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The representation of biological systems in terms of organismic supercategories, introduced 
in previous papers (Bull. Math. Biophysics, 3{}, 625-636; 31, 59-70) is further discussed. 
To state more clearly this representation some new definitions are introduced. Also, 
some necessary changes in axiomatics are made. The conclusion is reached that any 
organismic supercategory has at least one superpushout, and this expresses the fact that 
biological systems are multistable. This way a connection between some results of 
Rashevsky's theory of organismic sets and our results becomes obvious. 

!~ Introduction~ In two recent papers (B~ianu and Marinescu, 1968; Como- 
to,san and B~ianu, 1969; herein afterwards referred to respectively as I and II), 
a new abstract representation of biological systems was introduced. 

The purpose of the present paper is to make more rigorous and clear some of 
the points concerning the principle of choice (as introduced in I and II), and to 
derive some of its indirect consequences. 

In  I and I I  biological observables were not explicitly introduced, However, 
it  seems tha t  any biophysical model or representation has to introduce obserw 
ables explicitly. The study of biological systems by means of"supercategories" 
can be approached from two distinct and complementary points of view. On 
the one hand, a biological system can be represented in terms of sequences of 
states, regarding the states as "pr imary"  concepts. The hope is tha t  the general 
invariants of these sequences of states will determine the general properties of 
biological systems. On the other hand, states will be defined in terms of 
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observables on the basis of a logical analysis of biological knowledge. How- 
ever, there is a connection between these approaches, and this connection will 
be discussed here. 

A number of unelarities of our representation were pointed out  by  Professor 
Rashevsky, by  Professor Rosen, and by  Professor Arbib. To make matters 
clear I shall introduce some corrections and precise definitions. In order to do 
i t  some basic questions must  be emphasized and some clarifications must  be 
made. A crude and simple biological example will be quite sufficient. When 
we consider the relations among the neurons of the brain, it may  be in a general 
sense said, tha t  these relations are more complex than those among the liver 
cells. A better  idea is given by  separating groups of cells which have the same 
biological activity, and then consider the relations among these (Rashevsky 
1967e, 1969). One should like to look for a few essential relations, and then to 
express all other relations as compositions of the essential ones. This is a very 
simple way which leads to an algebraic structure, and which may give a sim- 
plified insight into the biological activity of organisms. However, other 
properties which refer to the whole organism may be of interest, such as con- 
nectedness (Rosen, 1965). A formalization of these properties leads to a 
topological structure. The algebraic structure which should be assigned to the 
brain in order to account for its biological activity will be different from that  
one which should be assigned to the liver. Even more, there are some relations 
between the brain and the liver that  should be taken into account. Thus, in 
order to represent the whole organism, one has to consider aggregates of 
distinct types of structures and connections among structures. 

Aggregates of this kind were called "supercategories". "Supercategories" 
may appear in many other cases when a mathematical s tudy of complex systems 
is involved. These superstructures provide a better understanding of differ- 
ences in structural complexities of systems. Also, any optimality principle 
which would consider the organism as a structure in space-time (Rashevsky, 
1966, p. 293), could not avoid such superstructures. Thus, in growth and 
differentiation processes the degree of  complexity of the organisms increases 
with time, although one should refer to the organism as being the same system. 
In  order to get a very crude idea of the fact, consider the following intuitive 
image (Fig. 1). From a geometric point of view one would recognize these three 
figures as squares; in this case, the shape is a geometric invariant--all  the figures ~ 
are alike. However, these have not the same number of components, and thus, 
from a topological point of view, they are different. In order to  represent both  
aspects, invariance and change, one should have to adopt both points of view. 

A few words must be added about  mathematical structures. Any unification 
of  mathematical theories makes explicit or implicit use of the basic notion of a 
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Figure 1. (Explanations are given in text) 

structure. "The theory of structures over sets admits a more general and 
axiomatic form within the theory of categories and functors, and this theory of 
categories seems to be the most characteristic t rend in present day mathe- 
matics . . ." (Ehresmann, 1966, p. 5). 

Generally speaking, a category is a class together with a partially defined law of 
composition satisfying some axioms (loc. cit.). An element of a category is called 
a morphism and this generalizes the old notion of a mapping which was con- 
sidered by Dedekind, Eilenberg and MacLane as the basic tool of mathematics 
(Ehresmann, loc. cir.; Eilenberg and MacLane, 1945). However, the element- 
hood relation e e S, with e denoting an element and S denoting a set, is not  
essential in modern mathematical constructions and may be avoided in a 
foundation of mathematics (Lawvere, 1966). Lawvere's foundation makes 
explicit use of the category of categories. Supercategories of diagrams were 
independently introduced as general representations of systems (axioms I - I V  
of I, p. 629). A concrete example will provide an intuitive basis for the under- 
standing of the necessity of Lawvere's  axiomatic foundation, and for its utility 
in defining supercategories. Let us discuss diagram 1 of I (p. 631). Essentially 
the same notations are used here and are explained in more detail. 

