This site has been permanently archived. This is a static copy provided by the University of Southampton.
---
abstract: 'We propose a new method to program robots based on Bayesian inference and learning. The capacities of this programming method are demonstrated through a succession of increasingly complex experiments. Starting from the learning of simple reactive behaviors, we present instances of behavior combinations, sensor fusion, hierarchical behavior composition, situation recognition and temporal sequencing. This series of experiments comprises the steps in the incremental development of a complex robot program. The advantages and drawbacks of this approach are discussed along with these different experiments and summed up as a conclusion. These different robotics programs may be seen as an illustration of probabilistic programming applicable whenever one must deal with problems based on uncertain or incomplete knowledge. The scope of possible applications is obviously much broader than robotics.'
altloc:
- http://www-leibniz.imag.fr/LAPLACE/Publications/Rayons/Lebeltel2000.pdf
chapter: ~
commentary: ~
commref: ~
confdates: ~
conference: ~
confloc: ~
contact_email: ~
creators_id: []
creators_name:
- family: Lebeltel
given: Olivier
honourific: ''
lineage: ''
- family: Bessiere
given: Pierre
honourific: ''
lineage: ''
- family: Diard
given: Julien
honourific: ''
lineage: ''
- family: Mazer
given: Emmanuel
honourific: ''
lineage: ''
date: 2000
date_type: published
datestamp: 2001-07-05
department: Laboratoire LEIBNIZ
dir: disk0/00/00/16/70
edit_lock_since: ~
edit_lock_until: ~
edit_lock_user: ~
editors_id: []
editors_name: []
eprint_status: archive
eprintid: 1670
fileinfo: /style/images/fileicons/application_postscript.png;/1670/1/Lebeltel2000.ps|/style/images/fileicons/application_pdf.png;/1670/5/Lebeltel2000.pdf
full_text_status: public
importid: ~
institution: CNRS
isbn: ~
ispublished: pub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: Robotics Bayes Pereception Inference Action
lastmod: 2011-03-11 08:54:44
latitude: ~
longitude: ~
metadata_visibility: show
note: ~
number: ~
pagerange: ~
pubdom: TRUE
publication: ~
publisher: ~
refereed: FALSE
referencetext: |
Alami et al., 1998
Alami, R., Chatila, R., Fleury, S., Ghallab, M. & Ingrand, F. ; (1998) ; An Architecture for Autonomy ; International Journal for Robotics Research (IJRR) ; Vol. 17(4), pp. 315-337
Aycard, 1998
Aycard, O.; (1998) ; Architecture de contr�le pour robot mobile en environnement int�rieur structur� ; Ph.D. thesis, Univerist� Henri Poincar�, Nancy, France
Bernhardt & Albright, 1993
Bernhardt, R. & Albright, S.L. (editors) ; (1993) ; Robot Calibration ; Chapman & Hall
Bessi�re et al., 1998a
Bessi�re, P., Dedieu, E., Lebeltel, O., Mazer, E. & Mekhnacha, K. ; (1998a) ; Interpr�tation ou Description (I) : Proposition pour une th�orie probabiliste des syst�mes cognitifs sensori-moteurs ; Intellectica ; Vol. 26-27, pp. 257-311; Paris, France
Bessi�re et al., 1998b
Bessi�re, P., Dedieu, E., Lebeltel, O., Mazer, E. & Mekhnacha, K. ; (1998a) ; Interpr�tation ou Description (I) : Fondements math�matiques de l�approche F+D ; Intellectica ; Vol. 26-27, pp. 313-336 ; Paris, France
Borrelly et al., 1998
Borrelly, J-J., Coste, E., Espiau, B., Kapellos, K., Pissard-Gibollet, R., Simon, D. & Turro, N.; (1998) ; The ORCCAD Architecture ; International Journal for Robotics Research (IJRR) ; Vol. 17(4), pp. 338-359
Brafman et al., 1997
Brafman, R.I., Latombe, J-C., Moses, Y. & Shoham, Y.; (1997) ; Applications of a logic of knowledge to motion planning under uncertainty ; Journal of the ACM, vol.44(5), pp. 633-68
Bretthorst, 1988
Bretthorst, G.L. ; (1988) ; Bayesian spectrum analysis and parameter estimation ; Spinger Verlag
Brooks, 1986
Brooks, R.A. ; (1986) ; A robust layered control systems for a mobile robot ; IEEE Journal of Robotics and Automation ; Vol. 2(1), pp. 14-23
Cooper, 1990
Cooper, G. ; (1990) ; The computational complexity of probabilistic inference using Bayesian belief networks ; Artificial Intelligence, Vol. 42, pp. 393-405
Cox, 1961
Cox, R.T. ; (1961) ; The algebra of probable inference ; The John Hopkins Press, Baltimore, USA
Cox, 1979
Cox, R.T. ; (1979) ; Of inference and inquiry, an essay in inductive logic ; in The maximum entropy formalism, edited by Raphael D. Levine & Myron Tribus ; M.I.T. Press, U.S.A.
