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The mathemat ica l  s t ructures under lying the theories of organismic sets, (M, R)-systems and  
molecular  sets are shown to be t ransformed natural ly  within the theory  of categories and  
functors. Their  na tura l  t ransformat ions  allow the compar ison  of distinct entities, as well as 
the modell ing of dynamics in "organismic"  structures. 

Organismic sets were built by Nicolas Rashevsky into a representation of 
biological organisms and societies on a relational basis (Rashevsky, 1954; 
1960; 1966a,b; 1967a,b,c; 1968a,b,c; 1969a,b,c; 1970a,b,c; 1971a,b,c), and a 
wide range of biological and social phenomena were explained within this 
framework. Attempts to produce axioms for this theory using logical 
functors and categories (as well as an extension to more general structures), 
were made with the purpose of analysing mathematically the basic 
underlying structures (Baianu and Marinescu, 1968; Baianu, 1970; 1971 a,b; 
1973a). Amongst the direct consequences of our axioms were the re- 
alisation that with each organismic set there is an associated algebraic 
theory, S, which defines the organismic set in terms of its observable 
quantities. The algebraic properties of these "observables" were then 
circumscribed by a general theorem (p. 552 of Baianu, 1970). Furthermore, 
these structures were shown to be rnultistable, in a precise sense [D8, D9 
and equations (16) in loc. cit.], without the need for assuming a "potential" 
function. This may possess certain advantages for obtaining general, 
multistability conditions (Propositions 1 to 3 in loc. cir.), although it was 
shown by Rashevsky (1971a) that the two descriptions are topologically 
equivalent. The difference arises from the fact that the "potential" de- 
scription of stability and our observable-related definition are not algebrai- 
cally equivalent. We shall investigate in some detail the conditions under 

431 



432 ION C. BAIANU 

which organismic sets and their observable structures are transformed 
naturally, thus paving the way for a direct, structural approach to their 
variability and dynamics. The necessary mathematical constructions were 
partly introduced in previous work on dynamical similarity between 
systems (Baianu, 1971b; Baianu, 1972; Baianu and Scripcariu, 1973) and in 
conjunction with a functorial representation of (M, R)-systems (Baianu and 
Marinescu, 1974). 

(M,R)-systems were introduced by Robert Rosen (1958a,b) as simple 
mathematical models of metabolic and genetic systems in cells. An (M, R)- 
system comprises a "metabolic" part, M, and a "replicating" part, R. The 
components of R produce replicas of the corresponding M-components if 
adequate inputs are provided. The partial equivalence between (M, R)- 
systems and automata, or "sequential machines", was then shown (Rosen, 
1964a) and the general, algebraic properties of (M, R)-systems were derived 
(Rosen, 1966a,b; Arbib, 1966; Baianu, 1973). Their topological properties 
(such as connectedness and dynamical realizations) were investigated 
together with the biological implications of these mathematical con- 
structions (Rosen, 1961; 1963a,b; 1964b; 1966b; 1971; 1973). The dynami- 
cal realizations of (M, R)-systems led directly to the question of their state- 
space transformations and revealed their "evolutionary potentialities" 
(Rosen, 1973). Closely related to this important problem, we had already 
described a functorial representation of (M, R)-systems (completed as early 
as 1971) and considered their natural transformations (Baianu and 
Marinescu, 1974; submitted in final form in 1971). In a subsequent paper 
on dynamical similarity (Baianu and Scripcariu, 1973; generated in relation 
to Rosen's work on analogous systems (1968)), we have modelled the 
development of organismic sets in connection with relational, nuclear 
transplant experiments and suggested that natural transformations are 
operational both in the theory of organismic sets and the theory of (M, R)- 
systems (p. 481, loc. cit.). Therefore, we shall also discuss the role of natural 
transformations in the latter theory and investigate the possible reasons for 
this common feature. It turns out that molecular set theory (Bartholomay, 
1960; 1965; 1971), in its initial form, also has scope for the application of 
natural transformations, thereby suggesting that these originate at the 
molecular level. 

