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Abstract.

The representation of biological systems by means of organismic supercategories, developed in

previous papers, is further discussed. The different approaches to relational biology, developed

by Rashevsky, Rosen and by Baianu and Marinescu, are compared with Qualitative Dynamics of

Systems which was initiated by Henri Poincaré (1881). On the basis of this comparison some

concrete results concerning dynamics of genetic system, development, fertilization, regeneration,

dynamic system analogies, and oncogenesis are derived.

1. Introduction.   In previous papers (Baianu and Marinescu, 1968; Comorozan and Baianu,

1969; Baianu, 1970; herein afterwards referred to as I, II, III, respectively), a categorical

representation of biological systems was introduced. This representation is different from

Rosen's categorical approach to relational biology (Rosen 1958a, b; 1959).

The aim of this paper is to present some concrete results which are derived on the basis of our

representation. We shall reach finally an idea which was advanced by Rashevsky fourteen years

ago, namely, that the geometrization of physics suggests a possible geometrization of biology.

However, we suggest that the necessary improvement to be made is that of developing specific
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techniques from Algebraic Geometry.  The basic concept of our theory is that of an organismic

supercategory which is a categorical formalization of Rashevsky's notion of an organismic set.

The mathematical ideas underlying this concept are those of structure and generator. They were

largely discussed in III. Nevertheless, in order to maintain a self contained presentation, I shall

emphasize here some of the basic aspects of our representation. Let us consider a system whose

state space consists of a torus such that the states of the system are contained inside the torus,

and all transitions lead to states inside the torus. The homology theory offers in this case two

intuitive examples of generators. The whole torus is generated by two cycles only, and these

cycles are shown in Figure 1, as dotted circles.

FIGURE 1

The two cycles generate two homology groups Ho(T) = Z and H1(T) = Z  Z, where Z is the

group of integers, and  denotes the product operation. These homology groups give a

characterization of the topological space represented by the torus. In this.way a connection is

established between a topological structure and algebraic structures. Even more, we can assign

two numbers to a given complex K: the Betti number-which is the number L of repetitions of Z

in the homology group, Hp (K) = Z  Z  ... Z   GPT  of a complex K-and a number p which is

the number of elements of a finite abelian group GPT. The Betti number gives the number of p-

dimensional holes of the complex K, and the number p gives the number of p-dimensional turns

of K.

The physical interpretation which we shall give to the holes inside of the state space of a

system will be that of instability fields of the system under consideration. Consequently, the
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Betti number will give a coarse idea about the instability of the system, being the number of

instability fields of the state space. However, homological techniques would allow a fine

characterization of the local and global properties of dynamics of a system, being able to locate

singularities in a state space (Hwa and Teplitz, 1966). It must be mentioned here that the theory

of categories and functors gives a further improvement of homological techniques. In the above

discussed example a number was assigned to a quality, that is, a Betti number was assigned to a

topological space. Another example of such an assignment is found in the theory of elementary

particles, where one associates a probability with a Feynman diagram. A simple and intuitive

example is shown in Figure 2:

Figure 2. (Explanations are given in text)

A particle which is moving from a point r1 of the space towards a point r2 is subject to a number

of interactions in regions A, B, . . . of space. The probability that a given particle would have a

free way (that is, without interactions from r1 to r2) corresponds to diagram a) from above.

The probability that a given system would interact in region A corresponds to diagram b), etc.

Thus, from the above diagrams we may compute the Green function G(r2, t2; r1, t1) of a particle

(the Green function of a particle is defined as the probability that the particle would reach the

point r2, at moment t2, coming from the point r1, where it was at t1).
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However, the general procedure is not to assign a single number to a quality, but an entire set

of numbers. In our second example in Figure 2, the operation of addition induced a

corresponding operation on diagrams. This fact suggests that operations which are used in

metric, or quantitative, biology may induce corresponding operations in relational biology.

Conversely, one can think of significant relational operations with notions, or concepts, which

would permit us to obtain solutions to complicated problems of quantitative biology.

Throughout this paper we shall make extensive use of this basic idea.

2. Observables, Generators and Qualitative Dynamics.

 In III we suggested a general definition of observables as morphisms , or as functors.

Observables of a biological system may be introduced as intensities of some activities of the

whole system, as parameters characterizing processes inside the system, or as variables which

specify the quantities of certain products which are formed as a result of activities of the system.

