This site has been permanently archived. This is a static copy provided by the University of Southampton.
---
abstract: 'The author makes an introduction to non-standard analysis, then extends the dialectics to �neutrosophy� � which became a new branch of philosophy. This new concept helps in generalizing the intuitionistic, paraconsistent, dialetheism, fuzzy logic to �neutrosophic logic� � which is the first logic that comprises paradoxes and distinguishes between relative and absolute truth. Similarly, the fuzzy set is generalized to �neutrosophic set�. Also, the classical and imprecise probabilities are generalized to �neutrosophic probability�.'
altloc:
- http://www.gallup.unm.edu/~smarandache/eBook-Neutrosophics2.pdf
chapter: Book
commentary: ~
commref: This is a book.
confdates: ~
conference: ~
confloc: ~
contact_email: ~
creators_id: []
creators_name:
- family: Smarandache
given: Florentin
honourific: ''
lineage: ''
date: 1999
date_type: published
datestamp: 2001-11-24
department: ~
dir: disk0/00/00/19/19
edit_lock_since: ~
edit_lock_until: ~
edit_lock_user: ~
editors_id: []
editors_name:
- family: Perez
given: Minh
honourific: ''
lineage: ''
eprint_status: archive
eprintid: 1919
fileinfo: /style/images/fileicons/application_pdf.png;/1919/3/eBook%2DNeutrosophics2.pdf
full_text_status: public
importid: ~
institution: ~
isbn: ~
ispublished: pub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: 'Neutrosophy, Dialectics, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability, Fuzzy Logic, Fuzzy Set, Imprecise Probability, Probability'
lastmod: 2011-03-11 08:54:50
latitude: ~
longitude: ~
metadata_visibility: show
note: ~
number: ~
pagerange: 1-141
pubdom: FALSE
publication: Philosophy
publisher: American Research Press
refereed: TRUE
referencetext: |+
[1] Ashbacher, Charles D., Exploring Some Specific Functional Mappings To Create Operators In The Neutrosophic Logic, mss., 1999.
[2] Association for Symbolic Logic, Urbana, IL, USA, New Book Anouncement of Interest to Logicians, http://www.aslonline.org/links/html.
[3] Atanassov, K., Burillo, P., Bustince, H., On the intuitionistic fuzzy relations, Notes on Intuitionistic Fuzzy Sets, Vol. 1 (1995), No. 2, 87 - 92.
[4] Atanassov, K., Bustince, H., Burillo, P., Mohedano, V., A method for inference in approximate reasoning for the one-dimensional case based on normal intuitionistic fuzzy sets, Proceedings of the VI IFSA World Congress, Sao Paulo, Brazil, July 1995, Vol. 1, 149-152.
[5] Atanassov, K., Stoyanova, D., Cartesian products over intuitionistic fuzzy sets, Methodology of Mathematical Modelling, Vol. 1, Sofia, 1990, 296-298.
[6] Atanassov, K., Stoyanova, D., Remarks on the intuitionistic fuzzy sets. II, Notes on Intuitionistic Fuzzy Sets, Vol. 1 (1995), No. 2, 85 - 86.
[7] Blunden, Andy, A New Logic: Neutrosophic Logic, Hegel by HyperText Page, http://werple.net.au/~andy/email.htm.
[8] Bogolubov, N. N., Logunov, A. A., Todorov, I. T., Introduction to Axiomatic Quantum Field Theory, Translated from Russian by Stephen A. Fulling and Ludmila G. Popova, W. A. Benjamin, Inc., Reading, Massachusetts, 1975.
[9] Bouvier, Alain, George, Michel, Dictionnaire des Math�matiques, sous la direction de Fran�ois Le Lionnais, Presses Universitaire de France, Paris, 1979.
[10] Bridges, Douglas, Constructive Mathematics, Stanford Encyclopedia of Philosophy, editor Edward N. Zalta, http://plato.stanford.edu/mathematics-constructive/, 1997.
[11] Buhaescu, T., On an order relation between fuzzy numbers and fuzzy functions convexity, Itinerant seminar on functional equations, approximation and convexity, Cluj-Napoca, 1987, 85-90.
[12] Buhaescu, T., On quasicontinuity of fuzzy functions, Analele Universitatii din Galati, Matematica, Fizica, Mecanica Teoretica, Fascicula II, Anul VI (XI), 1988, 5-7.
[13] Buhaescu, T., On the convexity of intuitionistic fuzzy sets, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1988, 137-144.
[14] Buhaescu, T., Some observations on intuitionistic fuzzy rerelations, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1989, 111-118.