Dagum & Luby, 1993
Dagum, P. & Luby, M. ; (1993) ; Approximate probabilistic reasoning in Bayesian belief network is NP-Hard ; Artificial Intelligence, Vol. 60, pp. 141-153
Darwiche & Provan, 1997
Darwiche, A. and Provan, G. ; (1997) ; Query DAGs: A Practical Paradigm for Implementing Belief-Network Inference ; Journal of Artificial Intelligence Research (JAIR), Vol. 6, pp. 147-176
Dedieu, 1995
Dedieu, E. ; (1995) ; La repr�sentation contingente : Vers une reconciliation des approches fonctionnelles et structurelles de la robotique autonome. Th�se de troisi�me cycle INPG (Institut National Polytechnique de Grenoble) ; Grenoble, France
Dekhil & Henderson, 1998
Dekhil, M. & Henderson, T.C. ; (1998) ; Instrumented Sensor System Architecture ; International Journal for Robotics Research (IJRR) ; Vol. 17(4), pp. 402-417
Delcher et al., 1996
Delcher, A.L., Grove, A.J., Kasif, S. and Pearl, J. ; (1996) ; Logarithmic-Time Updates and Queries in Probabilistic Networks ; Journal of Artificial Intelligence Research (JAIR) ; Vol. 4, pp. 37-59
Diard & Lebeltel, 1999
Diard, J. & Lebeltel, O. ; (1999) ; Bayesian Learning Experiments with a Khepera Robot in Experiments with the Mini-Robot Khepera : Proceedings of the 1st International Khepera Workshop, December 1999, L�ffler Mondada R�ckert (Editors), Paderborn, HNI-Verlagsschriftenreihe ; Band 64 ; Germany ; pp. 129-138 ;
Donald, 1988
Donald, B.R.; (1988) ; A geometric approach to error detection and recovery for robot motion planning with uncertainty ; Artificial Intelligence, vol.37, pp. 223-271
Erickson & Smith, 1988a
Erickson, G.J. & Smith, C.R. ; (1988a) ; Maximum-Entropy and Bayesian methods in science and engineering ; Volume 1 : Foundations ; Kluwer Academic Publishers
Erickson & Smith, 1988b
Erickson, G.J. & Smith, C.R. ; (1988b) ; Maximum-Entropy and Bayesian methods in science and engineering ; Volume 2 : Applications ; Kluwer Academic Publishers
Frey, 1998
Frey, B.J. ; (1998) ; Graphical Models for Machine Learning and Digital Communication ; MIT Press
Halpern, 1999a
Halpern, J.Y. ; (1999a) ; A Counterexample to Theorems of Cox and Fine ; Journal of Artificial Intelligence Research (JAIR), Vol. 10, pp. 67-85.