1. Natural Transformations in the Theory of Organismic Sets. Let ei be an 
element of an organismic set S o. Then, ei performs a set of activities S~ ") 
which result in a set of products S~ p). If there are N elements in the 
organismic set So, there will be a total set of activities St")={S!")i 
=1,2  ... .  ,N} which may result in a total set of products S~P)={S~ p) i 
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= 1, 2 . . . .  , N}. Therefore, we can consider the one-to-one mapping 
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O" S O ~ S (a) • S (p) 

which assigns to each ei the sets SI a) and S~ p) of its activities and products, 
respectively. However, since at any given moment  only a certain subset of 
S~ a) and S~ p) are actually realized by the element ei, and since there will be 
a certain order in the performance of its activities, one has to consider 
cartesian products of the sets SI a) and SIP): 

s ( a )  Xr ~,(p) i, 11 
i - - - - i  O a p  , 

s ( a )  ~( ,~(a)  ~ ( ,~ (p )  ~ ( ,~ (p )  __ ,~i, 22 

(a) Ca) (s, x s ,  x . . . . . .  )x(sF)x x s F  ))= 
k �9 k ~  ) Y ~r 

m-times r-times 

With these cartesian products of sets, an algebraic theory S emerges. Its 
objects are (tp, qS)=l, Sap=Sta)XS tp) . . . .  ,Sap and its morphisms are 
l ~ S ~ p  . . . .  , Sap~Sap. If the organismic set S O is considered as a discrete 
category (whose only morphisms are ei L%ei, for i = 1 , 2 , . . . , N ) ,  then 
there will be some functors, ~o r'~S which associate to each element ei, 
at each moment,  its activities and the products made as a result of these 
activities. 

The functors F play the significant role of observables of the organismic 
set So. One can readily find that, within the limits of our construction, 
there are some covariant functors F - l :  S - , S o  which perform the reverse 
formal action, by associating to an ordered product of sets of activities and 
biological products an abstract element ei e So. Therefore, these functors 
F -1  define the organismic set S o in experimental, or quantitative, terms. 

The measurements are carried out on S and the inferences drawn from 
these are transferred to S o . It is, therefore, natural  to consider the possible 
relationships between the actions of the functors F -1  and their possible 
transformations, either as a result of possible changes in the dynamics of 
the biological system represented by S o, or as a result of changing the 
measurement operat ions--underlying the functors F-1 .  More precisely, the ~ 
category of functors S-~So (which commute  with products) and natural  
transformations between these functors, is the associated algebraic 
category of S and is denoted by S s. 

The physical, or "chemical" measurements on So are, then, abstracted in 
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the following commutative diagram 

v ~  s 0 

So / z " ~ R ,  
(1) 

where R is the algebraic theory whose objects are 1, R, R 2 = R  x R, . . . ,  R" 
= R  x R x. . .  x R (n-times), with R being the set of real numbers (further 
details of this construction are given on p. 551 of Baianu, 1970). The 
functors Z:So~R, play the role of general observables (as shown on p. 552 
of Baianu, 1970) and are natural in the sense of Eilenberg and MacLane 
(1945), that is, condition (1) holds for any functor F defined as above, and 
any categories So, S and R of the type discussed here. 

The main algebraic properties of SSo were previously found (the theorem 
on p. 552 of Baianu, 1970), and these stem from the naturality of condition 
(1). 

In addition to these properties, the functors F -1 : S ~ S  o are also natural 
in the above sense, that is, 

So___- z_______~ R 
(2) 

is also commutative for any F-1, ~, X, So, S, R defined as above. 
When the functors F-1 are varied under the action of natural transfor- 

mations (for a definition see Eilenberg and MacLane, 1945, or D3 of 
Baianu and Marinescu, 1968), condition (2) is still satisfied by an approp- 
riate choice of observables, and the induced functor is ~9=Z0 F-1. Let us 
examine in detail the effect of natural transformations in the associated 
algebraic category of S, denoted here by S s. If F - l ,  G - I ' S ~ S o  are two 
objects in S s and q: F - I ~ G  -1 is a natural transformation in S s, then, 
by definition, the diagrams of the following type are commutative: 

F -1 (Sam~) F-1(I) ~ F -  1 (Sip) 
I I 

r l m r  I I ill 

G-l(,~mr) ~-qf) >G-I 1 ",--ap : ( S a p )  

(3) 

for any f',~mr--*S1 in the algebraic theory S. We note that the mappings J "  - -ap  - - a p  

~/mr, ~/1, F - l ( f )  and G - l ( f )  are defined in the normal manner, and, 
therefore, operate directly on elements of sets. On the other hand, functors 
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(such as F-1 and G-1) operate on whole sets, without "looking inside"--at 
the elements of these sets. Thus, while functors are used to produce whole- 
set transformations, the natural transformations introduced above allow a 
direct comparison, element-by-element, of the results of the action of these 
functors. We can think of the functors D:So~So  as dynamic transfor- 
mations of the biological system represented by an organismic set So, and 
consider the natural transformations as a means of recovering the con- 
sequences of these dynamic transformations at the level of the elements of 
S o. The actual observation, or measurement, of a dynamic transformation 
is naturally performed through the ope,r~tions abstracted in diagrams (1) 
and (2). 