[15] Buhaescu, T., Intuitionistic fuzzy numbres, Analele Universitatii "Dunarea de Jos", Galati, Fascicula II, Anul VIII 1990, 47-53.
[16] Buhaescu, T., Nombres fuzzy intuitionistiques, Analele Universitatii Galati, fascicola II, 1990-1991, 1-2.
[17] Buhaescu, T., Interval valued real numbers, Sesiunea de comunicari stiintifice, Constanta, 6-8 iunie 1991, 34.
[18] Buhaescu, T., Convex structures on the fuzzy sets class, Fuzzy Systems & AI, Vol. 2, No. 3, 1993, 15-20.
[19] Buhaescu, T., Linear programming with intuitionistic fuzzy objective, Notes on Intuitionistic Fuzzy Sets, Vol. 1 (1995), No. 2, 130-131.
[20] Buhaescu, T., Linear programming with intuitionistic fuzzy objective, International Colloquy the Risk in Contemporary Economy, Galati, Romania, Nov. 10-11, 1995, 29-30.
[21] Burillo, Lopez P., Bustince Sola H., Entropy on intuitionistic fuzzy sets and on interval-values fuzzy sets, Fuzzy Sets and Systems, Vol. 78 (1996), No. 3, 305-316.
[22] Burillo, P., Bustince, H., Mohedano, V., Some definitions of intuitionistic fuzzy number. first properties, Proc. of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.),
Sofia, Sept. 28-30, 1994, 53-55.
[23] Burillo, P., Bustince, H., Algebraic structures for intuitionistic fuzzy sets, Fifth Sci. Session of the ''Mathematical Foundation of Artificial Intelligence'' Seminar, Sofia, October 5, 1994, Preprint MRL-MFAIS-10-94, Sofia, 1994, 1-13.
[24] Burillo, P., Bustince, H., Isoentropic methods for construction of IVFS, Proc. of the 4-th International Workshop CIFT'94, Trento, June 1-3, 1994, 57-60.
[25] Burillo, P., Bustince, H., Numerical measurements of information on intuitionistic fuzzy sets and interval-valued fuzzy sets ( $\Phi$ -fuzzy), Fifth Sci. Session of the ''Mathematical Foundation of Artificial Intelligence'' Seminar, Sofia, October 5, 1994, Preprint MRL-MFAIS-10-94, Sofia, 1994, 14-26.
[26] Burillo, P., Bustince, H., Two operators on interval-valued intuitionistic fuzzy sets: Part I, Comptes rendus de l'Academie Bulgare des Sciences, Tome 47, 1994, No. 12, 9-12.
[27] Burillo, P., Bustince, H., Informational energy on intuitionistic fuzzy sets and on interval-values intuitionistic fuzzy sets ( $\Phi$ -fuzzy). Relationship between the measures of information, Proc. of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.), Sofia, Sept. 28-30, 1994, 46-49.
[28] Burillo, P., Bustince, H., Numeros Intuicionistas Fuzzy, IV Congreso de la Asociacion Espanola de logica y Tecnologia Fuzzy, 1994, 97-103.
[29] Burillo, P., Bustince, H., Orderings in the referential set induced by an intuitionistic fuzzy relation, Notes on Intuitionistic Fuzzy Sets, Vol. 1 (1995), No. 2, 93-103.
[30] Burillo, P., Bustince, H., Two operators on interval-valued intuitionistic fuzzy sets: Part II, Comptes rendus de l'Academie Bulgare des Sciences, Tome 48, 1995, No. 1, 17-20.
[31] Burillo, P., Bustince, H., Metodos intuicionistas fuzzy, V Congreso de la Asociacion
Espanola de logica y Tecnologia Fuzzy, 1995, 147-153.
[32] Burillo, P., Bustince, H., Intuitionistic fuzzy relations. Part I, Mathware and Soft Computing, Vol. 2 (1995), No 1, 5-38.
[33] Burillo, P., Bustince, H., Intuitionistic fuzzy relations. Part II, Mathware and Soft Computing, Vol. 2 (1995), No 2, 117-148.
[34] Burillo, P., Bustince, H., Construction theorems for intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 84, 1996, No. 3, 271-281.
[35] Burnet, John, Greek Philosophy: Thales to Plato, St. Martin's Press, Inc., New York, 1962.
[36] Bustince, H., Numerical information measurements in intervalvalued intuitionistic fuzzy sets (IVIFS), Proc. of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.), Sofia, Sept. 28-30, 1994, 50-52.
[37] Bustince, Sola H., Conjuntos Intuicionistas e Intervalo-valorados Difusos: Propie\-dades y Construccion. Relaciones Intuicionistas y Estructuras, Ph. D., Univ. Publica de Navarra, Pamplona, 1994.