Among observables, structural parameters (Rosen 1968a, b) and time observables play a

distinguished role. Some observables are "linked," that is, a change in one of them implies a

corresponding change in all the others. Linked observables were represented as morphisms in a

diagram. This diagram corresponds to the linkage group of observables and is a part of the

generating class of the system. A state at a given moment is then defined as an n-tuple of the

values of essential observables at that moment. In our representation, a state is defined as a

functor from the category of generating classes of the system to R--the set of real numbers

organized as a discrete category (or as a category whose objects are real numbers, and whose

morphisms are mappings; the operations with real numbers in this category are induced by the

structure of the category of generating classes). Let us consider a specific example. An operon

(Jacob and Monod, 1961) may be considered as having two states: an active state and an inactive

one. In its inactive state the operon will not induce the synthesis of the corresponding enzyme,

while in its active state, it will induce the synthesis of a determined quantity C of synthesized

enzyme per unit of time. Now, if we consider a linkage group of operons O1, O2, . . ., On,  which

are all active in the same time and, if the synthesized quantities of enzymes per unit of time are

respectively, C1, C2, . . ., Cn, a state of the linked operons may be defined by the n- tuple (Ct
1,
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Ct
2, . . ., Ct

n) of the values of C1, C2, . . ., Cn at the given moment t. However, suppose that only

C1' C2 and Ca are essential, all other observables being expressed in terms of C1, C2 and C3.

Even more, let us suppose that we may find some operators such that C2 =YC1 and C3 =ZC2.   In

this case there exists a third operator X such that C3 =XC1,  and such that the following diagram

will be commutative.

Diagram 1:

The above diagram is the generating diagram of the linkage group of operators. According to our

representation, a genetic system will be then represented by a generating class, whose objects are

generating diagrams of the linkage groups of operons, and whose morphisms are the

functional  connections among the activities of the operons. Suppose that a mutation takes place

in the genetic system, such that an operon will begin to induce the synthesis of an enzyme which

was not synthesized previously by the system. The state corresponding to the very moment when

the change takes place will be considered as a singularity of the state space, as far as in that

moment one cannot characterize the state of the genetic system either by Ct
k-the quantity of syn-

thesized enzyme Ek per unit of time, or by C’t
k the quantity of the new enzyme E’k per unit of

time (that is, E’k is the enzyme which begins to be synthesized after the mutation took place). It

may happen that a mutation produces effects such as the complete inactivation of an essential

operon. In this case, it is conceivable that the whole linkage group will become inactive.  If the

X

ZY

C1 C2

C3
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inactivated operon is the replicon, or “replicone” (Jacob et al., 1963), then the cell will cease to

divide. On the other hand, if such a mutation, or sequence of mutations, involved the inactivation

of a linkage group of tumor suppressor genes , the cell may transform into a malignant cell,

and thus may cause cancer. The corresponding singularity of the state space in the case of

mutation would last much less than other states of the dynamical system, and according to

definition (D8) of III (p. 556), may be considered as an unstable state inside the state space of

the system. Generally, if the unstable state leads only to other unstable states, it may result in the

destruction of the system generating an unstable field, thus lying outside the state space of the

system. Consequently, states in growth processes should have to be considered as metastable,

and must not be considered as short-lived, or unstable.

The replacement of an observable by another, in case of mutation, is in fact a change of

the structure of the genetic system. Insofar as the dynamical system is defined as an input-output

device with a determined structure  (Rosen 1958a, 1968b), or as a couple (S, {ft}), (Rosen,

1968a), we should have to consider a mutation as a transformation of the  system into another

system. In our representation, it will be justified only when the generating class is affected by

the mutation, that is, only when an essential observable is replaced by another observable, which

did not belong to the system.

Thus, as in III, we consider a dynamical system D to be a commutative diagram with: X-the

"state space" of  D (that is, a supercategory the objects of which are states, and morphisms of

which are transitions among states or fields of states), Rn -the category whose objects are

elements of  R, R x R = R2, . . ., R x R x ... x R = Rn , and whose morphisms are operators  on

real numbers or functions, S -the supercategory of generating classes and morphisms among

these, and T -the "time supercategory," that is a supercategory such that the structure of S

mainly depends on the structure of T  by setting a one-to-one correspondence
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with t being an object in T , s-an object in X, , and  Fij: S        Rn ).

Thus, the time supercategory, T , contains all intervals of time when transitions take place

among distinct generating classes.