The formalism developed here does not involve special, physical assump- 
tions concerning the nature of these dynamic transformations, or the 
specific structure of the transformed organismic sets. This formalism 
requires, however, the introduction of "measuring systems", or "meters" in 
diagram (1) (as defined in D9 on p. 62 of Comorosan and Baianu, 1969, or 
on p. 673 of Rosen, 1977). Therefore, it can be extended far beyond the 
framework of the present constructions (as suggested by Robert Rosen in a 
personal communication), into the theory of observations and system 
descriptions (Rosen, 1978). This possible extension will be considered in 
subsequent publications. The only underlying restrictions of this formalism 
are logical in their nature, as specified by the axioms of the elementary 
theory of abstract categories (Lawvere, 1963, Baianu, 1970)�9 These re- 
strictions can be relaxed even further in the form of the axioms of the 
elementary theory of "supercategories" (pp. 547-548 of Baianu, 1970), 
hence removing the necessity of strict commutativity, or naturality, as 
required by conditions (1) and (2), above. This extension may be required 
in a general theory of measurement (Rosen, 1978). 

Using a "cost" function, K~, of the activities performed by each element 
e~ of So in making the products essential for the survival of S o, one can 
"optimize" the relational structure of S0--in the sense of minimizing the 
total cost, K =~v= 1Ki. These "optimal" values are to be found among the 
solutions of the following system of equations: 

OKi (ai, Pi ; t )  
�9 6p~ = 0 (4) 

t~a~ 

t~Ki(ai, Pi ;t) 
�9 6ai = 0 (5) 

for which actual products are made, that is, 6pi = 1 (if no product is made 
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6pi =0,  and the "cost" function experiences a singularity). The boundary  
condit ions which help to define the minima of Ki(a~,pi;t) are the re- 
strictions imposed by the environment  on So, as well as the condit ions K~ 
> 0 f o r  i =  1 , 2 , . . . , N .  

Alternatively, one can simply note that  if each element e i were 
completely unrelated to the other elements of S o ("completely specialised" 
organismic set) this would increase the total cost function and make  the 
existence of So improbable.  Therefore, there mus t  exist some relations 
between the elements of S o which can decrease the cost function in 
compar ison with the case considered above. This induces some relational 
"forces" which stabilize the organismic set So. Fur thermore ,  Nicolas 
Rashevsky (1968c) conjectured that, in fact, the development  of an 
organismic set leads to the max imum possible number  of different relations 
being defined on S o . That  is, once the organismic set is formed, it can only 
develop by decreasing its "potential  for t ransformation" V, as represented 
in a simplified picture in Figure 1. V can be more  precisely defined as the 

v~x 
v ;_ (r,} 

Time 

Figure 1 

cardinal of the set of all possible transformations,  {T t} , at an instant t, of 
the relational structure of S O . Since at least some of the t ransformations 
suffered by S O are irreversible, this potential  decreases as the organismic set 
develops. This formulat ion is rather similar to the well known  "epigenetic 
landscape" metaphor ,  a l though the latter is  directly l inked to a true 
potential  function. 

The  t ransformations of the relational structure of S O during its develop- 
ment  could be followed using natural  equivalences and we showed that  the 
variety of the relations defined on S O is, indeed, maximised in the direct 
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limit of relational structures generated during the development of So (p. 
482 and fig. 1 of Baianu and Scripcariu, 1973). 

The natural transformations of the observables of an organismic set 
introduced above extend the previous algebraic approach beyond the limits 
imposed by the nuclear equivalence (p. 476 in loc. cir.). Consequently, we 
can develop an "evolutionary" theory of transformations of organismic 
sets, in the sense that we are able to compare by means of natural 
transformations different organismic sets and/or their possible develop- 
ments. A quantitative approach was proposed above and this is only a 
preliminary attempt to set up numerical procedures in parallel with the 
theory of organismic sets. The subsequent development of the theory will 
also have to consider the consequences of "fuzziness" (Baianu and 
Marinescu, 1968; Baianu, 1980) for the transformations of organismic sets. 

