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Abstract—In this paper, we are interested in the applicatio and

the evaluation of the performances of adaptive regsive

subspace-based algorithms of linear complexity forthe

suppression of interferences in Space Time Adaptiverocessing
(STAP), namely PAST and OPAST. To highlight their
application in the STAP, we present the reduction ofhe rank by

the principal components (PC) and the SINR metric rathods.

The simulation results will be presented and the péormances of

the STAP for a reduced rank will be discussed with a
comparative study made between the used methods.
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I.  INTRODUCTION
A target in a scenario of airborne surveillarcelarkened

by the clutter of ground and the jammer in multiple

dimensions. It was shown in [1] that the targetéparated
from the clutter and jammer in two-dimensional &igbppler.

Space-time processing can provide a rejection off slutter

and thus, be able to detect the slow targets. Bireand Reed
[2] first introduced STAP to the radar community 1873.

With the recent advancement of high speed, higfopeance
digital signal processors, STAP is becoming angirgtkepart of
airborne or space-borne radars for MTI functionswelver, it

is a well-known that optimum STAP detection implatarge
computational cost, since it utilizes complex matperations
and often in an iterative fashion. In fact, the moels of the
STAP with full rank use all the available degreéf@edom to
eliminate the interferences, so requiring a cost hajh

calculation. For this reason, some
algorithms have been developed. In [2-7] and refse
therein, it was shown that STAP has the unique gntgpof
compensating for the Doppler spread induced bypthgorm

motion and thus, making the detection of slows dtxg

possible.

In this paper, we analyze, at first, the STAP wilduced
rank by using two methods, namely the method optiecipal
components (PC) and the SINR metric method. Therapply
two iterative and adaptive algorithms of subspaaeking to

reduce the rank. Finally a comparison is made stfjuthe use
of these algorithms in the radar processing. IniGe, the
mathematical model is given as well as the strectfr the
matrix of covariance. In Section 3, we give a bdescription
of STAP with reduced rank and define the PC and=Sihetric
methods. The iterative algorithms proposed aregddem the
Section 4. Results and discussion are present&bdtion 5,
while the conclusion is presented in Section 6 lidgting the
main results presented.

II.  MATHEMATICAL MODEL OF DATA

We consider a space time network with N antenna
uniformly spaced and M delay elements for any ardehe
data are then processed on one range of interesth wh
corresponds to one slice of the data cube in Figjure
The space time covariance matrix is determinated by

R=R +R +R, )

where,R., R andR are the covariance matrices of the

clutter, jammers and thermal noise, respectivelgrévidetails
for the computation of these matrices are givei3n

The performance of the processor can be discusdedns
of the Improvement Factor (IF). IF is defined as thtio of the
SINR of the output to that of the input of the Rird~orm
Processor (DFP):
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W is the optimum weights of the interference plusisa

IF

reduced-rank EsTAreiection filter and S is the steering vector.

I1l.  STAPWITH REDUCED RANK

The fully adaptive techniques of signal processiag not
be applied for a real-time processing. The methadith
reduced rank realize the adaptation on a spacesdhiced
dimension obtained after an adaptive transformaiiothe
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data. They also exploit the nature of the low raifkthe
interferences.

The partially adaptive algorithms of the STAP cetssiin
transforming the data with a matnxgCc"™*" where r<<MN.
There are several methods of rank reduction, aedlyz [3-7]
and references therein, which differ in the shapethe
processor and in the selection of the columnsehthtrix. The
principal component is based on the eigenvectansar@ation
of the matrix of covariance of interferences cqraesling to
the dominant eigenvalues [3]. In the SINR metrichod, the
objective is to choose the r columns\obuch that the loss in
the performances of the SINR will be minimized. g®srand
Welsh [5] chose the columns Wfas being the eigenvectors of
R, which minimized the loss in the performancehef 8INR. If
we assume that the r columns Wf are a subset of the
eigenvectors of R, the improvement factor of thduoed rank
can then be written as

tr(V*"R V)
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IV. ITERATIVE AND ADAPTIVE ALGORITHMS OF SUBSPACE

TRACKING

The iterative/adaptive algorithms of subspaaeking allow
to follow the temporal variations of the subspacé t update
it in every new observation. One very large numioér
algorithms were proposed in the literature [8-123da
references therein. They showed their efficiencysaveral
domains of signal processing in particular in angmn
processing and in spectrum analysis. They offeer@sting
perspectives in the STAP.

In this context, we consider only the class of thstest,
most strong and effective algorithms said classifylinear
complexity. We propose the application and the watadn of
the performances of the algorithms, PAST as wellitas
orthogonal version (OPAST).

PAST and OPAST algorithms

The Projection Approximation Subspace Tracking (PAS
[9] is based on the optimization of the followingterion:

(a) Conventional chain of STAP; (b) Data cob&TAP

t _ 2
JW(E) =D 47 x(@) =W (R).y () 4
i=1
where x is the observed data vector and W is thienated
interference subspace basis agtidis a forgetting factor,

0<p<1andy(i) =W" (i —1).x(t) this cost function has a
global minimum which yields a non orthonormal basighe
interference subspace and which may be attained RLS
adaptive algorithm given in table 1.

In order to resolve the problem of convergence and
orthogonality of the weighty matrix, the OrthonoinAST
(OPAST) was presented [10].