Diagram 2:

Qualitative Dynamics initiated by Poincaré (1881) is mainly concerned with problems of

stability of dynamical systems. This theory introduces the notion of an attractor, q (stable

equilibrium), which is a state, or a field of states such that the trajectory of any point near q goes

to q, and no trajectory leaves q. An attractor is said to be structurally stable if any sufficiently

small perturbation of the system leads to an attractor q' near the first one. The trajectories tending

to attractors form the basins of the attractors. Basins of attractors may be intermingled, and in

this case a conflict among attractors (Thom, 1969) arises. A biological example of a conflict

among attractors follows. The phenomenon which is produced as a result of the penetration of

many male pronuclei inside a single ovule is called polispermia. Each male nuclei would have a

corresponding attractor in the state space of the whole system formed by the male pronuclei

together with the ovule. The male pronucleus which penetrated first will have a corresponding

dominating attractor because it begins first to orient trajectories towards it. The other attractors

are then eliminated. Otherwise, the phenomenon of poliandria will be observed, that is, the

fertilization of the female pronucleus by many male pronuclei. The presence of many conflicting

S

X

Rn

~

 T
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attractors in the fertilized ovum leads to an unstable field which results in the abnormal growth

and death of the organism developed from the ovum. However, a conflict among attractors may

lead to metastable states as in the case of conflict between two inducing tissues of embryos. The

regeneration of Planaria from "head," "body," or "tail" may also be explained in terms of

attractors as follows.

Let us consider that there are three attractors corresponding respectively to "head," "tail,"

and "body." Any of the three attractors will regenerate the other two if they are connected as

below,

Diagram 3

the arrows representing trajectories which go from the source attractor (say A1) and initiate the

regeneration of the other attractor (say A2 or A3). This type of attractors will be called

regenerating. The damage which induces regeneration will act as a perturbation on the

unaffected attractor. It may be easily shown that the necessary and sufficient condition that a set

of attractors would lead to stable fields of states is that they would form a pushout or a super-

pushout [see (D6) of III].

If in our definition of a dynamical system we assign a set I  of elements (called "inputs"), to each

object of X, and if we introduce an isomorphism FIX ~ O, with O being a category of sets (the

elements of which are called "outputs" of the system), then we obtain a correspondence among

our definition and other definitions of a dynamical system as an input-output device. Let us

A2

A1 A3
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denote the assignments defined above by k: ObX I and by  N: FIX ~ O. In a recent paper,

Rosen suggested that the realization of a feedback would imply the decomposition of the state

space of the system in two parts corresponding to a controller, and respectively to a controlled

subsystem (Rosen, 1968b). The controller would be able to select its future inputs (coming from

the controlled subsystem) by supplying appropriate outputs, that is, conforming to the data stored

in its memory.

As an example consider that in the memory of the controller K there would exist a record

of the fact that every time K sends monotonously decreasing outputs to the controlled subsystem,

K receives a constant input. Then, in order to receive a constant input, K will produce

monotonously decreasing outputs. If a constant input to K leads to transitions in a stable field of

the state space of the whole system, K will easily succeed to ensure the stability of the system by

supplying monotonously decreasing outputs to the controlled subsystem.

It was suggested by Rosen that in epigenetic regulatory mechanisms, positive feedbacks

play a central role (Rosen, 1968b). In a positive feedback the controller acts in such a way as to

receive continuously an enhanced response from the controlled subsystem. As a consequence,

the activity of the system is sharply increased, and in technical systems it may lead to

instabilities and to the destruction of the system. However, in the development of an organism

from the ovum, some positive feedbacks have a converse effect. A stage of development of an

organism cannot be considered as a state of the dynamical system, because the number of

components of the system and its structure vary from one stage to the next. In our theory the

change from a stage of development to another is represented as a change of the generating

diagram at a moment t  from T . A positive feedback acting in the ovum leads to the continuous

generation of new attractors, and correspondingly, to the formation of super- pushouts of

attractors. As a result, the number of generating diagrams is continuously increased.

One of the ways in which this is realized is the formation of new generating diagrams from the

old, compatible generating diagrams. (The word "compatible" means here that the combinations

obtained must not lead to the eventual death of the resulting organism.) This operation results in

an increased number of relations. Thus, the presence of positive feedbacks in developmental

processes seems to be implicitly contained in a principle which determines the course of
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development of an organismic set, and which was advanced by Rashevsky (1968b). However,

there must exist a moment when the formation of new generating diagrams through the

appearance of new cells and through differentiation processes cannot lead to a compatible

combination.

