TY - GEN ID - cogprints1488 UR - http://cogprints.org/1488/ A1 - von der Malsburg, Christoph Y1 - 1999/09// N2 - In attempts to formulate a computational understanding of brain function, one of the fundamental concerns is the data structure by which the brain represents information. For many decades, a conceptual framework has dominated the thinking of both brain modelers and neurobiologists. That framework is referred to here as "classical neural networks." It is well supported by experimental data, although it may be incomplete. A characterization of this framework will be offered in the next section. Difficulties in modeling important functional aspects of the brain on the basis of classical neural networks alone have led to the recognition that another, general mechanism must be invoked to explain brain function. That mechanism I call "binding." Binding by neural signal synchrony had been mentioned several times in the liter ature (LegeŽndy, 1970; Milner, 1974) before it was fully formulated as a general phenomenon (von der Malsburg, 1981). Although experimental evidence for neural syn chrony was soon found, the idea was largely ignored for many years. Only recently has it become a topic of animated discussion. In what follows, I will summarize the nature and the roots of the idea of binding, especially of temporal binding, and will discuss some of the objec tions raised against it. TI - The What and Why of Binding: The Modeler's Perspective SP - 95 AV - public EP - 104 ER -