2. Natural Transformations in the Theory of (M,R)-Systems. Let us con- 
sider the simplest (M, R)-system 

f ~Pf fib A ~B---,H(A, B)--~ H[B, H(A, B)] (6) 

where A is the set of inputs of the metabolic component M, B is the set of 
outputs of the metabolic component M, f is the mapping from A to B 
representing the activity of M and H(A, B) is the set of all mappings from 
A to B. H[B,H(A,B)] is also a set. Its elements are the mappings of the 
type q~y :B--,H(A, B). These "genetic" maps associate to an output from the 
metabolic component, a replica of M, that is, the mapping f In addition to 
these maps, the mapping fib is defined as the assignment of the genetic map 
~b I to the corresponding f, and fib is readily shown to be invertible (Rosen, 
1966). Let us call fib a "duplication" map. Then, let us consider the M- 
component, the R-component and the duplication map as "black boxes", 
or components, of a block diagram, in the manner shown in Figure 2. 

This pictorial representation obviates the fact that the complexity of the 
components of the simplest (M, R )-system increases towards the right- 
hand-side of the block diagram. Thus, the duplication component is able to 

Figure 2 
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construct a genetic component  which, in its turn, constructs the metabolic 
component. A more precise idea of the implicit mathematical constructions 
which generate mappings at different levels of sophistication was already 
proposed on a logical basis by L6fgren (1968). It can also be achieved in a 
categorical construction (Baianu and Marinescu, 1974). As shown by 
Rosen (1958b), the metabolic components can be re-organised into a 
category M. Let any two sets of M be X and Y, and let t : X ~ Y  be a 
mapping of M. If Set is the category of all sets and mappings of sets then 
one can define a special functor h x: M ~ Set as follows: 

hX(y)=H(X,  Y) for any set Y in M; (7) 

hX( t ) =m: H( X ,X) ~H( X ,  Y) for any t : X ~ Y  (8) 

hX(g) ( t )=go t :H(X ,X)~H(X,  Y'), for any g : Y ~ Y '  in M, (9) 

where X is a certain fixed object in M; h x carries Y into H(X, Y) without 
acting on the elements of Y. A family of functors of the type h x, obtained 
by varying X in M, can produce all sets of the form H(X, Y). Alternatively, 
we can use the canonical functor h:M--,[M, Set] defined by the 
assignments: 

S'va'~h x and t ',m'~hn ~ h  Y (10) 

where t :X -~Y  and [M, Set] is a category of functors from M to Set. Also, 
let us consider the embedding I:M-~Set  which carries any X of M into the 
same set X of Set and any mapping t : X ~ Y  of M into the same mapping 
of Set. 

With the above definitions, the genetic maps OI are now defined by the 
natural transformations ~ : I ~ h  x, for X varying in M. Note that the sets of 
all natural transformations from I to h x, (h x, I), have the same cardinal as 
the corresponding sets, X. This has the following consequence: 

THEOREM. The sets (ha, h B) are isomorphic to H(B,A) and the sets 
(I, H x) are isomorphic to H(X, X ) f o r  any X in M, if I is a representable 
functor (Popescu, 1973). 

The proof of this theorem results directly from the following commutative 
diagram of Set: 

H (X, X) hx(, 
hX ~ t 

X 

n(x,  Y) 

)y  
(11) 
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The "representability" condition is equivalent to a computability require- 
ment for the sequential machine associated with the (M, R)-system. 

Apart from enabling us to consider (M, R )-systems with variable struc- 
ture, replication and duplication maps, this construction is readily extended 
to produce a new type of (M, R)-systems: their "metabolic", "genetic" and 
"duplication" components can have algebraic, topological or algebraic- and 
topological-structures, and form categories of the corresponding structures. 
Both developments have consequences for dynamical realizations of 
(M, R)-systems (Rosen, 1973) and are useful tools for the investigation of 
transformations of (M, R)-systems. 

Interestingly, the canonical functor carries inductive limits into colimits 
and M has a left-adequate extension in Set (Baianu and Marinescu, 1974), 
and this is generally true for any small category, regardless of the structure 
of its objects. 

