconnection network linking the 
multicomputers in terms of mean packet blocking time 
(MPBT) and mean packet latency (MPL). It can be 
observed from the two figures that, in general, the ANCA 
approach is superior to the BGP approach in terms of 
MPBT at high communication loads (figure 10).  

 
Figure 7: Mean number of blocks per job vs. mean number of messages 
per job in ANCA-BF and BGP-BF allocation strategies with partitioning 

bound of 8 and 4 BPJ. 

 
Figure 8: MJRT vs. mean number of messages per job in ANCA-BF and 

BGP-BF allocation strategies with partitioning bound of 8 and 4 BPJ. 

 
Figure 9: MJST vs. mean number of messages per job in ANCA-BF and 

BGP-BF allocation strategies with partitioning bound of 8 and 4 BPJ. 



 
Figure 10: MPBT vs. mean number of messages per job in ANCA-BF 

and BGP-BF allocation strategies with partitioning bound of 8 and 4BPJ. 
Figure 11 shows how FT changes as the PB values 
increases. Figure 11 shows that, as expected, FT decreases 
as PB value increases for both ANCA and BGP schemes. 
However, FT decays faster in the ANCA approach over 
increasing the PB value. The reason is that the ANCA 
approach is more successful in allocating parallel jobs 
early compared to the BGP approach as observed in fig. 1.  

 
Figure 11: Finish Time vs. partitioning bound in ANCA-BF and BGP-BF 

allocation strategies. 

V. 5. CONCLUSION 
In this paper, the ANCA and BGP based allocation 
strategies are comparatively evaluated through exhaustive 
simulation-based experiments. Our experimental results 
shows that the ANCA and BGP allocation schemes are 
both flexible and tunable as it allows the allocator module 
to choose an optimal partitioning-bound value while 
allowing parallel jobs to be allocated early without having 
them over-partitioned. Our experimental results also 
showed that the ANCA scheme could sustain higher 
system and communication loads compared to BGP. 
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