
Supporting Distributed Aspects by Extending Object
Teams Model into Distributed Environments

Abdullah O. Al-Zaghameem
Institute of Software Techniques and Theoretical Informatics

Technical University of Berlin
Berlin, Germany

Email: aoztub@cs.tu-berlin.de

Abstract—Several distributed AOP models and languages have
been developed to support aspects in distributed programming.
These approaches prosper in encapsulating distributed concerns
within aspect modules and facilitate their employment in
distributed applications, but lack supporting management
facilities; the dynamic activation/deactivation of aspects at
runtime as an alternative to the expensive weaving/unweaving
mechanism adopted in some approaches. Additionally, these
approaches do not regard the real-world semantics of aspects;
which reduces their understandability. In this paper we present
DOT/J, a distributed model that extends the programming
model of OT/J language into distributed environments to
support the dynamic management of these aspects, and improve
their semantical representation.

Index Terms—Computer and Information Processing, Dis-
tributed Computing, Middleware.

I. INTRODUCTION

The Aspect Oriented Programming technique (AOP)[5]
has undoubtedly improve applications development process
through separating their different concerns and encapsulate
the crosscutting ones in so-called Aspect modules. Therefore,
applications modularity is highly increased; which makes them
easy to implement, understood, and maintain. The brilliant
success of AOP technique encourages the employment of
aspects in distributed applications. Consequently, several AOP
approaches, like Spring AOP[13], extended the structure of
their models to support distributed aspects. Some other new
distributed AOP models have been developed to mainly cope
with distributed aspects, like AWED[7], DyMAC[2], and
DJcutter[9].

Most of these distributed AOP models introduce a pointcut-
advice model; like the Join-Point Model (JPM) of AspectJ[4]
programming language, where crosscutting concerns are de-
fined by coupling pointcuts and advices within aspect modules.
A pointcut is a predicate expression that matches specific
points of program execution (called join points), and an advice
is the action to be taken at a join point matched by a pointcut.
Distributed AOP approaches augment this JPM by introducing
remote pointcuts and remote advice-execution strategies with
various degrees of transparency regarding join-point detection
and aspects deployment.

On the one hand, these approaches enable a seamless
representation and deployment of distributed aspects but lack

supporting dynamic management of these aspects at runtime;
like aspect activation/deactivation facility as an alternative to
dynamic weaving/unweaving of aspects at runtime which may
unintentionally affect application consistency. Additionally,
modularizing the context at which these aspects are applied
is neglected in most of these approaches; which decreases
application modularity and semantics.

On the other, Object Teams/Java (OT/J) [12] is a new
programming language that improves the modularity of
object-oriented collaboration-based applications by extending
JavaTMprogramming language with two new modules; team
module and role module. While the first is capture the col-
laboration at which application’s objects are interacting, the
second captures the crosscutting behaviors of these objects
in collaborations. From an AOP point of view, the seamless
separation between application’s objects and their collabora-
tive behaviors makes it possible to establish a mechanism to
control and manage aspects (or roles) dynamically at runtime,
as well as provides a module that captures the context where
these aspects are employed.

The rigorous, but flexible, model of OT/J (called OT) mo-
tivates us to extend its concepts into distributed environments
to support dynamic distributed-aspect management and other
distributed programming facilities, such as; distributed compo-
nents implementation, and adaptable distributed applications
development.

This paper is organized as follows: in Section II a quick
overview to OT/J programming language concepts will be
presented. Section III explains why OT/J doesn’t support
distributed aspects, and introduces our extending model that
invents a new modular and transparent remote role-playing
mechanism. Then explains distributed aspect implementation
and how to support them dynamically at runtime. Section IV
depicts a simple case study. The related works are listed in
Section V, and we conclude in Section VI.