The above property is similar to the general theorem for the algebraic 
category associated with an organismic set, discussed in the previous 
sections (see also Theorem 1 on p. 215 of Baianu, 1973). This suggests that 
in spite of their different formal aspects, the theories of organismic sets and 
(M, R )-systems have common, underlying structures and similar content. 
However, this does not mean that they are mathematically equivalent. In 
both theories, natural transformations are meaningful and can adequately 
describe dynamical transformations of organismic sets, or (M, R)-systems. 
The possible reasons for this similarity are discussed in the next section. 

3. Natural Transformations in the Theory of Molecular Sets. Originally, 
the dynamic transformations of molecular sets were represented by means 
of mappings between Cartesian products of sets (Bartholomay, 1960, 1965, 
1971). A simple case is the unimolecular chemical transformation: 

T : A •  (12) 

where A is the original sample set, I = [0,-c] is a finite segment of the real 
time axis, A x I denotes the indexing of each A-type molecule by the time 
instant at which each such molecule a e A actually transforms into a B-type 
molecule [-equation (3) of Bartholomay, 1971], and B x I denotes the set 
of newly formed B-type molecules indexed by their corresponding instants of 
formation. Furthermore, it was proposed that any chemical component 
molecular set A of a biochemical subsystem of a biological system should 
be regarded as a variable quantity or a "molecular set variable" (m.s.v.) 
which spans certain allowable molecular sets. The functional dependence of 
m.s.v, on time was suggested to be a kind of "relation" from the time axis 
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to the class of molecular subsets as "range". This was called the "wide- 
sense kinetics" and the concentration or cardinality of the system was 
considered of secondary importance. An appropriate development of the 
kinetics of molecular sets required probabilistic rules concerning the 
transition from one possible value (or state) of m.s.v, to the next allowable 
one, and while the concentration or size of a molecular set component may 
be constant, the set itself was shown to change continuously its com- 
position. This is, in certain cases, the biologically significant factor in the 
operation of the system (Bartholomay, 1971). 

The connection with the previous sections is now transparent. Although 
the specific case of unimolecular chemical transformations was already 
discussed in detail (pp. 361-369, loc. cit.), it can provide further insight into 
the possible quantitative developments of the present relational theories as 
it will be shown below. 

It is interesting to note that Anthony F. Bartholomay himself pointed 
out that "any theoretical resynthesis of organismic sets, categories and 
supercategories from molecular-set-theoretic foundations would make 
available to the more macroscopic biological systems a . . .  basic topological 
frame of reference; namely, molecular-set-topology as opposed to ordinary 
set topology". Such a synthesis was attempted here through the con- 
sideration of natural transformations in the theories of organismic sets and 
(M, R)-systems. 

As shown in Section 1, the introduction of general observables in the 
theory of organismic sets removed the apparent asymmetry between 
physics on the one hand, and biology and sociology, on the other hand 
(Rashevsky, 1969a, pp. 163-169). Naturally, the measurements on any S O 
are carried out through physical, or "chemical" experiments and, therefore, 
involve molecular set transformations. The dynamic transformations of an 
organismic set So--which are here represented by the natural transfor- 
mations defined in diagram (3)--have, therefore, certain underlying m.s.v. 
transformations. The relationships between the former and the latter are not 
at all trivial. A direct approach towards unravelling some of these 
relationships is now proposed. 

Let us consider the transformations of a molecular set A to be described 
by the endomorphisms A ~ A  and denote the set of all possible transfor- 
mations of A by H(A,A). The molecular sets can be organized as a 
category ~/, and the functors h x introduced in the previous section can be 
used here, as well, to describe the dynamics of molecular sets. 

Specifically, hA:J[--~ Set is define~t by 

ha(X)=H(A, X) for any X in 



N A T U R A L  T R A N S F O R M A T I O N S  OF O R G A N I S M I C  STRUCTURES 441 

and hA( t )=m:H(A,A)~H(A,B)  for t:A--*B in J / ,  where B is the mole- 
cular set of reaction products of type "B". 

The molecular set variable (m.s.v.) is represented by the morphisms v in 
the following natural diagram. 

/•AxI I 
I 

A I v 

H(A,A) 

(13) 

where v are induced by the presence of the inclusion mappings 

f 
A ~ A  x I and the commutativity conditions: h a = v O J .  

The unimolecular chemical reaction is thus represented by the natural 

transformation ha&h B, as seen from the commutative diagram: 

hA(A)=H(A, A) ,A >H(B, A)=hB(A) 

hA(t) l ~hB(t) 
H(A, B) '~" )H(B, B)= hB(B) 

(14) 

if the "states" of the molecular sets A, = {al , . . . ,  a,} and B, = {bl , . . . ,  b,_~o} 
are identified with certain e ndomorphisms in H(A,A)  and H(B,B), 
respectively. 