In the course of development, as a result of the existence of many generating diagrams,

many controllers are formed. Some of them begin to dominate the others, and the conflict among

the corresponding attractors would lead to an inhibition of some dominated attractors. Otherwise,

the compatibility condition will not be fulfilled and the organism will die. It may be that such

incompatibility situations existed long ago in the formation of primary multicellular organisms.

In normally developed organisms, the positive feedbacks are inhibited at the stage of maturation

through a global negative feedback. However, the number of relations may continue to be in-

creased through processes which take place inside the dominating controller. In the case of

higher developed organisms, it is the brain that continues to increase the number of relations

inside it.

3. Relational Invariance, Analogy and Completion Laws.

According to the principle of relational invariance (Rasheysky 1968a, c), there exists a mapping

from the basic functional properties of higher developed organisms to the properties of an

abstract "primordial" organism. This mapping is either an isomorphism or an epimorphism. The

principle of relational invariance was also stated for regulatory mechanisms inside the same

organism. In this form it states that there is a relational invariance of  basic regulatory

mechanisms of an organism. Thus, the mechanisms of control in the nervous system were shown

to be isomorphic, or epimorphic, to the mechanisms of genetic control. An isomorphism between

dynamical properties of two systems was previously called an analogy between the two systems

(Rosen, 1968a).

However, there is no unique way to obtain knowledge on functional properties of more

complicated organisms from the knowledge of functional properties of simpler organisms.

Nevertheless, some procedures exist which can be applied in order to obtain the more
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complicated graph of properties of a higher organism from the more simple graph of a

"primordial" one. Let us call these procedures ‘completions’. In the theory of categories and

functors, a completion of a category is the procedure through which one adds special objects,

limits or colimits to a category. Then the properties of the new category are compared with

those of the old category.

We suggest that there must exist completion laws - which are biologically significant,

and which rule out improper completions (that is, completions which would lead to unreal

organisms starting from a "primordial" organism).

Let us consider first the case of isomorphism between the sets of basic functional

properties of two biological systems. The two systems will be called analogous. It may happen

that the first biological system is characterized through a more reduced number of functional

properties than the second. In this case, a monomorphism could be defined and this will be called

a simple analogy of the two systems (see Rosen, 1968a).

If one can find a class of simple analogs of a given system which covers all properties of

the system, then all dynamical properties of the given system may be defined in terms of the

class of corresponding monomorphisms. Even more, if we consider instead of sets and

monomorphisms, organismic supercategories and functors, then we can study dynamical

properties of the more complicated organism by means of a study of the category of functors

which define analogies.

According to the above introduced definitions, an organism will not be analogous with

any of its stages of development but all its developmntal stages will be partially simply

analogous to the mature stage. In order to make this idea more precise, a mathematical

definition of analogy-which is formally different from that given by Rosen (1968a)-will be

introduced here.

In our representation, two dynamical systems will be called analogous if there exists a left-

adjoint functor , and an isomorphism .
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Diagram 4

The adjoint functor K, realizes a close comparison of the two systems as may be easily seen

from its definition.

A covariant functor F:C  C' is a left-adjoint of the functor G:C'  C, if for any couple

(X, X') of objects from a and a', respectively, we are given a bijection  (X, X'):Homc (X,

G(X'))  Homc' (F(X), X'), such that for any morphism f:X Y of C, and for any morphism

f':X' Y' of C', the following diagrams of sets and mappings are commutative :

                                                               C(Y,X')

Hom C [Y,G(X')] Hom C’ [F(Y), X']

hG (X') (f)

     C(X,X')

                                     (5a)

    hx’ [F(f)]

Hom C [X,G(X')] Hom C’ [F(X), X']

S

X

Rn

~

T

L

S’

X’

Rn

~

 T

L’
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C(X , X')Hom C [X,G(X')]

      Hom C’ [F(X),X']           (5b)

   hX(G)(f)              hF (X) (f ')

 Hom C [X ,G (Y')]
    C(X ,Y')

  Hom C’ [F(X), Y’]

Commutative
Diagrams  5a and 5b.

In the above diagrams we denoted by h certain functors from an arbitrary category C to the

category of sets, Ens . Their definitions are given below.

Let C be a category, and X an object in C. The functor hX: C       Ens is defined by the

following assignments hX(Y) = Hom C (X, Y) for any  (with X a fixed object in C) and

hX(f): Hom C          Hom C (X, Y),     Hom C        Hom C (X, Y'), with f: Y       Y'  being a

morphism in C. The last assignment is defined such as to have hX(f)(g) = f º g , with

g Hom C (X, Y). The contravariant functor h
X

 is defined in a similar manner, such that

h
X

 (f)(g) = g º f, for g  Hom C (X, Y).

