%0 Generic
%A Baianu, Professor I. C.
%D 2004
%F cogprints:3676
%K Quantum Automata and Quantum Computation, Quantum Genetics; Relational Biology models of Complex genetic networks, Carcinogenesis, Human Neural Networks, Hormonal and Immune Regulatory Systems, Molecular Interactions in terms of Catgeories,Functors and natural transformations, Lukasiewicz Topos modeling of Nonlinear Genetic Networks, Intuitionistic Heyting Logic Algebra of Quantum Hilbert Spaces, Adjunctions between Hilbert Spaces of Quantum Automata; Genetic Expression as an adjunction of Quantum Genetic processes in stable Hilbert Spaces.
%T Quantum Genetics, Quantum Automata and Quantum Computation
%U http://cogprints.org/3676/
%X The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In a previous publication (Baianu,1971a) the formal concept of quantum automaton was introduced and its possible implications for genetic and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural transformations (Baianu,1971b). The notions of topological semigroup, quantum automaton,or quantum computer, were then suggested with a view to their potential applications to the analogous simulation of biological systems, and especially genetic activities and nonlinear dynamics in genetic networks. Further, detailed studies of nonlinear dynamics in genetic networks were carried out in categories of n-valued, Lukasiewicz Logic Algebras that showed significant dissimilarities (Baianu, 1977) from Bolean models of human neural networks (McCullough and Pitts,1945). Molecular models in terms of categories, functors and natural transformations were then formulated for uni-molecular chemical transformations, multi-molecular chemical and biochemical transformations (Baianu, 1983,2004a). Previous applications of computer modeling, classical automata theory, and relational biology to molecular biology, oncogenesis and medicine were extensively reviewed and several important conclusions were reached regarding both the potential and limitations of the computation-assisted modeling of biological systems, and especially complex organisms such as Homo sapiens sapiens(Baianu,1987). Novel approaches to solving the realization problems of Relational Biology models in Complex System Biology are introduced in terms of natural transformations between functors of such molecular categories. Several applications of such natural transformations of functors were then presented to protein biosynthesis, embryogenesis and nuclear transplant experiments. Other possible realizations in Molecular Biology and Relational Biology of Organisms are here suggested in terms of quantum automata models of Quantum Genetics and Interactomics. Future developments of this novel approach are likely to also include: Fuzzy Relations in Biology and Epigenomics, Relational Biology modeling of Complex Immunological and Hormonal regulatory systems, n-categories and Topoi of Lukasiewicz Logic Algebras and Intuitionistic Logic (Heyting) Algebras for modeling nonlinear dynamics and cognitive processes in complex neural networks that are present in the human brain, as well as stochastic modeling of genetic networks in Lukasiewicz Logic Algebras.