V. RESULTS AND DISCUSSIONS

In this part, we will discuss the influence sbme
algorithms of reduction of the rank on the detettd a target
supposed by low power (SNR= 0 dB) and of low sp&éw
simulated environment is a linear side looking reknof N=8
antennas spaced out by half of the emitted wavéieng
d=A/2 and M=10 impulses in the coherent processing cube.
The dimension of the adaptive process is thus M8D=The
elevation angle is fixed to 20°. The speed of thieane radar
is VR=100m/s, and the frequency of transmission is 0.8GH
The environment of interferences consists of fauminers and
the clutter of ground. The jammers have the angiexzimuth
respectively: 0°, 180°, 60°, 90°, and 72°, with rat&®iner to
noise (JNRs) of 13dB, 12dB, 11dB, 10dB and 9dB
respectively. The clutter to noise ratio (CNR) guial to 8dB.
This clutter covers the band [30°, 30°].

Note that a notch, which is a reversed peathefclutter
appears at the frequency in the direction of safithe radar,
while the width of this notch gives a measurement the
detection of slow moving targets.

First of all, we studied the influence of thember of
antennas N and M pulses on the number of eigenvaitithe
covariance matrix that has given us guidance ofr@mwent
statistics in which the target is to be tested. dbothis, we



traced the changes in eigenvalues which focusesrtegy of
the system according to their numbers.

It can be seen clearly from Figure 2, that an iaseein NM
leads to an increase in powers and in the numbdegifees of

To compare the effect of the reduction of the rdmk
applying the algorithm PAST with that of the PC-DRke
drew the factor of improvement IF according to Bt the
algorithm PAST and PC-DFP for various values of PRF

freedom of the system filter. We also note that theFigure 6. We notice that the ambiguous notches haf t

interference-noise space can be separated intsyspaces:
the interference subspace and the noise subspace.

As the number of eigenvalues is a measurbeoflegree of
freedom of clutter elimination filter, we can naithat the
number of small eigenvalues is high, while the namtf those
with a low value is significantly large, which imases the
degree of freedom.

If we work with all size of the covariance mat
(MNxMN), there will be difficulties in implementingeal-time

algorithm PAST appears at the same level as théstheo
method PC-DFP but, they are much wider. Thus thesative
algorithms get ready well for the application ie tRTAP.

By drawing the same curves as with the OPAST aed th
PC-DFP, Figure 7, we notice that the results ardai with an
improvement at the level of the width of the notshwell as at
the level of the secondary undulations. Indeed naiice that
the ambiguous notches of the algorithm OPAST igepably
wider with regard to those of the method PC-DFPweler,

especially since it also requires a very cumbersoméhey are less wide than those of the algorithm PAST

equipment. So the use of rank reduction methodace=dhe
computational complexity and therefore the cost #ns by
taking a dimension (rxr) with r the rank which mi& very
inferior to MN. This choice is motivated by the fgbat the
observation space is divided into two areas (ncasel
interference) as it was commented on in Figure 2.

On the other hand, it is important to considée
performances of the SINR for each method partiatigptive
according to the rank. We notice from Figure 3 thate is a
strong degradation in the performances for a sraalk. It is
obvious that the method of the PC cannot obtainotstémal
SINR of exit until the rank is equal to the dimemsiof the
eigenstructure of noise subspace. The SINR metribest
when the rank is reduced below full dimension.

Figure 4 represents the improvement factor, IFpating
to the normalized Doppler frequency (Ft) for theFDIFC, with

different  values of PRF  (without ambiguities,

PRF=8V./Aand the case with ambiguitiPRF=2V,/A).

We notice the appearance of new weak undulationghen
bandwidth due to the estimate used for the rankateoh. We
notice, also, the appearance of ambiguous notchdstlze
width of the notch does not change. Thus the radkction
does not eliminate the ambiguities of the clutterimh the
suppression of the noise, and that this reductamro effect
on the detection of the slow targets.

For the iterative algorithms, we use the improvenfiector

given by the expression (2) whew = (I —ww")S, andw
is the estimated subspace of interferences. Theorfaaf
forgetting of both algorithms is fixed at= 099. Figure 5

represents the IF according to Ft for the algoréf®AST and
OPAST and that of the optimal. We considered thenaro
without ambiguities to light the effect of the aigption of the
algorithms on the detection. We notice that thelmalue to the
PAST follows the same look as that of the optinrakpssor. It
is relatively wide but can indeed allow an accelgtatetection
of the slow targets. We can thus say that the egiodin of the
algorithm PAST allows the suppression of the irefices.
Comparing both considered iterative algorithms natce that
the detection using the algorithm OPAST is closertiat
obtained by the optimal processor.

We have to notice that similar results are founthwhe SINR
metric method.

TABLE 1. PASTAND OPASTALGORITHMS
Initialization :
I r
W(O){O };z(0>=lr
(NM =r)xr
For t=1,2,...do
PAST Section:

y(t) =W(t -)" x(t)
h(t) = Z(t -1 y(t)

_ e
o= O h

z(t) =%(Z(t “D-g®)yM)" Z(t-1)

e(t) = x(t) ~W(t -Dy(t)
W(t) =W(t -1 +e(t)g()"

OPAST Section:
O(t) = pt)(x (t)-W (t-1) y(1))
1 1
r(t) =
%Ilh(t)ll* \/1+#ID ¢)IFIh )R

e ="Ow(t-n o+ @+ " n fio ¢
U s

2ty =2z -1-L gy z(t-1)
U U

W (1) =W (t-1)+ (9 d' (D

End for
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Figure 2. Eigenvalues of the space-time covariance matrixaRh,
JNR=35 dB, CNR =30 dB
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Figure 7. Improvement factor for the OPAST and PC-DFP withiPRF =8V, /A , (b) PRF =2V, /A




