This site has been permanently archived. This is a static copy provided by the University of Southampton.
---
abstract: |-
Simulations and experiments frequently demand the generation of random numbera that have
specific distributions. This article describes which distributions should be used for the most cammon
problems and gives algorithms to generate the numbers.It is also shown that a commonly used permutation algorithm (Nilsson, 1978) is deficient.
altloc: []
chapter: ~
commentary: ~
commref: ~
confdates: ~
conference: ~
confloc: ~
contact_email: ~
creators_id: []
creators_name:
- family: Brysbaert
given: Marc
honourific: ''
lineage: ''
date: 1991
date_type: published
datestamp: 2004-07-30
department: ~
dir: disk0/00/00/37/23
edit_lock_since: ~
edit_lock_until: ~
edit_lock_user: ~
editors_id: []
editors_name: []
eprint_status: archive
eprintid: 3723
fileinfo: /style/images/fileicons/application_pdf.png;/3723/1/algorithms_for_randomness_in_the_behavioral_sciences.pdf
full_text_status: public
importid: ~
institution: ~
isbn: ~
ispublished: pub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: 'generation random numbers, simulations, randomisation'
lastmod: 2011-03-11 08:55:38
latitude: ~
longitude: ~
metadata_visibility: show
note: ~
number: 1
pagerange: 45-60
pubdom: FALSE
publication: 'Behavior Research Methods, Instruments, & Computers'
publisher: Psychonomic Society
refereed: TRUE
referencetext: |-
A. C. (1980). Tests of pseudo-random numbers. Applied
Statistics, 29, 164-171.
BEST, D. J. (1979). Some easily programmed pseudo-random normal
generators. Australian Computer Journal, 11, 60-62.
BISSELL, A. F. (1986). Ordered random selection without replacement.
Applied Statistics, 35, 73-75.
Box, G. E. P., & JENKINS, G. M. (1976). Time series analysis: Forecasting
and control. San Francisco: Holden-Day.
Box, G. E. P., & MULLER, M. E. (1958). A note on the generation
of random normal deviates. Annals of Mathematical Statistics, 29,
610-611.
BRADLEY, D. R. (1988). DATASIM. Lewiston, ME: Desktop Press.
BRADLEY, D. R., SENKO, M. W., & STEWART, F. A. (1990). Statistical
simulation on microcomputers. Behavior Research Methods, Instruments,
& Computers, 22, 236-246.
BROPHY, A. L. (1985). Approximation of the inverse normal distribution
function. Behavior Research Methods, Instruments, & Computers,
17, 415-417.
DREGER, R. M. (1989). A BASIC program for the Shell-Metzner sort
algorithm. Educational & Psychological Measurement, 49, 6 19-622.
DUDEWICZ, E. J., & RALLEY, T. G. (1981). The handbook of random
number generation and testing with TESTRAND computer code.
Columbus, OH: American Sciences Press.
DWYER, T., & CRITCHFIELD, M. (1978). BASIC and the personalcomputer.
Reading, MA: Addison-Wesley.
EDGELL, S. E. (1979). A statistical check of the DECsystem-10
FORTRAN pseudorandom number generator. Behavior Research
Methods & Instrumentation, 11, 529-530.
ELLIS, J. K. (1985). Distribution counting as a method for sorting test
scores. Behavior Research Methods, Instruments, & Computers, 17,
419-420.
FISHMAN, G. S., & MooRE, L. R., ifi (1986). An exhaustive analysis
ofmultiplicative congruential random number generators with modulus
2~’—1. SIAM Journal onSciennfic & Statistical Computing, 7, 24-45.
GREEN, B. F. (1963). Digital computers in research: An introduction
for behavioral and social scientists. New York: McGraw-Hill.
GRUENBERGER, F., & JAFFRAY, G. (1965). Problems for computer solution.
New York: Wiley.
HAYS, W. L. (1988). Statistics. New York: Holt, Rinehart and Winston.
KENNEDY, W. J., & GENTLE, J, E. (1980). Statistical computing. New
York: Marcel Dekker.
