Cogprints

Toward molecular neuroeconomics of obesity.

Takahashi, Taiki (2011) Toward molecular neuroeconomics of obesity. [Preprint]

Full text not available from this repository.

Abstract

Because obesity is a risk factor for many serious illnesses such as diabetes, better understandings of obesity and eating disorders have been attracting attention in neurobiology, psychiatry, and neuroeconomics. This paper presents future study directions by unifying (i) economic theory of addiction and obesity (Becker and Murphy, 1988; Levy 2002; Dragone 2009), and (ii) recent empirical findings in neuroeconomics and neurobiology of obesity and addiction. It is suggested that neurobiological substrates such as adiponectin, dopamine (D2 receptors), endocannabinoids, ghrelin, leptin, nesfatin-1, norepinephrine, orexin, oxytocin, serotonin, vasopressin, CCK, GLP-1, MCH, PYY, and stress hormones (e.g., CRF) in the brain (e.g., OFC, VTA, NAcc, and the hypothalamus) may determine parameters in the economic theory of obesity. Also, the importance of introducing time-inconsistent and gain/loss-asymmetrical temporal discounting (intertemporal choice) models based on Tsallis’ statistics and incorporating time-perception parameters into the neuroeconomic theory is emphasized. Future directions in the application of the theory to studies in neuroeconomics and neuropsychiatry of obesity at the molecular level, which may help medical/psychopharmacological treatments of obesity (e.g., with sibutramine), are discussed.

Item Type:Preprint
Keywords:neuroeconomics, obesity, endocrinological economics
Subjects:Neuroscience > Behavioral Neuroscience
Biology > Behavioral Biology
Psychology > Clinical Psychology
Computer Science > Statistical Models
Electronic Publishing > Economics
Neuroscience > Neurochemistry
Neuroscience > Neuroendocrinology
Neuroscience > Neuropharmacology
Neuroscience > Neuropsychiatry
ID Code:7748
Deposited By: Takahashi, Ph.D Taiki
Deposited On:16 Dec 2011 00:08
Last Modified:16 Dec 2011 00:08

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

1. S.B. Wyatt, K.P. Winters and P.M. Dubbert, Overweight and obesity: Prevalence,

consequences, and causes of a growing public health problem, American Journal of

Medical Science 331 (2006), pp. 166–174.

2. M.B. Schulze, J.E. Manson and D.S. Ludwig et al., Sugar-sweetened beverages,

weight gain, and incidence of type 2 diabetes in young and middle-aged women, Jama

292 (2004), pp. 927–934.

3. N.D. Volkow and R.A. Wise, How can drug addiction help us understand obesity?

Nature Neuroscience 8 (2005), pp. 555–560.

4. Becker, G. and K. Murphy (1988) A theory of rational addiction. Journal of Political

Economy, 96, 675-700.

5. A. Levy, Rational eating: can it lead to overweightness or underweightness?,

Journal of Health Economics 21 (2002), pp. 887–899.

6. Dragone D. A rational eating model of binges, diets and obesity. Journal of Health

Economics 28, 2009, Pages 799-804.

7. Bickel WK, Marsch LA. (2001) Toward a behavioral economic understanding of drug

dependence: delay discounting processes. Addiction. 96(1):73-86.

8. Takahashi, T (2009) Theoretical frameworks for neuroeconomics of intertemporal

choice. Journal of Neuroscience, Psychology, and Economics. 2(2), 75-90.

9. Davis C, Patte K, Curtis C, Reid C. Immediate pleasures and future consequences. A

neuropsychological study of binge eating and obesity. Appetite. 2010

Feb;54(1):208-213

10. Weller RE, Cook EW 3rd, Avsar KB, Cox JE. Obese women show greater delay

discounting than healthy-weight women. Appetite. 2008 Nov;51(3):563-569

11. Zhang L, Rashad I. Obesity and time preference: the health consequences of

discounting the future. J Biosoc Sci. 2008 40(1):97-113

12. Ikeda S, Kang MI, Ohtake F. Hyperbolic discounting, the sign effect, and the body

mass index. J Health Econ. 2010 29(2):268-284.

13. Cajueiro D.O. A note on the relevance of the q-exponential function in the context

of intertemporal choices. Physica A 364 (2006) 385–388.

14. Takahashi T, Ono H, Radford MHB (2007) Empirical estimation of consistency

parameter in intertemporal choice based on Tsallis' statistics Physica A 381: 338-342

15. Xu L, Liang ZY, Wang K, Li S, Jiang T. Neural mechanism of intertemporal choice:

from discounting future gains to future losses. Brain Res. 2009 1261:65-74.

16. S. Fulton, B. Woodside and P. Shizgal, Modulation of brain reward circuitry by

leptin, Science 287 (5450) (2000), pp. 125–128

17. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, Alexoff D, Ding

YS, Wong C, Ma Y, Pradhan K. Low dopamine striatal D2 receptors are associated with

prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage.

2008 Oct 1;42(4):1537-1543

18. Pagotto U, Vicennati V, Pasquali R. The endocannabinoid system and the treatment

of obesity. Ann Med. 2005 37(4):270-275.

19. Borgland SL, Ungless MA, Bonci A. Convergent actions of orexin/hypocretin and

CRF on dopamine neurons: Emerging players in addiction. Brain Res. 2010

1314:139-144.

20. Chung S, Hopf FW, Nagasaki H, Li CY, Belluzzi JD, Bonci A, Civelli O. The

melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci

U S A. 2009 Apr 21;106(16):6772-6777.