Hormonal control is established as a result of certain connections among the 
components of an organism. Some centers from the diencephalon (A 1) produce 
by  neuroseeretion the corticotropin-releasing-factor which is then transported 
to adenohypophyse (A2) where it stimulates the release of ACTH (adreno- 
corticotropic hormone). ACTH acts on cortieosuperrenala (As), initiating the 
secretion of corticosteroids, which are then transported by the circulatory flow 
to the tissues. Through a feedback mechanism (v32) the activity of adeno- 
hypophyse depends on the level of corticosteroids concentration in the cir- 
culatory flow. Also, it affects the level of neurosecretion (v31). There is a 
morphism u in diagram 1 which connects the activity of A3 with both feedback 
circuits. From this diagram and from equation (12) of I it may  be inferred 
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tha t  a finer control of this activity could be performed by  an upper cycle 

A 1 ~ A2, where u21 would represent a neural path which must have only 
stimulatory synapses with some centers from A 1. Let  us discuss in more detail 
the underlying concepts of this diagram. From diagram 1 it may be seen that  
the main discussion concerns connectedness and ordered connections (arrows). 
I f  one goes further, then one has to consider some rules which define the com- 
position of these connections. These rules may  be formulated as conditions of 
coincidence for the vertices of the connections that  are to be composed. Such 
rules are called laws of composition. The most simple of these laws is the 
categorical law of composition, which requires that  the end of a morphism f 
must coincide with the source of another morphism g if the two morphisms are 
composable. This law of composition is illustrated by  the triangular diagram 

oof 

(The morphism denoted by  g o f is dot ted to indicate tha t  it comes last, as a 
construction based on g and f.) 

Composition laws may also be formulated by  means of some unary function 
symbols, and Lawvere's axiomatics proceeds this way. The advantage is that  
his axiomatic system may be extended in such a way as to define other com- 
position laws, distinct from the categorical composition law. Now, making use 
of Lawvere's elementary theory of abstract  categories (loc. clt.) I shall give 
precise definitions instead of definitions 6, 7 and 9 of I. For a better under '  
standing, Lawvere's axiomatic system is reproduced almost in its original form. 

Axioms of the elementary theory of abstract categories (ETAC-Lawvere, loc. clt.). 
0. :For any letters x, y, u, A, B, the following are formulas Ao(X ) = A,  

Ax(x ) = B, P(x, y; u), x = y (A 0 and / !  x are unary function symbols). These 
are to be read respectively, "A is the domain of x," " B  is the codomain (range) 
of x," "u  is the composition x followed b y  y"  and "x equals y." 

1. I f  r and ~ are formulas, then "[q~] and [~r],, ,,[r or [~] ,"  "[q}] ~ [~/rj,,, 
"not  [~5]" are also formulas. 

2. I f  r is a formula and xis a letter, then "Vx[r "3x[q~]" are also formulas, 
These are to be read "for every x, r  and "there is an x such that  q5," respec- 
tively. 

3. A string of symbols is a formula of ETAC iff it follows from 0, 1, 2, above. 
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By a sentence is meant  any formula in which every occurrence of each letter x 
is within the scope of a quantifier Vx or 3x. The theorems of ETAC are all 
those sentences which can be derived by logical inference from the following 
axioms, 

4, A,(Asm)) =As(x ) i , j =  0,1. 
5. a) F(w, y; u) and F(x,  y; u')  => u = u' ; 

b) ]u[r(x ,  y; u)] ~ A~(x) = Ao(y); 
c) F(x,  y; u) ~ Ao(u) = Ao(X) and Ai(u ) = Ai(y ). 

6. Ident i ty  axiom: 

P(Ao(x ), w; w) and P(x, Ai(x); x). 

7. Associativity axiom 

_r'(w,y;u) and P ( y , z ; w )  and F ( x , w ; f )  and I ' ( u , z ; g ) : ~ f = g .  

Now, with these axioms in mind, it may  be seen tha t  axioms C1, C2, Ca, Ca in 

definition I of I comprise abbreviated formulas of ETAC. Thus A ~ ) B means 
Ao(f )  = A and Al(f)  = B; g o f  means F(f, g; h); 

y 
A ~ B  

commutes 

I n e a n s  

Ao(f)  = Ao(h ) = A and Az(f) =Ao(g ) = B (1) 

and 
AI(g) = Az(h) = C and F ( f , g ; h ) .  

Commutative diagrams are regarded as abbreviated formulas, signifying the 
associated systems of equations as (1) above. These diagrams have the 
advantage of a geometric-intuitive image of the underlying equations. For 
example, the associativity axiom Ca of def. 1 of I becomes clear on contemplat- 

o f ~  
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ing the following commutative diagram made up of four elementary triangles 
of the above sort. 

This simple example given by Lawvere  (Ioc. cit:) corresponds precisely to the 
less intuitive diagram of C3 of I. However, axiom C4 of def. 1 of I must be 
completed; a complete formulation is given b y  the identity axiom (6)~or 
equivalently by the following commutative diagrams: 

l A such that 
f g 

for any A,  f ,  g, as in the above diagrams. (1 A is completely defined by  these 
diagrams.) 

Obj (A) is another abbreviated formula which means: 
a) A = Ao(A)  = A~(A),  
b) ~x[A -- Ao(x)] or 3y[A = Ax(y)], 
c) VxVu[1-'(x, A;  u) ~ x = u] and Vy'v'v[F(A, y; v) ::> y = v]. 

These three formulas express a common property of A,  that  of being an object. 
Ob C of def. 1 of I contains only objects of this type. In these terms a category 
is understood intuitively as any structure which is an interpretation of ETAC. 
A functor is understood as a triple consisting of two categories and of a rule F 
which assigns to each morphism x of the first category, a unique morphism 
~'ix) Of the second category in such a way that  conditions F1, F2 of def. 2 of I 
are fulfilled. These conditions are interpretations of the corresponding con~ 
ditions from ETAC (see p. 4, loc. cir.). In order to proceed further the category 
of  all functors is  considered; the world of all funetors is in fact a metacategory, 
or a large category (supercategory, in the classical terminology). Lawvere has 
shown which axioms must be added to ETAC in order to get a starting point 
fo r  fur ther  investigations into the structure of categories. According to 
Lawvere, a set is defined as a discrete category. (That is, every morphism in a 
set is an object (loc. cir.).) This definition suggests tha t  sets are relatively poor 
structures. However, it must be noticed here that  Rashevsky's theory of 
organismic sets deals with more complex structures over sets which are some- 
times implicit in the logical formulations. A specific example will be given on 
pages 550-552. For this reason I shall prefer to introduce explicitly the basic 
structures. An advantage of this choice, will be the gain in operationality. 
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Let us reconsider diagram 1 of I: In the terminology 0fEilenberg and MacLane 
(1945), the bomposition law (P. 632 of I ) i s  defined as a~mapping 

