creators_name: Lebeltel, Olivier creators_name: Bessiere, Pierre creators_name: Diard, Julien creators_name: Mazer, Emmanuel type: techreport datestamp: 2001-07-05 lastmod: 2011-03-11 08:54:44 metadata_visibility: show title: Bayesian robot Programming ispublished: pub subjects: comp-sci-art-intel subjects: comp-sci-robot subjects: comp-sci-stat-model full_text_status: public keywords: Robotics Bayes Pereception Inference Action abstract: We propose a new method to program robots based on Bayesian inference and learning. The capacities of this programming method are demonstrated through a succession of increasingly complex experiments. Starting from the learning of simple reactive behaviors, we present instances of behavior combinations, sensor fusion, hierarchical behavior composition, situation recognition and temporal sequencing. This series of experiments comprises the steps in the incremental development of a complex robot program. The advantages and drawbacks of this approach are discussed along with these different experiments and summed up as a conclusion. These different robotics programs may be seen as an illustration of probabilistic programming applicable whenever one must deal with problems based on uncertain or incomplete knowledge. The scope of possible applications is obviously much broader than robotics. date: 2000 date_type: published institution: CNRS department: Laboratoire LEIBNIZ refereed: FALSE referencetext: Alami et al., 1998 Alami, R., Chatila, R., Fleury, S., Ghallab, M. & Ingrand, F. ; (1998) ; An Architecture for Autonomy ; International Journal for Robotics Research (IJRR) ; Vol. 17(4), pp. 315-337 Aycard, 1998 Aycard, O.; (1998) ; Architecture de contrôle pour robot mobile en environnement intérieur structuré ; Ph.D. thesis, Univeristé Henri Poincaré, Nancy, France Bernhardt & Albright, 1993 Bernhardt, R. & Albright, S.L. (editors) ; (1993) ; Robot Calibration ; Chapman & Hall Bessière et al., 1998a Bessière, P., Dedieu, E., Lebeltel, O., Mazer, E. & Mekhnacha, K. ; (1998a) ; Interprétation ou Description (I) : Proposition pour une théorie probabiliste des systèmes cognitifs sensori-moteurs ; Intellectica ; Vol. 26-27, pp. 257-311; Paris, France Bessière et al., 1998b Bessière, P., Dedieu, E., Lebeltel, O., Mazer, E. & Mekhnacha, K. ; (1998a) ; Interprétation ou Description (I) : Fondements mathématiques de l’approche F+D ; Intellectica ; Vol. 26-27, pp. 313-336 ; Paris, France Borrelly et al., 1998 Borrelly, J-J., Coste, E., Espiau, B., Kapellos, K., Pissard-Gibollet, R., Simon, D. & Turro, N.; (1998) ; The ORCCAD Architecture ; International Journal for Robotics Research (IJRR) ; Vol. 17(4), pp. 338-359 Brafman et al., 1997 Brafman, R.I., Latombe, J-C., Moses, Y. & Shoham, Y.; (1997) ; Applications of a logic of knowledge to motion planning under uncertainty ; Journal of the ACM, vol.44(5), pp. 633-68 Bretthorst, 1988 Bretthorst, G.L. ; (1988) ; Bayesian spectrum analysis and parameter estimation ; Spinger Verlag Brooks, 1986 Brooks, R.A. ; (1986) ; A robust layered control systems for a mobile robot ; IEEE Journal of Robotics and Automation ; Vol. 2(1), pp. 14-23 Cooper, 1990 Cooper, G. ; (1990) ; The computational complexity of probabilistic inference using Bayesian belief networks ; Artificial Intelligence, Vol. 42, pp. 393-405 Cox, 1961 Cox, R.T. ; (1961) ; The algebra of probable inference ; The John Hopkins Press, Baltimore, USA Cox, 1979 Cox, R.T. ; (1979) ; Of inference and inquiry, an essay in inductive logic ; in The maximum entropy formalism, edited by Raphael D. Levine & Myron Tribus ; M.I.T. Press, U.S.A. Dagum & Luby, 1993 Dagum, P. & Luby, M. ; (1993) ; Approximate probabilistic reasoning in Bayesian belief network is NP-Hard ; Artificial Intelligence, Vol. 60, pp. 141-153 Darwiche & Provan, 1997 Darwiche, A. and Provan, G. ; (1997) ; Query DAGs: A Practical Paradigm for Implementing Belief-Network Inference ; Journal of Artificial Intelligence