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Abstract—In this paper, we are interested in the application and 
the evaluation of the performances of adaptive recursive 
subspace-based algorithms of linear complexity for the 
suppression of interferences in Space Time Adaptive Processing 
(STAP), namely PAST and OPAST. To highlight their 
application in the STAP, we present the reduction of the rank by 
the principal components (PC) and the SINR metric methods. 
The simulation results will be presented and the performances of 
the STAP for a reduced rank will be discussed with a 
comparative study made between the used methods. 
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I.  INTRODUCTION  

     A target in a scenario of airborne surveillance is darkened 
by the clutter of ground and the jammer in multiple 
dimensions. It was shown in [1] that the target is separated 
from the clutter and jammer in two-dimensional angle/Doppler. 
Space-time processing can provide a rejection of such clutter 
and thus, be able to detect the slow targets. Brennan and Reed 
[2] first introduced STAP to the radar community in 1973. 
With the recent advancement of high speed, high performance 
digital signal processors, STAP is becoming an integral part of 
airborne or space-borne radars for MTI functions. However, it 
is a well-known that optimum STAP detection implies a large 
computational cost, since it utilizes complex matrix operations 
and often in an iterative fashion. In fact, the methods of the 
STAP with full rank use all the available degrees of freedom to 
eliminate the interferences, so requiring a cost of high 
calculation. For this reason, some reduced-rank STAP 
algorithms have been developed. In [2-7] and references 
therein, it was shown that STAP has the unique property of 
compensating for the Doppler spread induced by the platform 
motion and thus, making the detection of slows targets 
possible.   

In this paper, we analyze, at first, the STAP with reduced 
rank by using two methods, namely the method of the principal 
components (PC) and the SINR metric method. Then, we apply 
two iterative and adaptive algorithms of subspace tracking to 

reduce the rank. Finally a comparison is made to justify the use 
of these algorithms in the radar processing. In Section 2, the 
mathematical model is given as well as the structure of the 
matrix of covariance. In Section 3, we give a brief description 
of STAP with reduced rank and define the PC and SINR metric  
methods. The iterative algorithms proposed are treated in the 
Section 4. Results and discussion are presented in Section 5, 
while the conclusion is presented in Section 6 highlighting the 
main results presented. 

II. MATHEMATICAL MODEL OF DATA  

    We consider a space time network with N antennas 
uniformly spaced and M delay elements for any antenna. The 
data are then processed on one range of interest which 
corresponds to one slice of the data cube in Figure 1. 
The space time covariance matrix is determinated by  

njc RRRR ++=                                   (1) 

 

where, cR , jR and nR are the covariance matrices of the 

clutter, jammers and thermal noise, respectively. More details 
for the computation of these matrices are given in [3]. 

The performance of the processor can be discussed in terms 
of the Improvement Factor (IF). IF is defined as the ratio of the 
SINR of the output to that of the input of the Direct Form 
Processor (DFP): 
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W is the optimum weights of the interference plus noise 
rejection filter and S is the steering vector.  

 

III.  STAP WITH REDUCED RANK  

The fully adaptive techniques of signal processing can not 
be applied for a real-time processing. The methods with 
reduced rank realize the adaptation on a space of reduced 
dimension obtained after an adaptive transformation on the  
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Figure 1.    (a) Conventional chain of STAP; (b) Data cube of STAP 
 

data. They also exploit the nature of the low rank of the 
interferences. 

The partially adaptive algorithms of the STAP consists in 
transforming the data with a matrix rMNCV ×∈  where r<<MN. 
There are several methods of rank reduction, analyzed in [3-7] 
and references therein, which differ in the shape of the 
processor and in the selection of the columns of the matrix. The 
principal component is based on the eigenvectors conservation 
of the matrix of covariance of interferences corresponding to 
the dominant eigenvalues [3]. In the SINR metric method, the 
objective is to choose the r columns of V such that the loss in 
the performances of the SINR will be minimized. Berger and 
Welsh [5] chose the columns of V as being the eigenvectors of 
R, which minimized the loss in the performance of the SINR. If 
we assume that the r columns of V are a subset of the 
eigenvectors of R, the improvement factor of the reduced rank 
can then be written as  
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IV.  ITERATIVE AND ADAPTIVE ALGORITHMS OF SUBSPACE 

TRACKING  

     The iterative/adaptive algorithms of subspace tracking allow 
to follow the temporal variations of the subspace and to update 
it in every new observation. One very large number of 
algorithms were proposed in the literature [8-12] and 
references therein. They showed their efficiency in several 
domains of signal processing in particular in antennas 
processing and in spectrum analysis. They offer interesting 
perspectives in the STAP.  