Halpern, 1999b
Halpern, J.Y. ; (1999b) ; Cox's Theorem Revisited ; Journal of Artificial Intelligence Research (JAIR), Vol. 11, pp. 429-435.
Jaakola & Jordan, 1999
Jaakkola, T.S. and Jordan, M.I. ; (1999) ; Variational Probabilistic Inference and the QMR-DT Network ; Journal of Artificial Intelligence Research (JAIR), Vol. 10, pp. 291-322
Jaynes, 1979
Jaynes, E.T. ; (1979) ; Where do we Stand on Maximum Entropy? ; in The maximum entropy formalism ; edited by Raphael D. Levine & Myron Tribus ; M.I.T. Press
Jaynes, 1982
Jaynes, E.T. ; (1982) ; On the rationale of maximum-entropy methods ; Proceedings of the IEEE
Jaynes, 1998
Jaynes, E.T. ; (1998) ; Probability theory - The logic of science ; unfinished book available at http://bayes.wustl.edu/etj/prob.html
Jordan & Jacobs, 1994
Jordan MI and Jacobs RA (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation ; Vol. 6, pp. 181-214.
Jordan, 1998
Jordan, M. ; (1998) ; Learning in Graphical Models ; MIT Press
Jordan et al., 1999
Jordan, M., Ghahramani, Z., Jaakkola, T.S. & Saul, L.K. ; (1999) ; An introduction to variational methods for graphical models ; In press, Machine Learning
Kaelbling, Littman & Cassandra, 1996
Kaelbling, L.P., Littman, M.L. & Cassandra, A.R.; (1996) ; Partially observable Markov decision processes for artificial intelligence ; Reasoning with Uncertainty in Robotics. International Workshop, RUR'95, Proceedings pp.146-62 ; Springer-Verlag
Kapur & Kesavan, 1992
Kapur, J.N., & Kesavan, H.K. ; (1992) ; Entropy optimization principles with applications ; Academic Press
Laplace, 1774
Laplace, Pierre Simon de (1774); M�moire sur la probabilit�s des causes par les �v�nements; M�moire de l�acad�mie royale des sciences; Reprinted in Oeuvres compl�tes de Laplace, (vol. 8), Gauthier Villars, Paris, France
Laplace, 1814
Laplace, Pierre Simon de (1814); Essai philosphique sur les probabilit�s; Courcier Imprimeur, Paris; Reprinted in Oeuvres compl�tes de Laplace, (vol. 7), Gauthier Villars, Paris, France
Lauritzen & Spiegehalter, 1988
Lauritzen, S. & Spiegelhalter, D. ; (1988) ; Local computations with probabilities on graphical structures and their application to expert systems ; Journal of the Royal Stastical Society B ; Vol. 50, pp. 157-224
Lauritzen, 1996
Lauritzen, S. L. ; (1996) ; Graphical Models ; Oxford University Press
Lebetel, 1999
Lebeltel, O. ; (1999) ; Programmation Bay�sienne des Robots ; Ph.D. Thesis, Institut National Polytechnique de Grenoble (INPG); Grenoble, France
Lozano-Perez et al., 1984
Lozano-Perez, T., Mason, M.T., Taylor, R.H.; (1984) ; Automatic synthesis of fine-motion strategies for robots ; International Journal of Robotics Research, vol.3(1), pp. 3-24
Maes, 1989
Maes, P. ; (1989) ; How to Do the Right Thing ; Connection Science Journal ; Vol. 1, N�3, pp. 291-323
Matalon, 1967
Matalon, B. ; (1967) ; Epist�mologie des probabilit�s ; in Logique et connaissance scientifique edited by Jean Piaget ; Encyclop�die de la Pl�iade ; Editions Gallimard ; Paris, France
Mazer et al., 1998