Research (JAIR), Vol. 6, pp. 147-176 Dedieu, 1995 Dedieu, E. ; (1995) ; La représentation contingente : Vers une reconciliation des approches fonctionnelles et structurelles de la robotique autonome. Thèse de troisième cycle INPG (Institut National Polytechnique de Grenoble) ; Grenoble, France Dekhil & Henderson, 1998 Dekhil, M. & Henderson, T.C. ; (1998) ; Instrumented Sensor System Architecture ; International Journal for Robotics Research (IJRR) ; Vol. 17(4), pp. 402-417 Delcher et al., 1996 Delcher, A.L., Grove, A.J., Kasif, S. and Pearl, J. ; (1996) ; Logarithmic-Time Updates and Queries in Probabilistic Networks ; Journal of Artificial Intelligence Research (JAIR) ; Vol. 4, pp. 37-59 Diard & Lebeltel, 1999 Diard, J. & Lebeltel, O. ; (1999) ; Bayesian Learning Experiments with a Khepera Robot in Experiments with the Mini-Robot Khepera : Proceedings of the 1st International Khepera Workshop, December 1999, Löffler Mondada Rückert (Editors), Paderborn, HNI-Verlagsschriftenreihe ; Band 64 ; Germany ; pp. 129-138 ; Donald, 1988 Donald, B.R.; (1988) ; A geometric approach to error detection and recovery for robot motion planning with uncertainty ; Artificial Intelligence, vol.37, pp. 223-271 Erickson & Smith, 1988a Erickson, G.J. & Smith, C.R. ; (1988a) ; Maximum-Entropy and Bayesian methods in science and engineering ; Volume 1 : Foundations ; Kluwer Academic Publishers Erickson & Smith, 1988b Erickson, G.J. & Smith, C.R. ; (1988b) ; Maximum-Entropy and Bayesian methods in science and engineering ; Volume 2 : Applications ; Kluwer Academic Publishers Frey, 1998 Frey, B.J. ; (1998) ; Graphical Models for Machine Learning and Digital Communication ; MIT Press Halpern, 1999a Halpern, J.Y. ; (1999a) ; A Counterexample to Theorems of Cox and Fine ; Journal of Artificial Intelligence Research (JAIR), Vol. 10, pp. 67-85. Halpern, 1999b Halpern, J.Y. ; (1999b) ; Cox's Theorem Revisited ; Journal of Artificial Intelligence Research (JAIR), Vol. 11, pp. 429-435. Jaakola & Jordan, 1999 Jaakkola, T.S. and Jordan, M.I. ; (1999) ; Variational Probabilistic Inference and the QMR-DT Network ; Journal of Artificial Intelligence Research (JAIR), Vol. 10, pp. 291-322 Jaynes, 1979 Jaynes, E.T. ; (1979) ; Where do we Stand on Maximum Entropy? ; in The maximum entropy formalism ; edited by Raphael D. Levine & Myron Tribus ; M.I.T. Press Jaynes, 1982 Jaynes, E.T. ; (1982) ; On the rationale of maximum-entropy methods ; Proceedings of the IEEE Jaynes, 1998 Jaynes, E.T. ; (1998) ; Probability theory - The logic of science ; unfinished book available at http://bayes.wustl.edu/etj/prob.html Jordan & Jacobs, 1994 Jordan MI and Jacobs RA (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation ; Vol. 6, pp. 181-214. Jordan, 1998 Jordan, M. ; (1998) ; Learning in Graphical Models ; MIT Press Jordan et al., 1999 Jordan, M., Ghahramani, Z., Jaakkola, T.S. & Saul, L.K. ; (1999) ; An introduction to variational methods for graphical models ; In press, Machine Learning Kaelbling, Littman & Cassandra, 1996 Kaelbling, L.P., Littman, M.L. & Cassandra, A.R.; (1996) ; Partially observable Markov decision processes for artificial intelligence ; Reasoning with Uncertainty in Robotics. International Workshop, RUR'95, Proceedings pp.146-62 ; Springer-Verlag Kapur & Kesavan, 1992 Kapur, J.N., & Kesavan, H.K. ; (1992) ; Entropy optimization principles with applications ; Academic Press Laplace, 1774 Laplace, Pierre Simon de (1774); Mémoire sur la probabilités des causes par les évènements; Mémoire de l’académie royale des sciences; Reprinted in Oeuvres complètes de Laplace, (vol. 8), Gauthier Villars, Paris, France Laplace, 1814 Laplace, Pierre Simon de (1814); Essai philosphique sur les probabilités; Courcier Imprimeur, Paris; Reprinted in Oeuvres complètes de Laplace, (vol. 7), Gauthier Villars, Paris, France Lauritzen & Spiegehalter, 1988 Lauritzen, S. & Spiegelhalter, D. ; (1988) ; Local computations with probabilities on