II. OBJECT TEAMS MODEL AND OT/J PROGRAMMING
LANGUAGE

In object-oriented collaboration-based applications, objects
are interacting within one or more contextual regions called
collaborations, and a collaboration can spin several objects.
Each object can participate, by exporting part of its behavior, at
each spinning collaboration [12] to fulfill its own role in order



Fig. 1. Simple OT/J example: Person is playing Student role within Course
team.

to complete application functionality. The Object-oriented
programming model encapsulates the definition of application
objects within modules (e.g. Classes in Java), but fails to
provide an adequate module to capture the collaboration.

Observing the intersection between collaborations and ap-
plication classes, Object Teams model (OT for short) en-
capsulates collaborations in new modules called Teams and
captures the intersected behaviors of application classes (now
called base players) in modules called Roles. Considering this
modularity structure, a team module is a container of confined
roles.

OT/J extends Java by realizing the collaboration role-based
design, supports AOP concepts, and integrates them with the
object-oriented concepts. Application developers can define
teams as first-class modules using the keyword team. Inside
a team class, roles can be declared as normal Java classes
and can be either bounded or unbounded roles. The bounded
roles are those roles coupled to base players through the so-
called playedBy relationship, and the unbounded roles are
the rest. The playedBy relationship is the only link that
allows players to play roles within teams. For example, Fig. 1
shows a role-playing link between Student role and its player
Person.

The relationship playedBy involves two types of data-
communication channels between a role and its player,
namely: Callin Method Bindings (CIMBs) channel, and Call-
out Method Bindings (COMBs) channel. A CIMB is an
expression that binds a role-level method to a specific player
method such that; whenever the player’s method is called, the
control flow is transferred into a corresponding role instance to
execute that role-level method. The point at which control flow
must be intercepted is conducted by so-called CIMB modi-
fiers. The OT model presents three modifier types; before,
after, and replace. The before modifier indicates that
the role-level method must be executed before the correspond-
ing player’s method starts executing, while after modifier
implies executing player’s method first, and before the control
flow leaves that method, it must be dispatched toward the
bounded role instance to execute its method. In case of CIMBs

with replace modifier (called Callin Replacements), the
player’s method is overridden by the role-level method; i.e.
whenever player’s method is called, the corresponding role-
level method is invoked instead. For example, the CIMB
(getInfo <- replace getInfo;), shown in Fig. 1, in-
dicates that whenever getInfo method of a base instance
of type Person is called, the corresponding role-instance’s
getInfo method is invoked.

When the control flow is dispatched by player objects and
crosses the boundaries of team instance to execute a CIMB,
a valid role instance is picked up (or created if non) to
complete the execution via mechanism called Base Lifting;
which means: pick the corresponding role instance bounded
to the caller base object and invoke its desired method.

On the contrary, a COMB is a mechanism to forward
the control flow from a role instance into its bounded base
instance to invoke a base method on behalf of expected
method invocation. In fact, OT/J uses COMBs to realize
the Base Decapsulation concept; which allows role instances
to access their players’ attributes and members. For ex-
ample, the COMB expression (String getName() ->
get String pName;) declares a new role method called
getName() and whenever it’s invoked, the value of pName
base’s field is returned. To precisely handle COMBs, OT/J
uses an implicit operation called Role Lowering; which picks
the bounded base object up and invoke/access its wanted
method/field.

Furthermore, OT/J allows application programmers to con-
trol at runtime the effects of callins through Team Activation
mechanism; which indicates that all playedBy relationships
declared in a team class are disabled in an instance of that
team unless that instance is implicitly or explicitly activated.
Conversely, all playedBy relationships of an active team
instance become inapplicable if that team is deactivated.

To add more refinement at playedBy, OT/J allows the
use of conditional expressions, called Guard Predicates (GPs),
along with playedBy declarations, role-level methods, or
CIMB expressions to control their effects at runtime. A
special type of GPs called Base Guard Predicate (BGP)
that comprises one or more base class members (fields or
methods) within the expression of condition. For example, Fig.
1 illustrates the BGP (base when (registered(base))),
which enables only those person instances that are registered
in a specific course collaboration playing Student roles.