D(As) • D(As) ~ > R(As) with D(As) the set of morphisms which have ~he 
same range As, and R(As) the set of morphisms which have the same ralige 14 s, 
Correspondingly, there may be introduced two new unary function symbols ~o 
and zJ z which express this composition law by the equati0ns: 

or equivalently v+s, v+s e D(As) and Uv e R(A3). :(See p. 632 o f  I . ) :  The 
symbol [] must be replaced by the categorical composition law inasmuch as we 
have Al(u~) = Az(is)and A0(u,) = AQ(ug.s). Also the composition law V may 
be defined as a mapping C(A 2, As) x C(A2, AS) --> C(A2, As) where C(:42i As) 
stands for the set of morphisms between A~. and As [iris sometimes denoted by  
H(A2, As) or by horn (A2, As)]. The symbol V may be also defined by equa- 
tions of the tyPe 

~0(u%) = A0(u~s) = ~0(u2s)  
and 

This simple example suggests that a supercategory must comprise categories, 
terms which do not- contain :the eIementhood relation and: some composition 
laws to operate on its morphisms. The basic idea is tO start-with metadiagrams 
of the type 

i .... ........ ! ;  i ~,  . . . .  - .  . . . . . . .  , ~  o 

where the two outer diagrams belong to distinct categories and t h e  dotted 
morphisms simply connect these diagrams but do :not belong t o a n y  of these. 
A specific example is provided by the morphisms which assign ~toa given 
topological space its corresponding homological groups, 

Now, if we consider the property of being self-reproducing as an essential 
property of biological organisms or of pairs of biological organismsi then we 
have to introduce this pr0perty axiomatically. However; in an organism there 
are some highly specialized cells which do not reproduce themselves after the 
specialization is completed. Consequently, we must allow the construction:of 
new objects which are not self-reproducing, from the self-reproducing ones. 
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Thus, triples which consist of categories, entities which are self-reproducing 
and terms which do not contain the elementhood relation, will be introduced 
first. Then, supercategories are constructed from such triples and morphisms 
among these. Definitions follow, 

(D1). a) A "class" (when the word is used in quotation marks) is a triple 
K = (C,/-/, N), where 

G is an arbitrary category; 
/-/is a category of ~r-entities; 
N is a non-atomic expression. 
Explanations follow. 

b) ~r-entities were introduced by LGfgren as "complete self-reproducing 
entities" subject to the negation of the axiom of restriction: 

3S: ( S ~ )  & Vu:[CueS)~3v:Cv~u) & (v~S) 

which is known to be independent from ordinary logical-mathematical- 
biological reasoning. The above axiom says tha t  there exists a nonempty set 
S, such that  for any element u of S, there is an element v of u which is also an 
element of S. An atomically self-reproducing entity is a unit class relation ~ such 
that :  

~r~r (7r) (~r s~ands in the relation ~r to ~r), (2) 
,,~- ( ~-, ~>, , ,~  < ~,  ~-, ~>, ere,  

(LSfgren, 1968). A 8ymbiotically self-reproducing pair of distinct entities lr 1 
and ~r 2 is defined by the equalities 

~(~-~)  = (~,, ,8 . . . . .  ~-~>; ~-~(~'~) = <~,',/~' . . . . .  ~-~>. (3 )  

That  is, ~r 1 is the behavior function of an automaton tha t  reproduces the enti ty 
~r~. From the input ~r 2 the automaton ~r 1 thus produces a sequence of con- 
structs a, ~ . . . .  , tha t  ends up in the final output  ~r 2 (LSfgren, 1968). I shall 
introduce first a few changes in this formalism. Let  ~ ,  ~r9 . . . . .  ~r n be objects 
in a category/-/. The identity morphisms 1=~, 1=2 . . . . .  1=, will be interpreted 

f 
as descriptions of 7r 1, ~rg, . . . .  7rn, respectively. A morphism ~r 1 --> 7r 2 will repre- 
sent the fact tha t  the automaton ~r 1 produces finally the output ~rg. A morphism 
in an epsilon-graph, from an object X to an object Y means X e Y. The com- 
position of morphisms has natural  interpretations according to the axiom of 
res~rictiom 

c) A connected category C + is a category in which any two objects are con. 
nected by a chain of morphisms, no matter how the morphisms of the chain are 
oriented. A connected category in which no morphism is interpreted as an 
elementhood relation, will be called a non-atomic expression, 
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Now, suppose that  there are some "classes" Ko = (Co,//o, No) such tha t  
(Co,/-/o, No) = Co, for some categories Co. This equality will be taken as an 
ax iom and will be referred to as K1. Deft 6 of I is now replaced by D1 above 
(see a). Making use of ETAC and D1, an elementary theory of abstract super- 
categories (ETAS) will be introduced. As a consequence deft 7 of I will have a 
precise formulation. Let us consider first a biological example. 

