Cogprints

Category of Metabolic-Replication Systems in Biology and Medicine

Baianu, Prof.Dr. I.C. (2012) Category of Metabolic-Replication Systems in Biology and Medicine. [Conference Paper] (In Press)

Full text available as:

[img] HTML
85Kb
[img]
Preview
PDF
181Kb
[img]
Preview
PDF
57Kb

Abstract

Metabolic-repair models, or (M,R)-systems were introduced in Relational Biology by Robert Rosen. Subsequently, Rosen represented such (M,R)-systems (or simply MRs) in terms of categories of sets, deliberately selected without any structure other than the discrete topology of sets. Theoreticians of life’s origins postulated that Life on Earth has begun with the simplest possible organism, called the primordial. Mathematicians interested in biology attempted to answer this important question of the minimal living organism by defining the functional relations that would have made life possible in such a minimal system- a grandad and grandma of all living organisms on Earth.

Item Type:Conference Paper
Keywords: metabolic-repair systems systems biology categories of organismic sets, Biotechnology, Microbiology, Neuroscience, Bioinformatics, Earth & Environment, Evolutionary Biology origins of life on Earth simple evolutionary biology organisms
Subjects:Electronic Publishing > Archives
Biology > Evolution
Neuroscience > Biophysics
Biology > Theoretical Biology
Computer Science > Complexity Theory
Computer Science > Dynamical Systems
Computer Science > Neural Nets
Neuroscience > Neural Modelling
Electronic Publishing > Peer Review
ID Code:8149
Deposited By: Baianu, Professor I. C.
Deposited On:25 Apr 2012 12:29
Last Modified:25 Apr 2012 12:29

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

Bibliography

1

Rashevsky, N.: 1965, The Representation of Organisms in Terms of Predicates,Bulletin of Mathematical Biophysics 27: 477-491.

2

Rashevsky, N.: 1969, Outline of a Unified Approach to Physics, Biology and Sociology., Bulletin of Mathematical Biophysics 31: 159-198.

3

Rosen, R.: 1985, Anticipatory Systems, Pergamon Press: New York.

4

Rosen, R.: 1958a, A Relational Theory of Biological Systems Bulletin of Mathematical Biophysics 20: 245-260.

5

Rosen, R.: 1958b, The Representation of Biological Systems from the Standpoint of the Theory of Categories., Bulletin of Mathematical Biophysics 20: 317-341.

6

Rosen, R.: 1987, On Complex Systems, European Journal of Operational Research 30:129-134.

7

Baianu, I.C.: 1973, Some Algebraic Properties of (M,R) - Systems. Bulletin of Mathematical Biophysics 35, 213-217.

8

Baianu, I.C. and M. Marinescu: 1974, On A Functorial Construction of (M,R)- Systems. Revue Roumaine de Mathematiques Pures et Appliquées 19: 388-391.

9

Baianu, I.C.: 1980, Natural Transformations of Organismic Structures., Bulletin of Mathematical Biology,42: 431-446.

10

I.C. Baianu: 1977, A Logical Model of Genetic Activities in ukasiewicz Algebras: The Non-linear Theory. Bulletin of Mathematical Biophysics, 39: 249-258.

11

I.C. Baianu: 1983, Natural Transformation Models in Molecular Biology., inProceedings of the SIAM Natl. Meet., Denver, CO.; 1 .

12

I.C. Baianu: 1984, A Molecular-Set-Variable Model of Structural and Regulatory Activities in Metabolic and Genetic Networks., FASEB Proceedings 43, 917.

13

I.C. Baianu: 1987a, Computer Models and Automata Theory in Biology and Medicine., in M. Witten (ed.), Mathematical Models in Medicine, vol. 7., Pergamon Press, New York, 1513-1577; 1.

14

I.C. Baianu: 1987b, Molecular Models of Genetic and Organismic Structures, inProceed. Relational Biology Symp. Argentina; 1.

15

I.C. Baianu, Glazebrook, J. F. and G. Georgescu: 2004, Categories of Quantum Automata and N-Valued ukasiewicz Algebras in Relation to Dynamic Bionetworks, (M,R)-Systems and Their Higher Dimensional Algebra, 1 and 1

16

R. Brown, J. F. Glazebrook and I. C. Baianu: A categorical and higher dimensional algebra framework for complex systems and spacetime structures,Axiomathes 17:409-493. (2007).

17

L. Lfgren: 1968. On Axiomatic Explanation of Complete Self-Reproduction.Bull. Math. Biophysics, 30: 317-348.

18

Baianu, I.C.: 2004a. ukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models (2004). Eprint. Cogprints-Sussex Univ.

19

Baianu, I.C.: 2004b ukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamics). CERN Preprint EXT-2004-059.Health Physics and Radiation Effects (June 29, 2004).

20

Baianu, I. C.: 2006, Robert Rosen's Work and Complex Systems Biology,Axiomathes 16(1-2):25-34.

21

Baianu I. C., Brown R., Georgescu G. and J. F. Glazebrook: 2006, Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and ukasiewicz-Moisil Topos: Transformations of Neuronal, Genetic and Neoplastic Networks., Axiomathes, 16 Nos. 1-2: 65-122.

Metadata

Repository Staff Only: item control page