---
abstract: |-
The last few years have led to a series of discoveries that uncovered statistical properties that are common
to a variety of diverse real-world social, information, biological, and technological networks. The goal of the
present paper is to investigate the statistical properties of networks of people engaged in distributed problem
solving and discuss their significance. We show that problem-solving networks have properties ~sparseness,
small world, scaling regimes! that are like those displayed by information, biological, and technological
networks. More importantly, we demonstrate a previously unreported difference between the distribution of
incoming and outgoing links of directed networks. Specifically, the incoming link distributions have sharp
cutoffs that are substantially lower than those of the outgoing link distributions ~sometimes the outgoing
cutoffs are not even present!. This asymmetry can be explained by considering the dynamical interactions that
take place in distributed problem solving and may be related to differences between each actor’s capacity to
process information provided by others and the actor’s capacity to transmit information over the network. We
conjecture that the asymmetric link distribution is likely to hold for other human or nonhuman directed
networks when nodes represent information processing and using elements.
altloc:
- http://www.ie.bgu.ac.il/iem/rtf/braha/Topology--of--Large--Scale--Design--PRE69.pdf
- http://necsi.org/projects/braha/NECSIBrahaBarYamDesignPRE.pdf
chapter: ~
commentary: ~
commref: ~
confdates: ~
conference: ~
confloc: ~
contact_email: ~
creators_id: []
creators_name:
- family: Braha
given: Dan
honourific: ''
lineage: ''
- family: Bar-Yam
given: Yaneer
honourific: ''
lineage: ''
date: 2004-01
date_type: published
datestamp: 2004-04-07
department: ~
dir: disk0/00/00/35/35
edit_lock_since: ~
edit_lock_until: ~
edit_lock_user: ~
editors_id: []
editors_name: []
eprint_status: archive
eprintid: 3535
fileinfo: /style/images/fileicons/application_pdf.png;/3535/1/Problem%2DSolving.pdf
full_text_status: public
importid: ~
institution: ~
isbn: ~
ispublished: pub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: "Cognitive Psychology, Social Psychology,Organizational Psychology,Bounded Rationality, Cooperative Problem Solving\n"
lastmod: 2011-03-11 08:55:30
latitude: ~
longitude: ~
metadata_visibility: show
note: ~
number: ~
pagerange: ~
pubdom: FALSE
publication: ~
publisher: ~
refereed: TRUE
referencetext: |
[1] C. Alexander, Notes on the Synthesis of Form (Harvard University Press, Cambridge, MA, 1964).
[2] D. Braha and O. Maimon, A Mathematical Theory of Design: Foundations, Algorithms, and Applications (Kluwer Academic Publishers, Boston, MA, 1998).
[3] A. Yassine, and D. Braha, Concurrent Engineering: Research and Applications 11 (3), (2003).
[4] M. Klein, H. Sayama, P. Faratin and Y. Bar-Yam, Concurrent Engineering: Research and Applications, 11 (3), (2003).
[5] A. Yassine, N. Joglekar, D. Braha, S. Eppinger and D. Whitney, Research in Engineering Design (to be published).
[6] S. M. Osborne, MSc. Thesis, Massachusetts Institute of Technology, 1993.
[7] K. B. Clark, Management Science 35, 1247–1264 (1989).
[8] S. H. Strogatz, Nature 410, 268-276 (2001).
[9] R. Albert and Barabási, A.-L., Reviews of Modern Physics 74, 47-97 (2002)
[10] M. E. J. Newman, SIAM Review 45, 167-256 (2003).
[11] R. Albert, H. Jeong, and A.-L. Barabási, Nature 401, 130 (1999).
[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comp. Comm. Rev. 29, 251-262 (1999).
[13] D. J. Watts, and S.H. Strogatz, Nature 393, 440-442 (1998).
[14] H. Jeong, B. Tombor, R. Albert, Z. N. Oltavi, and A.-L. Barabási, Nature 407, 651-654 (2000).
[15] H. Jeong, S. Mason, A.-L. Barabási, and Z. N. Oltvai, Nature 411, 41 (2001).
[16] J. M. Montoya and R. V. Solé, J. Theor. Bio. 214, 405-412 (2002).
[17] L. A. N. Amaral, A. Scala, M. Barthélémy and H. E. Stanley, Proc. Nat. Ac. Sci USA 97, 11149-11152 (2000).
[18] M. E. J. Newman, Proc. Nat. Ac. Sci USA 98, 404 (2001).
[19] M. E. J. Newman, Phys. Rev. E 64, 016131 (2001).
[20] M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
[21] D. J. de S. Price, Science 149, 510-515 (1965).
[22] R. F. Cancho, C. Janssen, and R. V. Solé, Phys. Rev. E 63 (2001).
[23] S. Valverde, R. F. Cancho, and R. V. Solé, Europhys. Lett. 60, 512-517 (2002).
[24] R. Albert, H. Jeong, and A.-L. Barabási, Nature 406, 378-382 (2000).
[25] S.D. Eppinger, D.E. Whitney, R.P. Smith, and D.A. Gebala, Res. in Eng. Des. 6, 1-13 (1994).
[26] D.V. Steward, IEEE Trans. on Eng. Man. 28, 71-74 (1981).
[27] R. F. Cancho, and R. V. Solé, SFI Working Paper 01-11-068 (2001).
[28] H. A. Simon, The Sciences of the Artificial (MIT Press, Cambridge, MA, 1998).
[29] A.-L. Barabási, and R. Albert, Science 286, 509-512 (1999).
relation_type: []
relation_uri: []
reportno: ~
rev_number: 12
series: ~
source: ~
status_changed: 2007-09-12 16:51:29
subjects:
- phil-dec-theory
- appl-cog-psy
- bio-socio
- bio-behav
- cog-psy
- bio-theory
- soc-psy
- behav-anal
succeeds: ~
suggestions: ~
sword_depositor: ~
sword_slug: ~
thesistype: ~
title: Topology of large-scale engineering problem-solving networks
type: other
userid: 4823
volume: ~