This site has been permanently archived. This is a static copy provided by the University of Southampton.
@misc{cogprints3435,
editor = {Dr. Maggie Tallerman},
title = {From Analogue to Digital Vocalizations},
author = {Dr. Pierre-Yves Oudeyer},
publisher = {Oxford University Press},
year = {2003},
journal = {From Analogue to Digital Vocalization},
keywords = {origins of speech, self-organization, evolution, forms, artificial
systems, agents, phonetics, phonology, exaptation},
url = {http://cogprints.org/3435/},
abstract = {Sound is a medium used by humans to carry information.
The existence of this kind of
medium is a pre-requisite for language. It is organized
into a code, called speech, which
provides a repertoire of forms that is shared in each
language community. This code is necessary to support the linguistic
interactions that allow humans to communicate.
How then may a speech code be formed prior to the
existence of linguistic interactions?
Moreover, the human speech code is characterized by several
properties: speech is digital and compositional (vocalizations
are made of units re-used systematically in other syllables);
phoneme inventories have precise regularities as well as
great diversity in human languages; all the speakers of a
language community categorize sounds in the same manner,
but each language has its own system of categorization,
possibly very different from every other.
How can a speech code with these properties form?
These are the questions we will approach in the paper. We will
study them using the method of the artificial. We will
build a society of artificial agents, and study what mechanisms
may provide answers. This will not prove directly what mechanisms
were used for humans, but rather give ideas about what kind
of mechanism may have been used. This allows us to shape the
search space of possible answers, in particular by showing
what is sufficient and what is not necessary.
The mechanism we present is based on a low-level model of
sensory-motor interactions. We show that the integration of certain very
simple and non language-specific neural devices
allows a population of agents to build a speech code that
has the properties mentioned above. The originality is
that it pre-supposes neither a functional pressure for
communication, nor the ability to have coordinated
social interactions (they do not play language or imitation
games). It relies on the self-organizing properties of a generic
coupling between perception and production both
within agents, and on the interactions between agents.}
}