[38] Bustince, H., Correlation of interval-valued intuitionistic fuzzy sets, Fifth Sci. Session of the ''Mathematical Foundation of Artificial Intelligence'' Seminar, Sofia, October 5, 1994, Preprint MRL-MFAIS-10-94, Sofia, 1994, 27-35.
[39] Bustince, H., Handling multicriteria fuzzy decision making problems based on intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 1, No. 1, 1995, 42-47.
[40] Bustince, H., Burillo P., A theorem for constructing interval valued intuitionistic fuzzy sets from intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 1, No. 1, 1995, 5-16.
[41] Bustince, H., Burillo, P., Antisymmetrical ituitionistic fuzzy relation - Order on the referential set induced by an intuitionistic fuzzy relation, BUSEFAL Vol. 62, 1995, 17-21.
[42] Bustince, H., Burillo, P., Correlation of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 74 (1995), No.2, 237-244.
[43] Bustince, H., Burillo, P., Mohedano, V., A method for inference in approximate reasoning based on normal intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 1, No. 1, 1995, 51-55.
[44] Bustince, H., Burillo, P., Vague sets are intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 79, 1996, No. 3, 403-405.
[45] Bustince, H., Mohedano, V., About the intuitionistic fuzzy set generators, Proceedings of the First International Conference on Intuitionistic Fuzzy Sets (J. Kacprzyk and K. Atanassov Eds.), Sofia, Oct 18-19, 1997; Notes on Intuitionistic Fuzzy Sets, Vol. 3 (1997), No. 4, 21-27.
[46] Bustince, H., Mohedano, V., About the complement in intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 3 (1997), No. 1, 12-19.
[47] Dempster, A. P., Upper and Lower Probabilities Induced by a Multivalued Mapping, Annals of Mathematical Statistics, 38, 325-339, 1967.
[48] Dezert, J., Autonomous navigation with Uncertain Reference points using the PDAF, In Multitarget-Multisensor Tracking : Applications and Advances, Volume 2, Yaakov Bar-Shalom Editor, pp 271-324, 1992.
[49] Dezert, Jean, E-mails to the Author, 1999-2000.
[50] Dezert, Jean, On a Problem of Autonomous Navigation of an Engine Car (approximate title), Ph. D. thesis, ONERA, Paris, 1990.
[51] Dezert, J., Vers un nouveau concept de navigation autonome d'engin; Un lien entre la th�orie de l'�vidence et le filtrage � association probabiliste de donn�es, Ph. D. Thesis, no 1393, University Paris 11, Orsay, France, Sept. 1990.
[52] Didero, Daniele, Dictionaries and Encyclopedias, Italy, http://lgxserver.uniba.it/lei/dionary/dizlink.htm.
[53] Dimitrov, D., Atanassov, K., Shannon, A., Bustince, H., Kim, S.-K., Intuitionistic fuzzy sets and economic theory, Proceedings of The Second Workshop on Fuzzy Based Expert Systems
FUBEST'96 (D. Lakov, Ed.), Sofia, Oct. 9-11, 1996, 98-102.
[54] Dinulescu-C>mpina, Gheorghe, The Intangible Absolute Truth, �Smarandache Notions Journal�, 142-143, 2000.
[55] Dubois, D., Prade, H., RJvision mise B jour, et action, http://www.irit.fr/ACTIVITES/RPDMP/RMF.html/.
[56] Dudau, Victor, A beter use of neutrosophic probability, Sci. Math Archives Topics, 8 July 1999, http://forum.swarthmore.edu/epigone/sci.math/genverqua.
[57] Dummett, M., Wang�s paradox, Synthese, 30, 301-324, 1975.
[58] Dunn, J. M., Intuitive Semantics for First Degree Entailment and Coupled Trees, Philosophical Studies, Vol. XXIX, pp. 149-68, 1976.
[59] Eksioglu, Kamil Murat, Imprecision, Uncertainty & Vagueness: a reply (from his Ph. D. Dissertation), 1999, http://www.dbai.tuwien.ac.at/marchives/fuzzy-mail99/0819.html.
[60] Fine, K., Vagueness, truth and logic, Synthese, 30, 265-300, 1975.
[61] Fisch, Max, and Turquette, Atwell, Pierce�s Triadic Logic, Transactions of the Charles S. Peirce Society, 11, 71-85, 1966.
[62] Gilbert, John, Institute for Logic at the University of Vienna, Austria, Abstract,
http://www.logic.univie.ac.at/cgi-bin/abstract/.