Mazer, E., Boismain, G., Bonnet des Tuves, J., Douillard, Y., Geoffroy, S., Dubourdieu, J., Tounsi, M. & Verdot, F.; (1998) ; START: an Industrial System for Teleoperation, Proc. of the IEEE Int. Conf. on Robotics and Automation, Vol. 2, pp. 1154-1159, Leuven (BE)
Mekhnacha, 1999
Mekhnacha, K. ; (1999) ; M�thodes probabilistes baysiennes pour la prise en compte des incertitudes g�om�triques : Application � la CAO-robotique ; Ph.D. thesis INPG (Institut National Polytechnique de Grenoble), Grenoble, France
Mohammad-Djafari & Demoment, 1992
Mohammad-Djafari, A.& Demoment, G. ; (1992) ; Maximum entropy and bayesian methods ; Kluwer Academic Publishers
Pearl, 1988
Pearl, J. ; (1988) ; Probabilistic reasoning in intelligent systems : Networks of plausible inference ; Morgan Kaufmann Publishers ; San Mateo, California, USA
Robert, 1990
Robert, C. ; (1990) ; An entropy concentration theorem: applications ; in artificial intelligence and descriptive statistics ; Journal of Applied Probabilities
Robinson, 1965
Robinson, J.A. ; (1965) ; A Machine Oriented Logic Based on the Resolution Principle ; Jour. Assoc. Comput. Mach.; vol. 12
Robinson, 1979
Robinson, J.A. ; (1979) ; Logic : Form and Function ; North-Holland, New York, USA
Robinson & Sibert, 1983a
Robinson, J.A. & Sibert, E.E. ; (1983a) ; LOGLISP : an alternative to PROLOG ; Machine Intelligence, Vol. 10.
Robinson & Sibert, 1983b
Robinson, J.A. & Sibert, E.E. ; (1983b) ; LOGLISP : Motivation, design and implementation ; Machine Intelligence, Vol. 10.
Ruiz et al., 1998
Ruiz, A., Lopez-de-Teruel, P.E. and Garrido, M.C. ; (1998) ; Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians ; Journal of Artificial Intelligence Research (JAIR) ; Vol. 9, pp. 167-217
Saul et al., 1996
Saul, L.K., Jaakkola, T. and Jordan, M.I. ; (1996) ; Mean Field Theory for Sigmoid Belief Networks ; Journal of Artificial Intelligence Research (JAIR), Vol. 4, pp. 61-76
Schneider et al., 1998
Schneider, S.A., Chen, V.W., Pardo-Castellote, G., Wang, H.H.; (1998) ; ControlShell: A Software Architecture for Complex Electromechanical Systems ; International Journal for Robotics Research (IJRR) ; Vol. 17(4), pp. 360-380
Smith & Grandy, 1985
Smith, C.R. & Grandy, W.T. Jr. ; (1985) ; Maximum-Entropy and bayesian methods in inverse problems ; D. Reidel Publishing Company
Tarentola, 1987
Tarentola, A. ; (1987) ; Inverse Problem Theory: Methods for data fitting and model parameters estimation ; Elsevier ; New York, USA
Thrun, 1998
Thrun, S.; (1998) ; Bayesian landmark learning for mobile robot localization ; Machine Learning, vol. 33(1), pp.41-76
Zhang & Poole, 1996
Zhang, N.L. and Poole, D. ; (1996) ; Exploiting Causal Independence in Bayesian Network Inference ; Journal of Artificial Intelligence Research (JAIR), Vol. 5, pp. 301-328
relation_type: []
relation_uri: []
reportno: ~
rev_number: 14
series: ~
source: ~
status_changed: 2007-09-12 16:39:32
subjects:
- comp-sci-art-intel
- comp-sci-robot
- comp-sci-stat-model
succeeds: ~
suggestions: ~
sword_depositor: ~
sword_slug: ~
thesistype: ~
title: Bayesian robot Programming
type: techreport
userid: 129
volume: ~