I f  F represents a cell which after some transitions leads to a symbiotieally 
serf-reproducing pair <~r 1, ~r2> and if after z steps it is transformed in a pair 
which is not  serf-reproducing, the situation may  be represented by a transition 
of a "class" which comprises the serf-reproducing pair into another "class" 
which comprises a pair which is not serf-reproducing. Equivalently, the 
process may  be represented by the following diagram 

T 
A 

F . . . . . . . .  **~rl 4 <~r2, <!- ,[ G 

Z 

� 9  . & >  

where (T, Z) is the pair which is not self-reproducing. For example, (T, Z)  
would correspond to higher metazoan brain cells which do not reproduce them- 
selves after the specialization is completed (Rashevsky, personal communica- 
tion). The symbiotically self-reproducing pair may  correspond to the DNA ~ 
DNA-polymerase system in a cell. Let us denote the above introduced 
"classes" by K+ and K +. Thus, K+ = (F, (~1, ~2), No), and K + = ((T, Z), 
/7o, No), with No a n d / 7  0 being void categories, that  is, which have no mor- 
phisms. This representation introduces a new morphism K + - - - ~ K  + (the 
transition from the "class" K+ to the "class" K +), and consequently a new type 
of structure. The expression K+ ---* K + will be called a supercategory. N o w  
follows the general definition of a supercategory, which will be given in terms of 
the elementary theory of supercategories. 

Axioms of the elementary theory of "supercategories" (ETAS). 
S1) For any "classes" K+, K + and any letters k+, k +, z, the following are 

formulas: 
= K + ,  zil(k§ = K + ;  -P(k+, k+; z); 

P ( w ; x , y , . . . ) , ( x , y  . . . .  i n K +  or i n K + ) ,  k+ = k +. 
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These formulas are to be  read as in axiom 0 of ETAC, replacing the letters A 

and~B b y t h e  "classes" K+ and K +. /~(w; x, y, ..  ) is to be read: "for a given 
letter w there is:an assignment w --->(x,y, . . : ) ,  with x , y  . . . .  being in K § or 
in K + / '  

$2). a) I f  2o(Z ) ~- K + ,  there is a letter x in K+ such tha t  

Ao(k.~) = Az(x):= A, with A being an object in K+;  

b) I f  A'z(z ) - ~ K +, there is a letter y in K + such tha t  

Az(k +) ---Ao(y) = B, with B being an object in K +. 

$3) i f  q~ and ~ are formulas Of ETAS, and k is a letter, then: "[~] and [~] ,"  

"[~] or [k~]," "[qS] ~ [~ ] , "  "not [~]," "Vk[~]," " ]k[~]"  are also formulas. 
$4) A string of symbols is a formula of ETAS iff this follows fi'om $1, $2, $3. 

The theorems of ETAS are all those sentences which can be derived by logical 
inference from these axioms and from the following axiom: 

, t .  $5) a) /~(k+, k +, z) and/~(k+, k + z') ~ z = z ,  

b) 3z[F(/r k+; z)] ~A~(k+)  = Ao(/C+); 

c) /~(k+, k+; z) =~ Ao(z ) = A0(/c+) and Az(z ) = Az(k+). 

Axioms Sz, $2, $6 become clear on contemplating the following metadiagram 
~supercategorical diagram): 

T 
0 

K +  

+ k § y 

~ ' A - - -  . . . . . . . .  ~ ~  . . . . . . . . . . . .  ~ B  ~o 

K + 

~ o  9 ~ o  

(D2). Any structure which is an interpretation of ETAS will be called a 
supercategory. 

In  order  to obtain a simplified insight into the structure and dynamics of a 
"complex" system such as a biological or a social system, one has to start  with 
a rather simple structure and then to construct from this simple structure more 
complicated structures. ' The next section introduces a formal mean to deal 
with such problems on the basis of the above definitions. 

2. Generators. Besides  the basic idea of a structure (Bourbaki, 1958), the 
concept of a generation of higher type structures and larger classes is very im- 
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portant. This concept may be used to obtain a simplified insight into the 
dynamics of systems. The generation of structures of higher types often 
implies the presence of some adjoint functors (Lawvere 1967, 1969). Now, it is 
usual in algebra to define theories by generators and relation8 (Eilenberg and 
Wright, 1967). A rather simple example is provided by a group. Some 
groups may be generated by multiplication from a set of their elements. The 
elements of this set are called generators. Such considerations may lead to 
more general concepts concerning generating procedures. One of these is 
introduced here. 

(D3). A "class" K together with some rules of transformation (which may be 
as well functors), will be called a generating class. 

I f  we take K = Ko = Co, and if Co is a discrete category then a T-algebra A 
(Eilenberg and Wright, 1967, p. 3) may be defined as a particular generating 
class (A, R) with A = Co and R a rule which assigns to each r [n] -+[p] in the 
theory T and to each p-tuple @1 . . . . .  xv) of elements of A, an n-tuple (x[, 
. . . .  x~) = @1, . . . ,  xv)r of elements of A, which are also subject to some 
axioms. (Here by In] was denoted the set {1 . . . . .  n}.) Another example is 
provided by the representation of analogous systems in terms of observables 
(Rosen, 1968a). The one-dimensional harmonic oscillator was shown to be 
represented analogously in terms of observables of the system comprising a 
free gravitating particle. The equations of motion of the two systems are, 
respectively: 

{ k ~ = Q  and { ~ = h ;  p = p .  (4)  

Let there be two small categories, the morphisms of which are, respectively, 

$I -~ R, $1 -~ R, and $2 -Y~ R, $2 _~v R, with $1, $2 the corresponding state 
spaces of the two systems, and R the set of real numbers. The quantities Q, P 
and q, p, h are observables of the two systems ($I, {ft}) and ($2, {gt}). Two 
diagrams may be constructed with these morphisms as objects: 