graphical structures and their application to expert systems ; Journal of the Royal Stastical Society B ; Vol. 50, pp. 157-224 Lauritzen, 1996 Lauritzen, S. L. ; (1996) ; Graphical Models ; Oxford University Press Lebetel, 1999 Lebeltel, O. ; (1999) ; Programmation Bayésienne des Robots ; Ph.D. Thesis, Institut National Polytechnique de Grenoble (INPG); Grenoble, France Lozano-Perez et al., 1984 Lozano-Perez, T., Mason, M.T., Taylor, R.H.; (1984) ; Automatic synthesis of fine-motion strategies for robots ; International Journal of Robotics Research, vol.3(1), pp. 3-24 Maes, 1989 Maes, P. ; (1989) ; How to Do the Right Thing ; Connection Science Journal ; Vol. 1, N°3, pp. 291-323 Matalon, 1967 Matalon, B. ; (1967) ; Epistémologie des probabilités ; in Logique et connaissance scientifique edited by Jean Piaget ; Encyclopédie de la Pléiade ; Editions Gallimard ; Paris, France Mazer et al., 1998 Mazer, E., Boismain, G., Bonnet des Tuves, J., Douillard, Y., Geoffroy, S., Dubourdieu, J., Tounsi, M. & Verdot, F.; (1998) ; START: an Industrial System for Teleoperation, Proc. of the IEEE Int. Conf. on Robotics and Automation, Vol. 2, pp. 1154-1159, Leuven (BE) Mekhnacha, 1999 Mekhnacha, K. ; (1999) ; Méthodes probabilistes baysiennes pour la prise en compte des incertitudes géométriques : Application à la CAO-robotique ; Ph.D. thesis INPG (Institut National Polytechnique de Grenoble), Grenoble, France Mohammad-Djafari & Demoment, 1992 Mohammad-Djafari, A.& Demoment, G. ; (1992) ; Maximum entropy and bayesian methods ; Kluwer Academic Publishers Pearl, 1988 Pearl, J. ; (1988) ; Probabilistic reasoning in intelligent systems : Networks of plausible inference ; Morgan Kaufmann Publishers ; San Mateo, California, USA Robert, 1990 Robert, C. ; (1990) ; An entropy concentration theorem: applications ; in artificial intelligence and descriptive statistics ; Journal of Applied Probabilities Robinson, 1965 Robinson, J.A. ; (1965) ; A Machine Oriented Logic Based on the Resolution Principle ; Jour. Assoc. Comput. Mach.; vol. 12 Robinson, 1979 Robinson, J.A. ; (1979) ; Logic : Form and Function ; North-Holland, New York, USA Robinson & Sibert, 1983a Robinson, J.A. & Sibert, E.E. ; (1983a) ; LOGLISP : an alternative to PROLOG ; Machine Intelligence, Vol. 10. Robinson & Sibert, 1983b Robinson, J.A. & Sibert, E.E. ; (1983b) ; LOGLISP : Motivation, design and implementation ; Machine Intelligence, Vol. 10. Ruiz et al., 1998 Ruiz, A., Lopez-de-Teruel, P.E. and Garrido, M.C. ; (1998) ; Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians ; Journal of Artificial Intelligence Research (JAIR) ; Vol. 9, pp. 167-217 Saul et al., 1996 Saul, L.K., Jaakkola, T. and Jordan, M.I. ; (1996) ; Mean Field Theory for Sigmoid Belief Networks ; Journal of Artificial Intelligence Research (JAIR), Vol. 4, pp. 61-76 Schneider et al., 1998 Schneider, S.A., Chen, V.W., Pardo-Castellote, G., Wang, H.H.; (1998) ; ControlShell: A Software Architecture for Complex Electromechanical Systems ; International Journal for Robotics Research (IJRR) ; Vol. 17(4), pp. 360-380 Smith & Grandy, 1985 Smith, C.R. & Grandy, W.T. Jr. ; (1985) ; Maximum-Entropy and bayesian methods in inverse problems ; D. Reidel Publishing Company Tarentola, 1987 Tarentola, A. ; (1987) ; Inverse Problem Theory: Methods for data fitting and model parameters estimation ; Elsevier ; New York, USA Thrun, 1998 Thrun, S.; (1998) ; Bayesian landmark learning for mobile robot localization ; Machine Learning, vol. 33(1), pp.41-76 Zhang & Poole, 1996 Zhang, N.L. and Poole, D. ; (1996) ; Exploiting Causal Independence in Bayesian Network Inference ; Journal of Artificial Intelligence Research (JAIR), Vol. 5, pp. 301-328 citation: Lebeltel, Olivier and Bessiere, Pierre and Diard, Julien and Mazer, Emmanuel (2000) Bayesian robot Programming. [Departmental Technical Report] document_url: http://cogprints.org/1670/1/Lebeltel2000.ps document_url: http://cogprints.org/1670/5/Lebeltel2000.pdf