The binding process between base objects and role instances
is handled transparently at runtime and triggered either when a
specific CIMB is executed for the first time, or due to Explicit
Parameter Lifting [11](§2.3.2). For example, the expression
(Person as Student p) shown in Fig. 1 leads to bind
the passed Person instance with a role instance once team
method register is invoked. The first option is implicit and
happens once a base method call is intercepted by a CIMB,
then the corresponding role instance preserves that base object
locally along its life-cycle.



III. A DISTRIBUTED MODEL OF OT

The extension of OT model into distributed environments
is primarily aim at enabling the remote playing of roles. This
is to say, we want components and objects of distributed
applications be able to play roles remotely preserving the
systematic and modular considerations of OT playedBy rela-
tionship. Regarding OT/J, there is a lack in remote role-playing
support due to language-dependent concerns and platform-
specific considerations.

On the one hand, OT/J’s runtime library (called Object
Teams Runtime Environment (OTRE)) requires player classes
to be exist at load-time to fulfill the process of bytecode
transformation. In fact, OTRE dedicates a special bytecode
transformer to inject, at load-time, into players’ bytecode
all callin interceptions and other supportive code segments
according to a prior knowledge of all played roles. On the
other, distributed objects in Java are mostly implemented by
using interface-based design. In this regard, OT/J does not
support a full roles-to-interface binding due to OT/J compiler
limitations and type-safety concerns. Indeed, current Object
Teams Development Tooling (OTDT) (versions 0.7.x and later
under the umbrella of Eclipse) enables binding a role class to
interface player but restrict declaring only COMBs.

A. The Concepts of Distributed ObjectTeams/Java

Considering distributed aspects, adopting OT/J concepts
for representing aspects as roles, employing them through
playedBy relationships and control their effects by the
BGPs and teams (de)activation (1) improves the modularity
and implementation of distributed aspects; which simplifies
distributed application development, and (2) allows program-
mers to dynamically control the applicability of these aspects
without shredding the original functionalities of remote base
objects.

Basically, we would like to realize remote role-playing and
enables the binding of remote players and roles. This involves
establishing a communication channel between remote players
and the roles to play in order to facilitate remote CIMBs,
remote COMBs, and remote BGPs. Practically, the design
and implementation of remote role-playing must be conducted
by OT disciplines concerning playedBy relationship. For
example, Role-Confinement rule [11] must be respected to
prevent role instances leaving their enclosing team boundaries
without necessity.

Conceptually, we define Remote Team as the OT/J team
class that satisfies one of the following two conditions (or
both):

1) If team instances are required to be accessed remotely;
i.e. from outside their executing Java Virtual Machine
(JVM). In this case, teams are considered as distributed
components that comprise a set of services, or as con-
tainers of objects .

2) If it encloses at least one role class that is desired
to be played by a remote base (i.e. base objects are
residing at different host/process than that of roles). As a

concept, we call such roles as Remote Roles. This way, a
modular mechanism can be achieved to implement, and
dynamically employ and manage distributed aspects .

A Remote Base (or Remote Player) is any valid appli-
cation object that can play one or more remote roles. The
significant issue now is establishing precise and accurate
bindings between remote roles and their remote bases to
achieve remote role-playing. The binding activities must be
handled transparently and trigger only due to remote CIMB
executions or passing remote base objects through explicit
remote-parameters lifting declarations.

It’s evident that remote players can play several remote roles
within several remote teams. In this concern, remote players
need to designate the remote team instances (where their roles
are confined) in order to spark remote role-playing. In OT/J,
it’s the responsibility of OTRE transformers to inject into bases
bytecode classes the necessary code segments required to
achieve this goal, and the code that represents CIMB channel.
While this process is hard to implement in the distributed
case, DOT/J distinguishes between remote team designation
and remote role-playing (i.e. remote CIMB channel). The first
requested to insure that remote bases obtain the correct list
of remote teams all the time, while the second represents the
actual communication-channel between remote base objects
and their role instances. Therefore, to accomplish a flexible
remote teams designation, DOT/J enables remote base objects
obtaining the latest Remote Teams List (RTL) in a process
called Looking up and facilitates remote teams appending
through Registration process.