Y 

P 1 ~ Q: :P r r ~  
+~Y 

Diagram D 1 Diagram D2 

such that equations (4)hare obtained from the diagrams taking Y =d/dt. 
Now, if R is organized as a discrete category, then covariant functors F, G 
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from D I and Ds to R may be considered. Thus, natural transformations (or 

funetorial morphisms (p. 628, def. 3 of I) Ft "'J> F s, G~ ~k,> (71 will define in 
fact the 1-parameter families of natural transformations (ft), (gt) with f~: 
S 1 - ~ S  1 and gt: $2 --> $2. The couples (D 1, ~j), (Ds, 8~z ) are particular cases of 
generating classes. I t  may be noted tha t  there is a monomorphism Ob 

D1 D > Ob D~ and an isomorphism F1 D1 ' > F1 D~. Even more, the type  
of the operators involved ( Y -- d/dt) is left invariant (is preserved by a functor 

D1 ~ D2. These may be equivalent conditions to those of Lemma 2 and 
Lemma 4 (Rosen, 1968a) which ensure the existence of an analogy between 
systems S1 and S2. Thus, the generating class (p(Ob D1), s - l ) ,  with p(Ob 
D1) c Ob D 2, and conforming to the above mentioned conditions, allows the 
generation of D1. This shows that  the generating diagram of the first system 
is, up to an isomorphism, among the diagrams generated b y  the generating 

diagram of the second. (Note that  h is a constant mapping S9 h > R such 
that  h(s) -- h for any s ~ S~.) The above example suggests a more general 
definition of an observable: as a morphism. Sometimes, it will be more con- 
venient to consider this morphism in the category of categories, that  is, to 
define an observable as a funetor. These observables connected in a diagram, 
lead to a generating class of the system under consideration. Also, this repre- 
sentation provides a natural formalization of linked observables (Rosen, per- 
sonal communication). The next example shows that  this definition may  be 
applied in a specific form to the study of organismic sets, revealing their basic 
structure. Let  So be an organismic set of N elements e~, i = 1, 2 . . . .  , N. 
Then according to axiom la) of (Rashevsky, 1967a) each e~ e So is characterized 
b y  m~ potential activities a~ . . . .  , a~ .  Let  S~ a) be the set of all activities: 
$~a) = (a~ . . . . .  a~J  of e~. According to lb  of Rashevsky (1967) the sets S~ a) 

may  result in a number r~ of products (in the economic sense), p~ . . . . .  p~,. 

Let  S~ p) = (Pt~, �9 �9 P~,,) be the set of all products io~. These sets are subject 
to a number of conditions (axioms lc- l f ,  and postulates 1--6, loc. cir.). I shall 
construct with these sets two other sets 

and 

$(a) = ($~a)[ i = 1, 2 . . . .  , N) 

--  { $ ? ) l  i = 1, 2 . . . . .  N } .  

Then, if we consider the one-to-one mapping So �9 o > S(a) • S(~) it may  be 
noticed that  it assigns precisely to each e~, the set S~ p). However, according to 
le  (Rashevsky, 1967) at any given moment only a subset ofS~ a) and a subset of 
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S~ p) are actually assigned to the corresponding e~. Thus, we are forced to con- 
sider the products 

x x x 

m-~mes r -  ti~es 

where m = maxm~(i = 1 , . . . N )  and r = maxr~;( i  = 1 . . . . .  N). Denote 
S~ a~ x S~ ~) by  S~p; denote (S~ a~ x S~ a) x S~ ~ x S~ ~) by _ap, q(~ and so on. S~~ 
will be denoted by  1 (that is when each S~ ~) = 0, and each S~) = 0). With 
these sets an algebraic theory S may be constructed, I ts  objects are 1, SaT, 
. . . .  S~ ,  and its morphisms are S ~  <-- 1, . . . ,  S ~  --~ Sap, acting separately on 
each member of the products which is writ ten between parenthesis. Now, if S o 

is considered as a discrete category, there are some functors S O r> S_ which 
define each e~, at  each moment, in terms of activities and products according to 

l a - l f  (loc. cir.). This, in turn, implies tha t  functors So ~ > S may be seen as 
coarse observables of So. The category Sg of  covariant functors _~- 1 (which 
commute with products), from the algebraic theory _S to the discrete category 
S0, is an algebraic category (Lawvere, 1963), as it may be seen by  comparation 
with the following definition. 

(D4). The category of covariant functors (which commute with products) 
from the algebraic theory A to the category of sets, the morphisms of which are 
the natural  transformations between these functors, is called the associated 
algebraic category of A. 

A 
An algebraic category will be denoted by  A or by Ens, with Ens being the 

category of all sets and mappings between sets. In  order to pass from the 
coarse observables F to fine observables, like those introduced by  Rosen (1968a), 

we have to consider intensities of the activities as, that  is, mappings" o~(a) ~' > R, 
S?) = R, with /~ being the set of real numbers. Thus, the connection 
between coarse observables and fine observables is given by  the commutative 
diagram 

S 

No x ~ R 

with ~ being the algebraic theory whose objects are 1, R, R 2 = R x R, . . . ,  
R" -- R x R x . . -  x R (n times). In  the above diagram functors X = ~ o 
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play the rS]e of some generalized observables, and are natural in s sense of 
Eilenberg and MacLane (1945), that is, F stands as a functor for any category 
So as defined above and for any categories S, /~, of the type indicated above; 
even more, this diagram joins objects which did not seem to be related pre- 
vious!y. These observables remove partially an asymmetry of the triplet, 
physics, biology, sociology (Rashevsky, 1967, p. 151). The following theorem 
gives a characterization of the categories So s which are associated with organismic 
sets. 

Theorem. Any category S s has generators, kernels, cokernels, products, 
coproducts, puUbacks, limits and colimits. 