Two dynamical systems D and D' will be called simply analogous if there exists a left-

adjoint functor  M:  with S  being the organismic supercategory in D and S ° being a

full sub-superategory of S ' (the organismic supercategory in D'). The category of all left-adjoint

functors , with S ° fixed, and S varying in the class of analogs D sharing the dynamical

properties of D' has a series of interesting features. In fact, these functors carry diagrams of

linked observables of the first system into diagrams of linked observables of the second,

precluding other possible assignments. Then, the organismic supercategory representing a

M
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"primordial" organism would play the role of an "initial object” in the metacategory of all

organismic supercategories and left-adjoint functors. To complete this metacategory with a limit

would be equivalent to supposing that there is an organism which has any other organism as a

simple analog.  This organism would be the highest that can possibly develop in a class of

realizations of the corresponding abstract organismic supercategories.

The above mentioned completion determines the sense of biological evolution.

Moreover, it results from this completion that the highest developed organism would be unique,

up to an isomorphism.  This isomorphism may stand for the basic functional properties of the

most developed organism, and does not depend on particular realizations of the corresponding

organismic supercategory (that is, the functionally isomorphic organisms may differ in their

physicochemical structures).

4. Quantum Automata and Relational Oscillations.

Let us consider again the genetic system of a single cell.  The genetic network of a cell

was previously considered by Rashevsky (1967a) as an organismic set of order 0.  As in an

earlier paper, I shall represent in this section the genetic system as a quantum system, or as a

quantum automaton.  With the notations introduced in section 2° a quantum automaton is

defined as a particular kind of dynamical system Q whose states are all non-degenerate.  If the

morphism in Hom (obX x I , obX) is represented by a quantum unitary operator U(t, t0) , a

transition in X corresponds to the following equation:

If H is the Hamiltonian operator of this system then one obtains the time dependent

Schrödinger’s equation of motion:
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Thus, one has the Schrödinger’s representation in which states are functions of time

whereas observables are independent  of time  (Sen, 1968). The operators U(t, t0) play the role

of transition function from automata theory as far as they carry the couple (state, input) into the

next state.  If to each transition from to a final state we assign a probability ,

  then we obtain exactly the quantum-mechanical treatment of

dynamical systems.  Now, let us consider in this context the process of DNA duplication in a

cell.  Duplication may imply a number of repetitions of some basic quantum process in the

course of sequential attachment of the new synthesized bases. The repeated process leads to the

establishment of some relations among the components of the system, that is, among DNA,

bases, and DNA-polymerase. These relations are also repeated in the course of duplication. If the

repetition takes place at equal intervals of time we are to consider the whole system as a

relational oscillator, and the resulting process consists in relational oscillations . Similar

situations may appear in the brain in the course of learning. Adaptive processes may be also

considered as relational oscillations of a particular type. To conclude this section: relational

oscillations in biological systems could be eventually mapped epimorphically onto relational

oscillations of a quantum system. A particular case of the above-mentioned situation is the exact

sequence of relational oscillators. If A, B, and C are three relational oscillators such that there

exists a diagram in C  which is the zero object - 0, of the generating supercategory C , then an

exact sequence is defined through the presence of the condition Im f= Ker g, with

and , such that Ker g = , Im f =f(A). The

zero object of G is connected with all diagrams of observables in C , and thus it may be an

essential observable, or the diagram of essential observables in C . Consequently, the dynamical

properties of A are mapped epimorphically on some dynamical properties of B, and then on a

single diagram of essential observables of C . The three relational oscillators form a family of

dynamically related systems, and will be called ‘exactly homologous’. Having a knowledge of

algebraic dynamical properties of a relational oscillator with a single essential observable one
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can derive algebraically some dynamical properties of exactly homologous relational oscillators

with many essential observables. As an example, one may derive some properties of any group

of operons from the properties of a single operon considered as a relational oscillator. Also, one

could derive some properties of replicones, which initiate the duplication of DNA in cells of

higher organisms, from the properties of a single replicone of bacteria. Nucleolar organizers of

higher organisms would be related through an exact sequence with the nucleolar organizer of a

unicellular organism, such as an Archea cell, or of an yeast cell.