KNUTH, D. E. (1973), The art ofcomputerprogramming: Vol. 3. Sorting
and searching. Reading, MA: Addison-Wesley.
KNUTH, D. E. (1981). The art of computerprogramming: Vol. 2. Seminumerical
algorithms. Reading, MA: Addison-Wesley.
KRANER, H. C., MOHANTY, S. G., & LYONS, J. C. (1980). Critical
values of the Kolmogorov-Smirnov one-sample test. Psychological
Bulletin, 88, 498-501.
LORDAHL, D. S. (1988). Repairing the Microsoft BASIC RND function.
Behavior Research Methods, Instruments, & Computers, 20,
22 1-223.
MARSAGUA, G. (1962). Random variables and computers. In J. Kozesnik
(Ed.), Information theory, statistical decision fi4nctions, random processes:
Transactions ofthe Third Prague Conference (pp. 499-5 10).
Prague: Czechoslovak Academy of Sciences.
MARSAGUA, G., &BRAY, T. A. (1964). Aconvenient method for generating
normal variables. SIAM Review, 6, 260-264.
MODIANOS, D. T., SCOTT, R. C., & CORNWELL, L. W. (1987). Testing
intrinsic random-number generators. Byte, 12, 175-178.
MOSES, L. E., & OAKFORD, R. V. (1963). Tables of random permutations.
Stanford, CA: Stanford University Press.
NANCE, R. E., & OVERSTREET, C. L. (1972). A bibliography on random
number generators. Computer Review, 13, 495-508.
NII.ssoN, T. H. (1978). Randomization without replacement using
replacement without losing your place. Behavior Research Methods
& Instrumentation, 10, 419.
PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., & VETTERLING,
W. T. (1986). Numerical recipes: The art of scientific computing.
Cambridge, U.K.: Cambridge University Press.
RIPLEY, B. D. (1983). Computer generation of random variables: A
tutorial. International Statistical Review, 51, 301-319.
RIPLEY, B. D. (1987). Stochastic simulation. New York: Wiley.
SAHAI, H. (1979). A supplement to Sowey’s bibliography on random
number generation and related topics. Journal ofStatistical Computation
& Simulation, 10, 31-52.
SOWEY, E. R. (1972). Achronological and classified bibliography on
random number generation and testing. International Statistical Review,
40, 355-371.
SOWEY, E. R. (1978). A second classified bibliography on random number
generation and testing. International Statistical Review, 46,
355-37 1.
SOWEY, E. R. (1986). A third classified bibliography on random number
generation and testing. Journal of the Royal Statistical Society,
149A, 83-107.
STRUBE, M. J. (1983). Tests of randomness for pseudorandom number
generators. Behavior Research Methods & Instrumentation, 15,
536-537.
VON NEUMANN, J. (1951). Various techniques in connection with random
digits. NBS Applied Mathematics Series, 12, 36-38.
WICHMANN, B. A., & HILL, J. D. (1982). Algorithm AS183: An efficient
and portable pseudo random number generator. Applied Statistics,
31, 188-190.
WICHMANN, B. A., & HILL, J. D. (1984). An efficient and portable
pseudo random number generator: Correction. Applied Statistics, 33,
123.
ZEISEL, H. (1986). A remark on Algorithm A5183: An efficient
and portable pseudo-random number generator. Applied Statistics, 35,
89.
ZELEN, M., & SEvERO, N. C. (1964). Probability functions. In
M. Abramowitz & I. A. Stegun (Eds.), Handbook of mathematical
functions (pp. 925-995). New York: Dover.
relation_type: []
relation_uri: []
reportno: ~
rev_number: 12
series: ~
source: ~
status_changed: 2007-09-12 16:53:04
subjects:
- cog-psy
- behanal
succeeds: ~
suggestions: ~
sword_depositor: ~
sword_slug: ~
thesistype: ~
title: 'Algorithms for randomness in the behavioral sciences: A tutorial'
type: journalp
userid: 4681
volume: 23