Proof. The proof is immediate by taking into account the fact tha t  the 
category S~ conforms to definition (D4) and thus is an algebraic category. Any 
algebraic category has the above mentioned properties (Georgescu and Popescu, 
1968: Corollary 2, Theorem 1, Corollary 1 and Theorem 3, respectively), and 
consequently, S~ has the aforesaid properties. Q.E.D. 

This characterization gives the general algebraic properties of the coarse 
observables of an organismic set. Their particular interpretations may reveal 
interesting properties of organismic sets. In a subsequent paper, Rashevsky 
(1968a) introduced an organismic set So as the union of three disjoint subsets 
Sol, S02 and So3. The functioning of the core Sol is essential for the functioning 
of So. The discrete category Sol together with three functors G1, G2, G3 may 
"generate" a complete organismic set So. Thus, if we ~take GI(Sol) = So~, 
Gs(So2) = So3 and G3 as the classical union " u "  of sets, then by sequentiai 
application of G1, G2 and G3 a complete So is obtained. Consequently, 
[S01; G1, Gg., G3] may be considered a generating class of So. 

(DS). The generating classes of an organismic set will be called organismic 
classes. 

Now, consider the case of an organismic set which is generated by ,an ag- 
gregate (G1, G~., . . . .  Gk) of organismic classes. If  the members of this aggre- 
gate are in fact distinct categories together with functors, and if there exist 
some connections among these, then a supercategory may be constructed with 
these organismic classes. This supercategory will be called a generating organ- 
ismic supercategory and will be denoted by S~. For example, the structural 
genes of a cell could be represented by sequential machines or by categories 
associated with semigroups of states of the sequential machines. The regula- 
tory genes could be adequately represented by topological spaces (control 
spaces) or by subcategories of the category "Top" of topological spaces. The 
totality of structural and regulatory genes would be then represented by a 
generating organismic supercategory of  semigroups and topological spaces. 
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Generating classes could have wide applications in developmental biology. 
Two examples will be given to illustrate this idea. The development of an 
organism from the ovum may be viewed as the generation of a supercategory 
from its generating classes. In doing this the t e r m / / o f  the "class" will play a 
major role. The process of generation will involve the enlargement of the 
corresponding "state space" of the organism. A rather simple but  important 
question is the following. Could we realize a mathematical construction such 
tha t  this construction enlarges the state space on the one hand, and con- 
tinuously maintains stability on the other hand.~ 

I t  must  be noted first tha t  the enlargement of the state space may take place 
in different ways, some of which are equivalent, t ha t  is, lead to the same final 
result. Thus, if A is a fertilized ovum, while P is a stage of the organism de- 
veloped from it, then diagrams of the type 

P ~  A~ 

r 
A1 ~ - A 

will correspond to a polymorphism depending on the route which the develop- 
ment of the ovum takes after a stage P (as in the case when from the same ova 
laid by a queen bee are obtained the other queens, drones and asexual workers; 
this example was suggested by Professor Rashevsky). In  order to realize it  A 
must be a fixed object, while P must have some additional properties. This 
example corresponds exactly to the categorical concept of a pushout. 

(D6). Given two morphisms A ~ A1 and A ~)  A2 with a common 
domain, a commutative diagram 

P ~  A 2 

A~.~ A 
I r  1 

is called a pushout P for % and a2, if for every pair of morphisms A1 ~!> P '  

and A 2 ~> P '  such tha t  fi~ o a 1 = fl~ o a 2, there exists a unique morphism 
p Y p,  > such tha t  ~ = ~ o a2 and ]~ = ~, o fi2. I f  P '  is also a pushout for 

al and a 2, there is a morphism P '  ~' y' ' y' ' P such tha t  fil = o rio and fi~ = ~ f12. 
7- -m~ .B .  
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Now if we return to the previous example, then it may  be seen that  P corre- 
sponds to the stage when the routes separate in such a manner that  P',  P",  . . .  
correspond to the final organisms developed from the same ova. I f  also P '  is a 
pushout then the stage P '  is isomorphic to the stage P,  and this corresponds to 
the fact tha t  in this case the ways which lead to P and P '  are equivalent. In  
the above diagrams, morphisms represent transitions from one stage to the 
other. 

The next example shows that  pushouts may be used as well to represent 
8table systems. However, a precise statement has to make explicit the meaning 
of stability, and this concept implies the idea of recovering of some states for 
certain intervals of time. A precise definition of stability will be given in the 
next  section, after this example. A virus in an unfavourable environment may 
survive a very long time. This suggests that  all transitions of states lead 
finally to a stable field {P', P", . . .  } as in the following diagram 

I f  this diagram is considered as a graph, then it may be seen that  the graph has 
two cycles. Such graphs were called "kinematic" (Ashby, 1965), and give only 
a topological insight. Now, if a virus with a monostrand nucleic acid enters a 
cell, then some dynamical constraints are eliminated (the protein coat of the 
virus), thus generating a new stable field (P+, P+ . . . .  ). Then, both P and 
P+ are pushouts, and transitions may  take place between them: P ~ - P + .  
Indeed, after the infection the virus is able to recover its stable field (P' ,  
P", . . .  ). Apparently, the two systems (the virus and the cell), do not have to 
be considered as two systems in interaction, but as a single larger system. 
However, as far as the generating organismic supercategories of the two systems 
do not change as a result of their interaction, the virus and the cell may  be 
considered as distinct systems although their first order structure (state space) 
is changed. Thus, the associated generating organismic supercategories are in 
fact second order structures which are invariant with respect to systems inter- 
actions. Only when these generating organismic supercategories are changed 
I shall speak of the change of the system as a whole. The same procedure could 
work in the case of evolutionary systems. This time, a third order structure, 
the generating organismic supercategory S of a large class (in the biological 
sence) of organisms has to be considered. Then S will be invariant for all 
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organisms in the considered class, generating them one by one. Thus the idea 
of the fundamental  biogenetic law or (exclusive) the principle of biological epi- 
morphism (relational invarianee), (l~ashevsky 1967e, 1968c)is  naturally 
obtained. Also, from the definition of a generating class, it may be seen that  
the number of relations among the elements of an organismic set increases with 
its development (generation). Realizations of these situations are left to the 
reader as an exercise. The above discussed fact was suggested by Rashevsky 
as a new biological principle (Rashevsky, 1968b). In  a general model of bio- 
logical systems generating diagrams of generating organismic supereategories 
would be considered and these would have to be connected in metadiagrams; 
morphisms in these metadiagrams would represent the connection between 
structures of distinct orders: 