In this context, we consider only the class of the fastest, 
most strong and effective algorithms said classify in linear 
complexity. We propose the application and the evaluation of 
the performances of the algorithms, PAST as well as its 
orthogonal version (OPAST).   

 
PAST and OPAST algorithms 

 
The Projection Approximation Subspace Tracking (PAST) 

[9] is based on the optimization of the following criterion:  
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where x is the observed data vector and W is the estimated 
interference subspace basis andµ is a forgetting factor, 

10 <≤ µ  and )().1()( txiWiy H −=  this cost function has a 
global minimum which yields a non orthonormal basis of the 
interference subspace and which may be attained by a RLS 
adaptive algorithm given in table 1. 

In order to resolve the problem of convergence and 
orthogonality of the weighty matrix, the Orthonormal PAST 
(OPAST) was presented [10]. 

 

V. RESULTS AND DISCUSSIONS  

     In this part, we will discuss the influence of some 
algorithms of reduction of the rank on the detection of a target 
supposed by low power (SNR= 0 dB) and of low speed. The 
simulated environment is a linear side looking network of N=8 
antennas spaced out by half of the emitted wavelength 

2/λ=d  and M=10 impulses in the coherent processing cube. 
The dimension of the adaptive process is thus MN = 80. The 
elevation angle is fixed to 20°. The speed of the airborne radar 
is VR=100m/s, and the frequency of transmission is 0.3GHz. 
The environment of interferences consists of five jammers and 
the clutter of ground. The jammers have the angles of azimuth 
respectively: 0°, 180°, 60°, 90°, and 72°, with ratios jammer to 
noise (JNRs) of 13dB, 12dB, 11dB, 10dB and 9dB 
respectively. The clutter to noise ratio (CNR) is equal to 8dB. 
This clutter covers the band [30°, 30°].  
     Note that a notch, which is a reversed peak of the clutter 
appears at the frequency in the direction of sight of the radar, 
while the width of this notch gives a measurement for the 
detection of slow moving targets. 
     First of all, we studied the influence of the number of 
antennas N and M pulses on the number of eigenvalues of the 
covariance matrix that has given us guidance on environment 
statistics in which the target is to be tested. To do this, we 



traced the changes in eigenvalues which focuses the energy of 
the system according to their numbers. 
It can be seen clearly from Figure 2, that an increase in NM 
leads to an increase in powers and in the number of degrees of 
freedom of the system filter. We also note that the 
interference-noise space can be separated into two subspaces: 
the interference subspace and the noise subspace.  
     As the number of eigenvalues is a measure of the degree of 
freedom of clutter elimination filter, we can notice that the 
number of small eigenvalues is high, while the number of those 
with a low value is significantly large, which increases the 
degree of freedom.  
     If we work with all size of the covariance matrix 
(MNxMN), there will be difficulties in implementing real-time 
especially since it also requires a very cumbersome 
equipment. So the use of rank reduction methods reduce the 
computational complexity and therefore the cost, and this by 
taking a dimension (rxr) with r the rank which must be very 
inferior to MN. This choice is motivated by the fact that the 
observation space is divided into two areas (noise and 
interference) as it was commented on in Figure 2. 
     On the other hand, it is important to consider the 
performances of the SINR for each method partially adaptive 
according to the rank. We notice from Figure 3 that there is a 
strong degradation in the performances for a small rank. It is 
obvious that the method of the PC cannot obtain the optimal 
SINR of exit until the rank is equal to the dimension of the 
eigenstructure of noise subspace. The SINR metric is best 
when the rank is reduced below full dimension. 