Respecting remote role-playing, remote bases and remote
teams need to contact each other before the binding takes
place. In this regard, we adopt the technique of Provided-
Required Interface to connect remote bases and remote teams.
In fact, roles can directly access their players’ attributes
(through COMBs), while the later can only issue CIMB
invocations that are manipulated first by remote team which
orientates them to a specific role.

B. DOT/J Model Implementation

From a middleware point of view, DOT/J acts as a dis-
tributed layer that facilitates a seamless communication for
objects participating in remote role-playing. Fig.2 depicts the
structure of DOT/J model and illustrates its incorporation with
OT/J model. Primarily, DOT/J comprises two main structures,
namely: The DOT/J Transformation Library and the DOT/J
Runtime Layer (DRTL). Along this section we will demon-
strate these structures.

Practically, extending the OT model must regard its fun-
damentals from one side, and copes with the aforementioned
obstacles appropriately from the other. To do so, we divided
the extension process into three main stages according to
OT/J application development process, namely; static level (or
source code phase), load-time level, and runtime level.

1) The static level: The remote role-playing process is a
relationship comprises remote base object and a role instance
confined within a remote team instance. As remote instances



Fig. 2. The structure of DOT/J Model.

are disjointed logically or physically regarding their execution
scope, we require their classes to be generated precisely to
participate in this remote relationship. Therefore, either we
reformulate OT/J’s compiler to manipulate remote teams and
their enclosed roles according to DOT/J requirements, or reuse
the locally generated classes and adjust them to conform
with DOT/J disciplines. As the first option implies adding
new keywords to OT/J language (e.g. remotePlayedBy
or remoteBase) or compiler directives, the second requires
only the designation of classes that participate in remote role-
playing relationships. Currently we adopt the second option
and leave the first one as future work.

The designation of remote classes is carried out through a
process called remote-class Labeling. A simple XML file can
be used to statically map teams, roles, and base classes into
DOT/J system through labeling them as remote classes.

2) Load-time level: At this level, the compiled classes of an
OT/J application are loaded into JVM for execution. Classes
that were labeled at static phase as remote must be prepared
with the capability for precise and secure remote role-playing.
For example, remote base object should be able to easily look
up remote teams that enclosing their roles, and remote teams
should be able to register seamlessly.

To equip remote objects (teams and bases) with a precise
capability to easily discover each other, and to achieve a
transparent binding between remote base objects and role
instances, we implement the DOT/J Transformation Library
that includes two bytecode transformers; remote-base trans-
former and remote-team transformer. The first one is dedicated
to transform the labeled remote base classes by injecting
into their bytecode the necessary code segments that enable
their objects looking remote team instances up, handle remote
CIMBs precisely, and make them able to serve all remote
COMBs accurately.

The other transformer injects into remote team classes the

Fig. 3. Integrating DOT/J transformers with OT/J structure.

required code segments that conduct them during registration
process, enable them verifying and handling all received
remote CIMBs and remote calls, and facilitate COMB invo-
cations and remote BGPs evaluation.

The transformers of DOT/J are using the Byte Code Engi-
neering Library (BCEL) [8] (a toolkit that helps developers
to statically analyze Java classes and dynamically transform
them at load-time, or create new ones at fly). Fig. 3 illustrates
the incorporation between DOT/J transformers and OT/J struc-
ture1. Note that the output classes of OT/J transformers are the
input of DOT/J transformers.