\ / /  
"no 

In  the above metadiagram by S O denotes the generating organismic super- 
category of zeroth order which generates an organismic set of zeroth order, and 
S(~ n) denotes a generating organismic supercategory of nth order. 

3. Multistable Systems. The previous discussion suggests a more general 
definition of dynamic systems in categorical terms. On the basis of such a 
definition, stability may  be also defined in terms of observables rather  than in 
terms of "equilibria of forces." Thus, a biological system may remain "stable" 
although its first order structure or configuration is changed. What  remains 
invariant in this case is the associated supercategory S a. A specific example is 
provided by an organism which develops from an ovum. New cells may  appear 
from the old ones, new relations arise among the cells and thus, new configura- 
tions appear. However, the whole organism is considered stable, regardless of 
the stage of its development. A change of configuration should be represented 
by changes in the associated type of algebraic and topological structures. 
Similarly, it may be said that  the configurations are generated by an S a. 
Basically, a dynamic system has to be represented in terms of states and 
transitions among states. In  doing this, observables must be also present to 
account for quantities which can be or are determined by experiments. 
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(D7) A dynamic  system D is a commutative diagram of the type 

s~  ~J 
d 

with: X - - t h e  state space of D (that is, a supercategory the objects of which are 
states of D and whose morphisms are transitions among these); /~---the 
category the objects of which are elements from R, R x R . . . . .  R • R x 
�9 ..  • R = R ~, and whose morphisms are operators on real numbers; S - - a  
supercategory of generating classes and morphisms among these, and T a 
supercategory such that  the structure of ~ depends primarily on the structure 
of T by setting a one-to-one correspondence (~tj: F~ -+ ~'j, L(s~)) -+ i (i is an 
object in T, st is an object in X and F~,j: S - +  R). The object T will be called 
temporal for intuitive reasons. Consider )~ and/z as fixed objects in R, and let 
/, > 0. Let  us consider a functor G: X -+ R such that:  
a) G(s) = V(t) for any V: T -+ R, s in X, and t in T; 
b) G(s') 1> )t and G(s') - G(s") < ~ for some states s', s", . . .  in X. 
c) G(s +) < /z and/~ ~ )~ for some states s + in X. Then it will be noticed that  

an apparatus which measures time intervals with a precision 8 i> ~ will 
observe only states s', s", . . . .  

(DS) A category X which comprises only states s', s", . . .  of X will be subject 
to the foregoing conditions a), b) and will be called stable in X. 

After intervals of time which are longer than the transitions which necessarily 
lead from a stable state s' to other stable states s", s", . . .  according to con- 
dition b), X is stable in the algebraic sense, because s' and s", s" . . . .  are together 
in X7. I f  we take S = S~ in (DT), then the corresponding X will be  called 
organismic.  I t  must be emphasized that  a generating organismic super- 
category S~ is distinct from the corresponding organismic supereategory X~, 
although they are closely related. In the following some properties of X~ will 
be presented. 

(D9) I f  there are some distinct categories Xa, Xe . . . .  , X ,  which are stable in 
X, and if they form a supereategory, then X is called multistable of order z. 

Returning to the example given on page 555, it should be noted that  a virus 
may be called ultrastable because its state changes only when some observables 
take values which exceed some given limits, showing a succession of transient 
fields concluded by  a terminal field which is always stable (Ashby, 1952). 
Then, a multistable system consists of "many  ultrastable systems joined main 
variable to main variable" (Ashby, 1952), and this is adequately represented by  
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a multistable supercategory together with its corresponding S~. As a conse- 
quence of this construction a multistable system gains "plasticity." The 
example suggests also that  in the case of multistable systems there are present 
some distinct pushouts in X which are joined by  morphisms, thus forming a 
superpushout in X. A geometric image of this situation is given below 

i 
2 

A 

~ P  . . . . . . . . . . . .  ~B  

l 
A1 B2 

B 1 

1 ~. p + - - - ~ . . . .  

In constructing a mathematical model of a differentiating cell, it is useful to 
introduce "metastable" states s* (Rosen, 1968), tha t  is, states for which 
G(s*) i> e,/~ < e < )t. I f  A is a metastable field, B a stable state and F(X), 
F(Y) unstable fields, then a colimit may  be constructed with these. 

(D10) Let  D, C be two categories and F:  D--> C a covariant functor. A 
colimit of F is a pair (A, {ux)) with A being an object of C and Uz: A --> 2'(X) 
morphisms which are defined for each object X of D, such that  for any mor- 
phisms a: X--~ Y in D, any object B in C and morphisms vz: B--> _F(X) 
(defined for each object  X in D), there exists a unique morphism v: B--> A 
which makes commutative the following diagram 

A ,~x �9 ~ ( X )  

B ~ ~-~'(Y) 

In  other words we have the following equations: 

u ~  = ~ ' ( ~ )  o u x ,  F ( ~ )  o Vx = v y ,  U x  o v = Vx.  (5 )  

(If the category D is small, i.e. 0 b  D is a set, it is also called a scheme and a 
functor F:  D --> C is called a diagram in C of scheme D.) 