5. Oncogenesis, Dynamic Programming and Algebraic Geometry.

 In this section we shall discuss changes of normal controls in cells of an organism. On an

experimental basis, we argued that some specific changes of cellular controls are produced in

oncogenesis through an initial abnormal transfer of energy (Baianu, 1969a; Baianu and

Marinescu, 1969b). Generally, the changes of controls in a cell may be produced through a

strong localized perturbation of cellular activity (that is, through unusually strong forcing inputs),

or through the prolonged action of unusual inputs. These changes become permanent if in one

way or another, the activity of operons or replicons is impaired, that is, if a change of basic

relational oscillators of the cell has taken place. In the current language of qualitative dynamics it

may be translated as a change of dominating attractors, followed by the inhibition or destruction

of the former dominating attractors. This kind of change is not necessarily a mutation, that is, the

change may not produce the replacement of some essential observables in the genetic system.

This may be the reason for which extensive research on cancer failed to discover so far a

general,

unique and specific alteration of the genetic system of cancer cells. The change of basic

relational oscillators in the genetic system may have such consequences as, for example,

abnormally large nucleoli. The reason may be that a change in the subspace of the controller

produces the change of dynamic programming of the whole cell. Dynamic programming consists

in the existence of distinguished states, or policies (Bellman, 1968) in the subspace

corresponding to the controller, to which correspond specific changes of trajectories in the
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subspace of the controlled subsystem. The appropriate mathematical concept corresponding to

such situations is found in Algebraic Geometry. The fact that some basic concepts of algebraic

geometry are by now currently expressed in categorical terms, allows us to make use of the

mathematical formalism of categories and functors. A projective space of n dimensions will be

assigned to the controlled subsystem, and a policy would be then represented by an allowable

coordinate system in the projective space of the controlled subsystem. A projective space of n

dimensions is defined as a set of elements S (called the points of the space) together with another

set Z (the set of allowable coordinate systems in the space). Let (a0, . . ., an) be an n- tuple of

elements such that not all the elements a0, . . ., an are zero. Two n- tuples (a0, . . ., an), (b0, . . ., bn)

are said to be right-hand equivalent if there exists an element ? of a ground field such that ai =

bi?(i = 0, ...,n). A set of right-hand equivalent (n + 1)-tuples is called a point of the right-hand

projective number space of dimension n over the ground field K. The aggregate of such points is

called a projective number space of dimension n over K, and will be denoted by PNn(K). If T

denotes a correspondence among the elements of a set S and the points of PNn(K), which is an

isomorphism, then, to any element A of S, there corresponds a set of equivalent (n + 1)-tuples

(a0, . . ., an), where T(A) is (a0, . . ., an). Any (n + 1)-tuple of this set is called a set of coordinates

of A (Hodge and Pedoe, 1968). A set of equations written in matrix form as

y = Ax (3)

transforms (n + 1)-tuples (x0, . . ., xn) into the set of equivalent (n + 1)-tuples (y0 , . . . , yn ).

That is, the equation (3) transforms a point of PNn (K) into a point of PNn (K). The set (3) of

equations will be called a projective transformation of PNn (K) into itself. If S is the set from the

definition of a projective space, then a projective transformation leads to a change of coordinate

system in S. The different coordinate systems obtained through the application of different

projective transformations are called allowable coordinate systems in S. Allowable coordinate

systems in S define policies of the controller. In this case the set of all policies of a controller has

the structure of a group as far as the projective transformations form a group. Now, if there is an

extension KO of the ground field K, and any h in Ko, h will be called algebraic if there exists a

non zero polynomial lf(x) in K[x] such that f(h) = O. The aggregate of points defined by the set

of equations
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f1(xo, . . ., xn) = 0, (4)

with fl(xo, . . ., xn) being a homogeneous polynomial over K, is called an algebraic variety. Thus,

one can define a dynamical program in terms of algebraic varieties of a projective space

corresponding to the subspace of the controlled subsystem, and with allowable coordinate

systems (projective transformations) corresponding to policies in the subspace of the controller.

Analytical forms used in some economical problems are only examples of metric aspects of the

qualitative theory of dynamical programming. This suggests that quantitative results concerning

changes of controls in oncogenesis could be eventually obtained on the basis of algebraic

computations by algebraic geometrical methods. The power of such computations and the

elegance of the method is improved by means of the theory of categories and functors. A

quantitative result which is directly suggested by this representation is the degree of synchrony in

cultured cancer cells. However, this method of representation requires further investigation.
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