---
abstract: |
Multichannel recordings of the electromagnetic fields
emerging from neural currents in the brain generate large amounts
of data. Suitable feature extraction methods are, therefore, useful
to facilitate the representation and interpretation of the data.
Recently developed independent component analysis (ICA) has
been shown to be an efficient tool for artifact identification and
extraction from electroencephalographic (EEG) and magnetoen-
cephalographic (MEG) recordings. In addition, ICA has been ap-
plied to the analysis of brain signals evoked by sensory stimuli. This
paper reviews our recent results in this field.
altloc:
- http://www.cis.hut.fi/jaakkos/TBME2000.pdf
chapter: ~
commentary: ~
commref: ~
confdates: ~
conference: ~
confloc: ~
contact_email: ~
creators_id:
- ''
- 4715
- ''
- ''
- ''
creators_name:
- family: Vigário
given: Ricardo
honourific: Dr
lineage: ''
- family: Särelä
given: Jaakko
honourific: Mr
lineage: ''
- family: Jousmäki
given: Veikko
honourific: Dr
lineage: ''
- family: Hämäläinen
given: Matti
honourific: Dr
lineage: ''
- family: Oja
given: Erkki
honourific: prof.
lineage: ''
date: 2000
date_type: published
datestamp: 2004-05-24
department: ~
dir: disk0/00/00/36/39
edit_lock_since: ~
edit_lock_until: ~
edit_lock_user: ~
editors_id: []
editors_name: []
eprint_status: archive
eprintid: 3639
fileinfo: /style/images/fileicons/application_pdf.png;/3639/1/TBME2000.pdf
full_text_status: public
importid: ~
institution: ~
isbn: ~
ispublished: pub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: "independent component analysis (ICA), blind source separation (BSS), unsupervised learning, electroencephalography (EEG), magnetoencephalography(MEG), artifact removal, auditory evoked field (AEF), somatosensory evoked field (SEF)\n"
lastmod: 2011-03-11 08:55:36
latitude: ~
longitude: ~
metadata_visibility: show
note: ~
number: 5
pagerange: 589-593
pubdom: FALSE
publication: IEEE transactions on biomedical engineering
publisher: ~
refereed: TRUE
referencetext: ~
relation_type: []
relation_uri: []
reportno: ~
rev_number: 12
series: ~
source: ~
status_changed: 2007-09-12 16:52:32
subjects:
- brain-img
- comp-sci-stat-model
- comp-sci-mach-learn
succeeds: ~
suggestions: ~
sword_depositor: ~
sword_slug: ~
thesistype: ~
title: Independent component approach to the analysis of EEG and MEG recordings
type: journalp
userid: 4715
volume: 47