Now, if a differentiating cell is considered as a multistable system, super- 
colimits must be introduced to represent distinct fields of stable, unstable and 
metastable states. According to this, the general contouring of the state space 
Xa of a differentiating cell may  be visualized as below 
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2 ' : D  ~'C G : E  ~ F  

A supercolimit may  be defined as a metadiagram constructed from aggregates 
of eolimits and the connecting morphisms among these (as morphism 
F(Y)  --> G(U)). I t  is not difficult to see the connection between these defini- 
tions and the principle of choice. Previously, in II ,  we suggested that  the 
mathematical form of the principle of choice would be 

[{Mk(gk))~ eK ] . . . . .  Lim [(Ml(dj))l ~L ] (6) 

and 
~O 
~: = (m, pro) (6') 

where m is a certain numerical matrix, pm is the corresponding matrix of 
probabilities and o, s are some essential observables of a dynamic system. Then 
some matrices M are assigned to each diagram and (6) is a condition of extre- 
mum. Qualitatively, the principle of choice asserts tha t  each superdiagram in 
X has a superlimit or a supercolimit. From these considerations the following 
proposition is easily derived. 

Proposition 1. Any organismic supercategory X :  has at least one super- 
pushout. 

Proof. The principle of choice implies that  any superdiagram in X has a 
supercolimit. Then, from the construction of a supercolimit, there results that  
each diagram in X has a colimit. Categories which have a finite number of 
colimits for all functors over a scheme 2: are called finitely 27-cocomplete. I f  
these categories are 2:-cocomplete for all diagram schemes 27 then these cate- 
gories are called finitely cocomplete. I shall consider only the finite case. 
Generally, a category which is finitely cocomplete has pushouts. Now, it 
results from the construction of a superpushout tha t  Xo has at least one super- 
pushout (as far as a superpushout is made up of interconnected pushouts). 
Q.E.D. 

When interpreted, this assertion says that  any biological system comprises at 
least one ultrastable subsystem. Systems with "suspended" life as protozoa 
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(Rosen, 1958) are reduced to the ultrastable subsystem. However, an Xa is 
generally multistable. The generation of "undifferentiated" cells may be 
represented by the degeneration of a supercolimit into a superpushout. The 
superpushout of an ultrastable system would keep indefinitely and its associated 
stable field (P' ,  P", . . . )  will be frozen such tha t  the ultrastable system is 
"immortal"  or almost "immortal." By contrast, a "differentiated" Xq has 
more "plasticity," and is "mortal" because there is an increased probability for 
the system to stop between two consecutive stable fields or "steady states," 
when the system is in an unstable state. This unstable state would be reached 
when the system is placed in extremely difficult conditions. This is also one 
of the results of Rashevsky's theory of organismic sets (1968a, Theorem 3). 
Another connection between this representation and the above quoted theory is 
established by the following statement. 

Proposition 2. I f  T: A --> B is a full functor, then without any conditions 
on the supercategories A and B, T reflects superlimits and supercolimits. 

Proof. This is only an extension of a theorem of Freyd (quoted from 
Mitchell, 1965, p. 56). The reasoning is similar to that  one followed in the 
above quotation. The fact that  T has to be full, shows that  any transformation 
which preserves the stability properties of a biological system must also have 
this property. This may  appear as a condition which must be added to the 
principle of relational invariance. 

Proposition 3. A supercategory X is ~,-cocomplete if and only if the functor 

I :  X --> [2~, X] has a coadjoint L: [2~, • ] -~ 2f. (Here [2, X] denotes the class 

of all superdiagrams in X over the superscheme 2~ and this class can be made 
into a supercategory.) 

Proof. Extending the concept of a scheme and the concept of an adjoint 
functor for the supereategorical case this proposition is a mere generalization of 
Mitchell's Proposition 12.1 and Corollary 12.1 (Mitchell, 1965, p. 67). An 
adjoint functor may be intuitively understood as a "close" comparation of two 
categories which preserves some important  properties of the source category. 
This condition is necessary and sufficient for a biological system in order to 
reach effectively its steady-states. 

4. Discussion. I t  is not difficult to see that  the principle of choice as in- 
vestigated here has functional aspects. One could ask if only these aspects are 
taken into account by this principle. Rosen (1959) suggested tha t  in a con- 
venient context the principle of adequate design could have structural or 
morphological implications. We have emphasized in I I  (Section D) such a 
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s t ruc tura l  implicat ion of  the  principle of  choice. However ,  when s t ruc tura l  
aspects are involved,  there  are some implici t  or explici t  assertions concerning 
the  principle of  G-relations, which make  convenient  the  context .  Here  only  
l imited assertions concerning this principle were made.  As a consequence 
Rashevsky ' s  theorems 1 and  2 (1968a) canno t  be p roved  only  on the  basis of  
the  principle Of choice. Those  theorems seem to  be re la ted  to  the  principle 
of  G-relations. Thus,  a ma themat i ca l  convenient  expression of the principle of  
G-relations is necessary i f  one wants  to  s t u d y  the connect ions between these 
principles and  thei r  possible consequences.  

The full consequences of  the  principle of  choice m a y  be r ich in concrete cases, 
and  a detai led ma themat i ca l  s tudy  of some par t icular  sys tems would provide a 
mean  to const ruct  on this  basis mult is table  systems. 

I would like to express m y  gra t i tude  to  Professor Rash ev sk y  for cons tan t  
help in the  e laborat ion of  this  paper.  Also, I would like to  t h an k  Professor  
Rosen and Dr.  Lawvere  for helpful  suggestions. 
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