21. Holsen LM, Zarcone JR, Thompson TI, Brooks WM, Anderson MF, Ahluwalia JS,

Nollen NL, Savage CR Neural mechanisms underlying food motivation in children and

adolescents. Neuroimage. 2005 Sep;27(3):669-676.

22. Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves

modulation of the vmPFC valuation system. Science. 2009 May 1;324(5927):646-648

23. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. Oxytocin increases trust in

humans. Nature. 2005 435(7042):673-676.

24. Baumgartner T, Heinrichs M, Vonlanthen A, Fischbacher U, Fehr E. Oxytocin

shapes the neural circuitry of trust and trust adaptation in humans. Neuron. 2008

58(4):639-650

25. Zak PJ, Kurzban R, Matzner WT. Oxytocin is associated with human

trustworthiness. Horm Behav. 2005 48(5):522-527

26. Zak PJ, Stanton AA, Ahmadi S. Oxytocin increases generosity in humans.

PLoS One. 2007 2(11):e1128.

27. Barraza JA, Zak PJ. Empathy toward strangers triggers oxytocin release and

subsequent generosity. Ann N Y Acad Sci. 2009 Jun;1167:182-189

28. Rodrigues SM, Saslow LR, Garcia N, John OP, Keltner D. Oxytocin receptor

genetic variation relates to empathy and stress reactivity in humans. Proc Natl Acad Sci

U S A. 2009 106(50):21437-21441.

29. Neumann ID (2002) Involvement of the brain oxytocin system in stress coping:

Interactions with the hypothalamo-pituitary-adrenal axis. Progress Brain Res

139:147–162.

30. Takahashi T, Ikeda K, Ishikawa M, Kitamura N, Tsukasaki T, Nakama D, Kameda T.

Interpersonal trust and social stress-induced cortisol elevation. Neuroreport. 2005 Feb

8;16(2):197-199.

31. Takayanagi Y, Kasahara Y, Onaka T, Takahashi N, Kawada T, Nishimori K.

Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport. 2008

19(9):951-955

32. Camerino C. Low sympathetic tone and obese phenotype in oxytocin-deficient

mice.

Obesity (Silver Spring). 2009 May;17(5):980-984

33. Shimizu H, Ohsaki A, Oh-I S, Okada S, Mori M. A new anorexigenic protein,

nesfatin-1. Peptides. 2009 May;30(5):995-958.

34. Valassi E, Scacchi M, Cavagnini F. Neuroendocrine control of food intake. Nutr

Metab Cardiovasc Dis. 2008 18(2):158-168.

35. A.M. Naleid, M.K. Grace, D.E. Cummings and A.S. Levine, Ghrelin induces

feeding in the mesolimbic reward pathway between the ventral tegmental area and the

nucleus accumbens, Peptides 26 (11) (2005), pp. 2274–2279.

36. Nakamura Y, Sekikawa A, Kadowaki T, Kadota A, Kadowaki S, Maegawa H, Kita Y,

Evans RW, Edmundowicz D, Curb JD, Ueshima H. Visceral and subcutaneous adiposity

and adiponectin in middle-aged Japanese men: the ERA JUMP study. Obesity (Silver

Spring). 2009 Jun;17(6):1269-1273

37. Charlton SR, Fantino E. Commodity specific rates of temporal discounting: does

metabolic function underlie differences in rates of discounting? Behav Processes. 2008

77(3):334-342.

38. Takahashi T, Oono H, Inoue T, Boku S, Kako Y, Kitaichi Y, Kusumi I, Masui T,

Nakagawa S, Suzuki K, Tanaka T, Koyama T, Radford MH. Depressive patients are

more impulsive and inconsistent in intertemporal choice behavior for monetary gain and

loss than healthy subjects--an analysis based on Tsallis' statistics. Neuro Endocrinol

Lett. 2008 Jun;29(3):351-358.

39. Takahashi T, Ikeda K, Fukushima H, Hasegawa T. Salivary alpha-amylase levels and

hyperbolic discounting in male humans. Neuro Endocrinol Lett. 2007 Feb;28(1):17-20.

40. Takahashi T (2005) Loss of self-control in intertemporal choice may be attributable

to logarithmic time-perception. Medical Hypotheses. 2005;65(4):691-693.

41. Takahashi T. Time-estimation error following Weber-Fechner law may explain

subadditive time-discounting. Medical Hypotheses. 2006;67(6):1372-1374.

42. Taiki Takahashi, Hidemi Oono, Mark H.B. Radford Psychophysics of time

perception and intertemporal choice models. Physica A: Statistical Mechanics and its

Applications, 87, 8-9, 2008, Pages 2066-2074

43. Zauberman, Gal, B. Kyu Kim, Selin Malkoc, and James R. Bettman (2009).

Discounting Time and Time Discounting: Subjective Time Perception and Intertemporal

Preferences. Journal of Marketing Research. 46 (4), 543-556.

44. Sigal JJ, Adler L. Motivational effects of hunger on time estimation and delay of

gratification in obese and nonobese boys. J Genet Psychol. 1976 7-16.

45. Etou H, Sakata T, Fujimoto K, Kurata K, Terada K, Fukagawa K, Ookuma K, Miller

RE. Characteristics of psychomotor performance and time cognition in moderately

obese patients. Physiol Behav. 1989 45(5):985-988.

46. Meck WH, Church RM. Nutrients that modify the speed of internal clock and

memory storage processes. Behav Neurosci. 1987 101(4):465-475.

Metadata

Repository Staff Only: item control page