3) The runtime level: Adopting the Registration-Lookup
strategy imposes the usage of intermediate component between
remote team instances and remote base objects. For this
purpose, we implement The DOT/J Runtime Layer (DRTL)
which comprises two main components: the DOT/J Library
and the Distributed Objects and Teams Manager (DOTM). The
DOT/J Library includes the necessary packages that insure
the accurate and transparent binding of remote team and
remote base instances. Particularly, this library involves two
domain-specific remote interfaces called the Generic Remote
Interfaces (GRIs) that realize the Provided-Required Interface
relationship between remote base objects and remote team
instances. The first GRI, called IRemoteBase, is dedicated
to represent a remote façade of remote base objects, and
declare a set of generic remote methods that allow remote
COMBs invocations and remote BGPs evaluation. All re-
mote base objects must implement this interface to supply a
Provided-Interface (DOT/J transformers prepare the complete
implementation transparently) .

The second GRI is called IRemoteTeam which represents
a generic remote façade for all remote team instances, and
must be implemented by all remote teams. This GRI is
the Provided-Interface required by remote base objects. It
declares a set of generic remote methods that allow remote
CIMBs invocations and invocations of public remote team
methods. Additionally, it comprises DOT/J’s special-purpose
remote APIs to manage team instances remotely. All remote
methods are carried out through Java-RMI [14] middleware
system. The DOTM is the core component of DOT/J Runtime

1Current OT/J version is mainly use Java Programming Language Instru-
mentation Services (JPLIS), a mechanism for bytecode instrumentation, and
preserves using JMangler [6] class-loader system



system. Remote team instances register themselves into the
DOTM records once they are created providing a complete
list of remote roles along with remote CIMBs they declare.
Respecting remote bases, they hook into the DOTM an anchor
so that a communication channel is opened between the two
parts to send/receive any notifications concerning RTL up-
dates. However, the DOTMs are using JGroups [1], a reliable
multicast communication system, to communicate with each
other to preserve the RTL consistence and up-to-date, as well
as facilitate any recovery processes.

Using the GRIs, DOT/J supports an implicit and transparent
binding/lifting of remote base objects/roles. To accomplish the
explicit binding/lifting in distributed applications (i.e. through
explicit parameter lifting declarations), the DRTL enables the
use of so-called Remote Façades; which are user-defined Java
interfaces that can, in addition to normal methods, define those
methods containing explicit parameters lifting declarations in
their signatures. At static phase, application developer needs
to mark Remote Façades inside the XML files; at both remote
team and remote base application parts. For example, the
following XML entry declares ICourse interface (shown in
Fig. 1) as remote façade:

<RemoteFacade class="org.teams.ICourse"/>

IV. CASE STUDY: A SIMPLE DISTRIBUTED COURSE
APPLICATION

Considering the simple OT/J example shown in Fig. 1, we
will explain step by step how to implement that application
using DOT/J. We assume that the team Course application
is implemented at host JVM-1, and the base Person is im-
plemented at different host, say JVM-2. The following OT/J
code fragment illustrates the implementation of Course team
and the enclosing role Student:

public team class Course {...
protected class Student //Role

playedBy Person
base when (registered(base))

{...
// callin replacement ...
callin String getInfo()
{ if(!fired(this)) return "STD:"

+getName()+" No.= " +...;
return base.getInfo();// proceed

}
// CIMBs .. COMBs ..
getInfo <- replace getInfo;
String getName()-> get String pName;

}}

A. Labeling Remote Classes

To mark Person as remote base class, programmers need
only to provide the full-qualified name of that class as follows:

<DOTJ>
<RemoteBases>
<Base class="org.system.pkg.Person"/>

</RemoteBases>
<RemoteFacade class="myPkg.ICourse"/>

</DOTJ>

Similarly we can mark Course team and Student role as
remote team and remote aspect, respectively, as follows:

<RemoteTeam class="org.teams.Course">
<RemoteRole name="Student"/>
<RemoteFacade class="myPkg.ICourse"/>

</RemoteTeam>

B. Running the example

When creating a new remote team instance, it’s automat-
ically registered in the DOTM. Programmers can activate
remote teams remotely or locally as follows:

Course math = new Course("Math 101");
math.activate (Team.ALL_THREAD);

At JVM-2, the math team instance can be accessed by first
contacting the DOTM as follows:

1: Person p1 = new Person("A. Odeh");
2: ICourse cMath = (ICourse)

DOTM.getRemoteTeam("org.teams.Course");
3: cMath.register(p1);//register new student

:
4: String info = p1.getInfo();

//remotely deactivated
5: cMath.deactivate(Team.ALL_THREAD);
6: String info2=p1.getInfo();

:

When getInfo() method is called (line 4), the control
flow is intercepted by a CIMB transparently, then forwarded
into math instance via its registered GRI, and by passing
the GRI of p1 the binding is accomplished and a role
lifting is carried out. The method getInfo() of the lifted
role instance is invoked and its result returned. Note that
getInfo() method of role instance issues a remote COMB
to get the field pName of its bounded base. When math team
instance is remotely deactivated (line 5) all CIMBs become
inactive. Therefore, getInfo() call at line 6 will execute
the local original method of p1.

C. Evaluation

In this example, we implement a simple distributed OT/J
application using our extending model, DOT/J. The role
Student is employed transparently to extend the behavior of
Person class within Course collaboration. Most of runtime is
consumed in the preparation of DRTL (e.g. loading JGroup
protocol staff and joining DOT/J group). The actual runtime
for invoking getInfo() of instance p1 while the remote
team is activated is 90 ms at the first call, and 3ms (in average)
for sequent calls. Our example is implemented using Eclipse
IDE v 3.5.2 and OTDT v 1.3.3.



V. RELATED WORKS

Mainly, we relate DOT/J to Distributed AOP languages from
the perspective of supporting distributed aspects regardless of
providing pointcut model.

AWED [7] extends the model of JAsCo[3], an aspect-
oriented language tailored for component-based software de-
velopment. JAsCo allows developers to implement generic
Hooks inside aspect modules, and use Connector modules
to bind hooks and the target components at runtime. AWED
makes use of the Connector Registry component to facilitate
communication between hosts to serve aspects deployment
and remote pointcuts evaluation. Our distributed model uses
the DOTM which holds all remote teams, deploy their GRIs
(or remote Facades if determined) at all executing nodes. In
AWED, aspects must be deployed at all meant hosts, while in
DOT/J only remote façades are exposed and aspects remain
confined within team instances. Moreover, AWED doesn’t
support dynamic activation/deactivation of aspects like DOT/J,
or the possibility to attach new remote teams dynamically
without reloading application components.

JAC [10] is an object-based framework for AOP in Java.
Application objects are wrapped so that aspect objects in
JAC can be deployed and undeployed dynamically at runtime.
Concerning distributed aspects, JAC simulates remote advices
by executing local advice on a local copy of aspects; which
imposes distributed aspect replication on each host, and adds
extra communication efforts to preserve aspects consistency. In
DOT/J aspects are enclosed within team instances and advices
are executed by the means of remote CIMB execution. Addi-
tionally, DOT/J enables the dynamic attachment/detachment
of remote teams which provides a dynamic evolution of
applications in modular way and requires only remote teams’
GRIs to be deployed. The attention is payed in preserving RTL
consistency.

DJcutter [9] is an extension of AspectJ. It uses host
pointcuts, as in AWED, to indicate at which hosts joinpoints
must be detected and remote advices must be executed.
This technique reduces the transparency of DJcutter. DOT/J
provides a high-degree of transparency regarding remote teams
detection and remote CIMBs execution. Moreover, DJcutter
implements a centralized aspect-server that collects joinpoint
information about remote pointcut definitions, and executes
related advices locally; i.e. at aspect-server itself. However,
the centralized Aspect-server forms a single-point-of failure,
as well as it may cause bottleneck problems when large-scale
distributed applications are considered.