Figure 4 represents the improvement factor, IF, according 
to the normalized Doppler frequency (Ft) for the DFP-PC, with 
different values of PRF (without ambiguities, 

λ/.8 RVPRF = and the case with ambiguities λ/.2 RVPRF= ).  

We notice the appearance of new weak undulations in the 
bandwidth due to the estimate used for the rank reduction. We 
notice, also, the appearance of ambiguous notches and the 
width of the notch does not change. Thus the rank reduction 
does not eliminate the ambiguities of the clutter during the 
suppression of the noise, and that this reduction has no effect 
on the detection of the slow targets. 

For the iterative algorithms, we use the improvement factor 

given by the expression (2) where SwwIW H )( −= , and w 

is the estimated subspace of interferences. The factor of 
forgetting of both algorithms is fixed at 99.0=µ . Figure 5 

represents the IF according to Ft for the algorithms PAST and 
OPAST and that of the optimal. We considered the scenario 
without ambiguities to light the effect of the application of the 
algorithms on the detection. We notice that the notch due to the 
PAST follows the same look as that of the optimal processor. It 
is relatively wide but can indeed allow an acceptable detection 
of the slow targets. We can thus say that the application of the 
algorithm PAST allows the suppression of the interferences. 
Comparing both considered iterative algorithms, we notice that 
the detection using the algorithm OPAST is closer to that 
obtained by the optimal processor. 

To compare the effect of the reduction of the rank by 
applying the algorithm PAST with that of the PC-DFP, we 
drew the factor of improvement IF according to Ft for the 
algorithm PAST and PC-DFP for various values of PRF, 
Figure 6. We notice that the ambiguous notches of the 
algorithm PAST appears at the same level as those of the 
method PC-DFP but, they are much wider. Thus these iterative 
algorithms get ready well for the application in the STAP. 

By drawing the same curves as with the OPAST and the 
PC-DFP, Figure 7, we notice that the results are similar with an 
improvement at the level of the width of the notch as well as at 
the level of the secondary undulations. Indeed, we notice that 
the ambiguous notches of the algorithm OPAST is appreciably 
wider with regard to those of the method PC-DFP. However, 
they are less wide than those of the algorithm PAST. 
We have to notice that similar results are found with the SINR 
metric method. 

 

TABLE I.  PAST AND OPAST ALGORITHMS  
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End for 

 



VI.  CONCLUSION  

In this paper, we considered the application and the 
evaluation of the performances of two adaptive recursive 
subspace-based algorithms of linear complexity and a 
comparison with reduced rank methods and the optimal filter. 
The results of simulation showed that the algorithm OPAST is 
better than the algorithm PAST in the sense that it gets closer 
to performances of the optimal processor to full rank. A 
comparative study was made, proving that the iterative 
algorithms get ready well for the reduction of the rank for the 
STAP because they allow similar performances those given by 
the methods of rank reduction.  

Furthermore, they present a very low computational 
complexity. In fact it can be viewed on table 1, that the 
complexity burden is O(MN) instead of O((MN)3) for the 
eigencanceller processor. That’s why these algorithms can be 
considered as an economical approach in comparison with the 
other techniques.  
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Figure 2. Eigenvalues of the space-time covariance matrix R:  with,  

 JNR=35 dB, CNR = 30 dB  
 
 
 
 
 



 

 

 
Figure 3. SINR performance versus the rank 
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Figure 4.  Improvement Factor of the DFP-PC with: (a) λ/.8 RVPRF = , (b) λ/.2 RVPRF =  

 
 
 

 

 
Figure 5.  Improvement factor for the optimal processor and the two algorithms: OPAST, PAST 
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Figure 6.  Improvement factor for the PAST and PC-DFP with: (a) λ/.8 RVPRF = ,  (b) λ/.2 RVPRF =  
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Figure 7.  Improvement factor for the OPAST and PC-DFP with:  (a) λ/.8 RVPRF = , (b) λ/.2 RVPRF =  

 