[63] Girard, Jean-Yves, Linear logic, Theoretical Computer Science, 50:1-102, 1987.
[64] Goldberg, Samuel, Probability / An Introduction, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1960.
[65] Goguen, J. A., The Logic of Inexact Concepts, Synthese, 19, 325-375, 1969.
[66] Grmela, Ales, E-mails to C. T. Le, August 1999.
[67] Guinnessy, Paul; Gilbert, John, Proceedings on the Neutrosophic Logic and Their Applications in Neural Networks, Computer Programming, and Quantum Physics, Institute of Physics, editors: Kenneth Holmlund, Mikko Karttunen, Ghenther Nowotny,
http://physicsweb.org/TIPTOP/FORUM/BOOKS/describebook.phtml?entry_id=116.
[68] HalldJn, S., The Logic of Nonsense, Uppsala Universitets Arsskrift, 1949.
[69] Hammer, Eric M., Pierce�s Logic, Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, URL=http://plato.stanford.edu/entries/pierce-logic/, 1996.
[70] Heitkoetter, Joerg; David Beasley, David, The Hitch-Hiker�s Guide to Evolutionary Computing, Encore,
http://surf.de.uu.net/encore/, ftp://gnomics.udg.es/pub/encore/EC/FAQ/part2, 1993-1999.
[71] Hellerstein, N. S., DELTA, Α Paradox Logic, World Scientific, Singapore, New Jersey, London, Hong Kong, 1999.
[72] Hoffmann, Banesh, The strange Story of the Quantum, An account for the general reader of the growth of the ideas underlying our present atomic knowledge, Dover Publications, Inc., New York, 1959.
[73] Hogg, Robert V., Craig, Allen T., Introduction to Mathematical Statistics, Second edition, The Macmillan Company, New York, 1969.
[74] Howe, Denis, Neutrosophic Logic (or Smarandache Logic), On-Line Dictionary of Computing, http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?Smarandache+logic.
and FOLDOC Australian Mirror - Australia's Cultural Network, http://www.acn.net.au/cgi-bin/foldoc.cgi?Smarandache+logic,
http://www.acn.net.au/foldoc/contents/S.htm.
[75] Howe, Denis, Neutrosophic Probability, On-Line Dictionary of Computing, England,
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?neutrosophic+probability.
[76] Howe, Denis, Neutrosophic Set, On-Line Dictionary of Computing, England,
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?neutrosophic+set.
[77] Howe, Denis, Neutrosophic Statistics, On-Line Dictionary of Computing, England,
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?neutrosophic+statistics.
[78] Howe, Denis, Neutrosophy, On-Line Dictionary of Computing,
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?neutrosophic.
[79] Hyde, Dominic, Sorites Paradox, Stanford Encyclopedia of Philosophy, URL=http://plato.stanford.edu/entries/sorites-paradox/, edited by Edward N. Zalta, 1996.
[80] Illingworth, Valerie, The Penguin Dictionary of Physics, second edition, Penguin Books, 1991.
[81] Jasper, Paul, Abstract Service for Mathematical Logic, Institute for Logic at the University of Vienna, http://www.logic.univie.ac.at/cgi-bin/abstract/.
[82] Jasper, Paul; Le, C. T. (editors), �A Unifying Field In Logics. Neutrosophy: Neutrosophic Probability, Set, and Logic� by Florentin Smarandache, book review, Institute of Physics, London, England, editors: Kenneth Holmlund, Mikko Karttunen,Ghenther Nowotny,
http://physicsweb.org/TIPTOP/FORUM/BOOKS/describebook.phtml?entry_id=117.
[83] Kasabov, N., Foundations of neural networks, fuzzy systems and knowledge engineering, MIT Press, 1996.
[84] Kathwaroon, Maggie, Society for Technical Communications, Montreal Links Page, Canada, http://www.stc-montreal.org/links.html.
[85] Kenny, A., Aquinas, Hill and Wang, Inc., New York, 1980.
[86] Klein, Felix, Vergleichende Betrachtungen hber neuere geometrische Forschungen, Mathematische Annalen, 43, 63-100, 1893.
[87] K`rner, S., The Philosophy of Mathematics, Hutchinson, London, 1960.
[88] Lambert, J. H., Neues Organon, Leipzig, 1764.
[89] Lambert, J. H., Philosophische Schriften, Vol. I & II, reprinted by Olms, 1985.
[90] Le, Charles T., Neutrosophic logic used in neural networks, CIO Communications, Inc., http://wellengaged.com/engaged/cio.cgi?c=connection&f=0&t=255.
[91] Le, Charles T. Le, Software for neutrosophic logical operators, Networking by Industry, Inc. Online, http://www.inc.com/bbs/show/4/935277052-999.