This definition is readily generalised for multi-molecular reactions by 
considering the canonical functor defined in Section 2: 

h : J 4 ~ [ J 4 ,  Set] 

which assigns to each molecular set A, the functor h A and to each chemical 
transformation A ~ B  the natural transformation hA~h B. In addition, one 
may need to consider product categories, or categories of products (as 
shown on p. 216 of Baianu, 1973). 

Clearly, the genetic maps introduced in the previous section can be 
considered to result from molecular set transformations, as seen from a 
comparison of the above constructions with diagrams (10) and (11). 
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Natural transformations provide ,  therefore, a unified, categorical flame- 
work both for (M, R)-systems and molecular set theory. 

The Central Theorem discussed in the previous section also applies to 
molecular set transformations and this implies that the chemical transfor- 
mations in this theory should be represented by computable functions, 
although not necessarily in numerical form. 

As discussed in Section 2 for dynamic realizations of (M, R )-systems, 
the introduction of specific algebraic, or topological, structures defined over 
molecular sets will not modify the basic construction in terms of natural 
transformations and can lead to a refined form of the theory of molecular 
sets in which dYnamic realisation and stability problems are directly 
considered in terms of transitions between quantum states of molecules. An 
observation process of a molecular set would, thus, involve the preparation 
of an m.s.v., A, into a selected state, or field of states, A~*, and could be 
described as a morphism. 

a:H(A, A)~R. (15) 

Similarly, for the chemical products "B" of a reaction, 

:H(B, B)~R (16) 

is an observable of the m.s.v. B which is measured in some specially 
prepared state, or field of states, B*. Intuitively, we expect that 

H(A,A) c --~H(B,B) 

R 

(17) 

commutes and is natural in ~, y and certain "reactions", c- which are the 
result of the "preparation" procedure (in a quantum-mechanical sense), so 
that �9 * * c . A , ~ B  u is "uniquely" defined within an uncertainty range 6 of 
A~'Ay in R (Note the "fuzziness" introduced by this description in terms 
of the quantum-mechanical uncertainty principle). 

A chemical transformation in which the composition of m.s.v.'s is allowed 
to vary induces certain natural transformations 

~ o : ~ 7 "  (18) 
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with ~, e * : S e t ~ R  and 7, 7 * : S e t ~ R  being functors defined as in relationships 
(15~(17). For multi-molecular reactions, one obtains the commutative diagram 
of functors: 

Set  ~,~e,~,~* .... )R  

h B I 
h A I L 

I 

JCl h > [J/l, Set] 

(19) 

with L playing the role of a generalized observable, in the sense of Section 
1 (diagram 1). Since the biochemical products in the sets S,p of Section 1 
are the end results of such multi-molecular reactions, and may consist of 
one or more molecular sets, one can consider the natural transformations 
defined by diagram (3) to arise as a result of composition of natural 
transformations of m.s.v.'s and their cartesian products [as those in 
diagrams (18)], and functors [as those in diagrams (19)]. 

The converse problem of decomposing the natural transformations of 
organismic sets in terms of natural transformations of m.s.v.'s is by no 
means trivial and, therefore, it will be difficult, in general, to derive 
molecular mechanisms from theorems concerning organismic sets alone. 

Therefore, the composition of molecular set transformations--to give 
natural transformations of organismic sets, or (M,R)-systems--appears 
more promising at this stage. A somewhat similar conclusion was derived 
from an investigation of dynamic similarities between transplanted nuclei 
of the same clone during the development of the ovum (Baianu and 
Scripcariu, 1973), where the scope and limitations of simple, natural 
equivalences for the representation of developmental processes were 
discussed. 

The case of organismic sets of zero order--whose elements are genes--  
was already considered from a molecular and categorical viewpoint 
(Baianu, 1977) and it would be interesting to derive the consequences of 
the present approach (using natural transformations) for the dynamic 
transformations of non-linear, genetic nets and the associated "reaction 
rates". This, in turn, should be translated into corresponding transfor- 
mations of (M, R)-systems and their dynamical realizations (Rosen, 1971). 

Thus, a unified view of the theories of organismic sets, (M, R)-systems 
and molecular sets appears, indeed, realizable on the basis of natural 
transformations of organismic structures. 

BMB F 
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