DyMAC [2] is an aspect-oriented and component mid-
dleware framework that uses aspect composition to connect
application business-logic to the middleware services. DyMAC
is transparently extending the power of aspect composition
(joint point model and advice execution) in distributed con-
texts. DOT/J presents similar approach for handling aspects
and detecting CIMBs transparently. The difference between
the two approaches is that DyMAC implements a join-point
model while DOT/J is only support CIMBs which declare

one-to-one method interceptions. Additionally, DOT/J exhibit
more flexible and transparent mechanism to declare, deploy
and access remote teams through Remote Façades contrary
to DyMAC that uses Component Factory to instantiate dis-
tributed components on-demand and stores them in Distributed
Instance Registry then transparently deploy them at hosts.

VI. CONCLUSIONS

Distributed AOP languages and models improve the mod-
ularity of distributed aspects and distributed-aspect compo-
nents, and provide several mechanisms to facilitate aspects
deployment and remote advice execution. These models lack
supporting a dynamic management of distributed aspects like;
dynamic activation/deactivation. This paper presents DOT/J,
a distributed model that extends into distributed environment
the model of OT/J programming language . The model makes
use of teams activation/deactivation processes to control as-
pects applicability at runtime. The separation between base
objects and the played roles allows the interception of bases
methods without affecting their state consistency or deform
their internal structure, i.e. they are not compromised. The
model also supports other distributed computing features, such
as; distributed collaboration-based application development,
distributed components, and modular distributed application
adaptability.

REFERENCES

[1] B. Ban. JGroups, a toolkit for reliable multicast communication.
http://www.jgroups.org/, 2002

[2] B. Lagaisse, and W. Joosen. True and transparent distributed compo-
sition of aspect-components. In Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware (Middleware ’06), Michi
Henning and Maarten van Steen (Eds.). Springer-Verlag New York, Inc.,
New York, NY, USA, 42-61. 2006

[3] D. Suve, W. Vanderperren, and V. Jonckers, Jasco: an aspect-oriented
approach tailored for component based software development. In Pro-
ceedings of AOSD’3. ACM Press, NY. U.S.A., p:21-29. 2003.

[4] G. Kiczales, E. Hilsdale, J. Hugunin, and et. al. An Overview of AspectJ.
In Proceedings of the 15th European Conference on Object-Oriented
Programming (ECOOP ’01), Lindskov Knudsen (Ed.). Springer-Verlag,
London, UK, 327-353. 2001

[5] G. Kiczales, J. Lamping, A. Mendhekar, and et. al. Aspect-oriented
programming. In Proceedings of the ECOOP’97. Springer-Verlag LNCS
1241, Finland, p:220-242. 1997.

[6] G. Kniesel, P. Costanza, and M. Austermann, JMangler - A Framework
for Load-Time Transformation of Java Class Files. Proceedings of IEEE
Workshop on Source Code Analysis and Manipulation (SCAM), IEEE
Computer Society Press. 2001

[7] L. Navarro, M. Sudholt, W Vanderperren, and et. al. Explicitly dis-
tributed AOP using AWED. In Proceedings of AOSD’06. ACM, New
York, NY, USA, p:51-62. 2006.

[8] M. Dahm. Byte Code Engineering. web page:
http://jakarta.apache.org/bcel, Dec. 2010

[9] M. Nishizawa, S. Shiba, and M. Tatsubori. Remote pointcut - a language
construct for distributed AOP. In Proc. of AOSD04. ACM Press, 2004

[10] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.JAC: A flexible
solution for aspect-oriented programming in Java. In Proceedings of
Reflection01, volume 2192 of LNCS. Springer-Verlag, Sept. 2001

[11] S. Herrmann, C. Hundt, and M. Mosconi. OT/J Language Definition
V1.3. Technical Universitäte Berlin. http://www.objectteams.org, 2009

[12] S. Herrmann. Object teams: Improving modularity for crosscutting
collaborations. In Procs. of Net.ObjectDays. Springer, p:248-264. 2002

[13] Spring AOP. http://www.springframework.org/, (Dec. 2010)
[14] Sun Microsystems.Java Remote Method Invocation Specification V1.5.0.

Sun Microsystems Inc., Santa Clara, California,U.S.A. 2004