[92] Le, Charles T., The Smarandache Class of Paradoxes, in �Journal of Indian Academy of Mathematics�, Bombay, India, No. 18, 5355, 1996.
[93] Lin, T. Y., E-mails to C. T. Le, August 1999.
[94] Mackey, George W., Mathematical Foundations of Mechanics / A Lecture-Note Volume, The Benjamin/Cummings Publishing Company, Reading, Massachusetts, 1980.
[95] Mathematical Logic Around The World, University of Bonn, Germany, http://www.uni-bonn.de/logic/world.html.
[96] McNeil, Martin, F., Thro, Ellen, Fuzzy Logic / A Practical Approach, Foreword by Ronald R. Yager, Academic Press, 1994.
[97] Mehta, J. L., Martin Heidegger: The Way and the Vision, University of Hawaii Press, Honolulu, 1976.
[98] Mendenhall, William, Introduction to Probability and Statistics, Fourth edition, Duxbury Press, North Scltuate, Massachusetts, 1975.
[99] Mortensen, Chris, Inconsistent Mathematics, Stanford Encyclopedia of Philosophy, editor Edward N. Zalta, http://plato.stanford.edu/entries/mathematics-inconsistent/, 1996.
[100] Moschovakis, Joan, Intuitionistic Logic, Stanford Encyclopedia of Philosophy, editor Edward N. Zalta, http://plato.stanford.edu/contents.html#1.
[101] Moschovakis, Joan, E-mails to C. T. Le, August 1999.
[102] Narinyani, A., Indefinite sets - a new type of data for knowledge representation, Preprint 232, Computer Center of the USSR Academy of Sciences, Novosibirsk, 1980 (in Russian).
[103] Nobre, Farley Simon M., E-mails to M. Perez, August 1999.
[104] Perez, Minh, Neutrosophy book review , Sci.Math Archives Topics, 8 July 1999,
http://forum.swarthmore.edu/epigone/sci.math/lelswoboi.
[105] Perez, M. L., New Books and Books Reviews, Institute of Physics, London, England, editors: Kenneth Holmlund, Mikko Karttunen,Ghenther Nowotny,
http://physicsweb.org/TIPTOP/FORUM/BOOKS/newbooks.phtml.
[106] Petrescu, M. I., Institute for Logic at the University of Vienna, Austria,
http://www.logic.univie.ac.at/cgi-bin/abstract/.
[107] Petrescu, M. I., Le, Charles T., Neutrosophic Logic, a generalization of the fuzzy logic, 7/30 July 1999,
http://forum.swarthmore.edu/epigone/sci.math/shelkelwhim.
[108] Peirce, C. S., Essays in the Philosophy of Science, The Liberal Arts Press, Inc., New York, 1957.
[109] Piwinger, Boris, Institute for Logic at the University of Vienna, Austria,
http://www.logic.univie.ac.at/cgi-bin/abstract/author.shtml.
[110] Pollett, Phil, The Probability Web / Miscellaneous Probability links, Australia,
http://www.maths.uq.oz.au/~pkp/probweb/misc.html.
[111] Priest, Graham; Tanaka, Koji, Paraconsistent Logic, Stanford Encyclopedia of Philosophy, editor Edward N. Zalta,
http://plato.stanford.edu/entries/logic-paraconsistent/.
[112] Priest, Graham, Dialetheism, Stanford Encyclopedia of Philosophy, editor Edward N. Zalta, http://plato.stanford.edu/entries/dialetheism/.
[113] Quine, W. V., What price bivalence?, Journal of Philosophy, 77, 90-95, 1981.
[114] Robinson, A., Non-Standard Analysis, Princeton University Press, Princeton, NJ, 1996.
[115] Routley, Richard and Val, The Semantics of First Degree Entailment, N^us, Vol. 6, 335-359, 1972.
[116] Rugina, Anghel N., Geldtypen und eldordnungen. Fundamente fhr eine echte allgemeine Geld und Wirtschaftstheorie, W. Kohhammer Verlag, Stuttgard, Germany, 1949.
[117] Rugina, Anghel N., What is the Alternative for the West, International Journal of Social Economics, Vol. 8, No. 2, 1981.
[118] Rugina, Anghel N., Principia Methologica 1: A Bridge from Economics to all Other Natural Sciences / Towards a Methodological Unification of all Sciences, MCB University Press Ltd., 1989.
[119] Rugina, Anghel N., Prolegomena to any Future Study in Economics, Finance and Other Social Sciences: The Road to a Third Revolution in Economic, Financial, Social, Ethical, Logical and Political Thinking,