This site has been permanently archived. This is a static copy provided by the University of Southampton.
---
abstract: 'This paper presents a computational model of the incremental construction of an associative network from a corpus. It is aimed at modeling the development of the human semantic memory. It is not based on a vector representation, which does not well reproduce the asymmetrical property of word similarity, but rather on a network representation. Compared to Latent Semantic Analysis, it is incremental which is cognitively more plausible. It is also an attempt to take into account higher-order co-occurrences in the construction of word similarities. This model was compared to children association norms. A good correlation as well as a similar gradient of similarity were found.'
altloc:
- http://www.upmf-grenoble.fr/sciedu/blemaire/cogsci04_2.pdf
chapter: ~
commentary: ~
commref: ~
confdates: 'August 5-7, 2004'
conference: 26th Annual Meeting of the Cognitive Science Society
confloc: Chicago
contact_email: ~
creators_id: []
creators_name:
- family: Lemaire
given: Beno�t
honourific: ''
lineage: ''
- family: Denhi�re
given: Guy
honourific: ''
lineage: ''
date: 2004
date_type: published
datestamp: 2004-08-25
department: ~
dir: disk0/00/00/37/79
edit_lock_since: ~
edit_lock_until: ~
edit_lock_user: ~
editors_id: []
editors_name:
- family: Forbus
given: Kenneth
honourific: ''
lineage: ''
- family: Gentner
given: Dedre
honourific: ''
lineage: ''
- family: Regier
given: Terry
honourific: ''
lineage: ''
eprint_status: archive
eprintid: 3779
fileinfo: /style/images/fileicons/application_pdf.png;/3779/1/cogsci04_2.pdf
full_text_status: public
importid: ~
institution: ~
isbn: ~
ispublished: pub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: 'associative network, corpus, semantic memory, LSA, Latent Semantic Analysis'
lastmod: 2011-03-11 08:55:40
latitude: ~
longitude: ~
metadata_visibility: show
note: ~
number: ~
pagerange: 825-830
pubdom: FALSE
publication: ~
publisher: Lawrence Erlbaum Associates
refereed: TRUE
referencetext: |-
Burgess, C. (1998). From simple associations to the building blocks of language: modeling meaning in memory with the HAL model. Behavior Research Methods, Instruments, & Computers, 30, 188-198.
Burgess, C., Livesay, K & Lund, K. (1998). Explorations in context space: words, sentences, discourse. Discourse Processes, 25, 211-257.
de la Haye, F. (2003). Normes d'associations verbales chez des enfants de 9, 10 et 11 ans et des adultes. L'Ann�e Psychologique, 103, 109-130.
Edmonds, P. (1997). Choosing the word most typical in context using a lexical co-occurrence network. Meeting of the Association for Computational Linguistics, 507-509.
Foltz, P. W. (1996). Latent Semantic Analysis for text-based research. Behavior Research Methods, Instruments and Computers, 28-2, 197-202.
Frank, S.L., Koppen, M., Noordman, L.G.M. & Vonk, W. (2003). Modeling knowledge-based inferences in story comprehension. Cognitive Science 27(6), 875-910.
Glenberg, A. M. & Robertson, D. A., (2000). Grounding symbols and computing meaning: a supplement to Glenberg & Robertson. Journal of Memory and Language, 43, 379-401.
Kintsch, W. (1998). Comprehension: A Paradigm for Cognition. Cambridge University Press.
Kontostathis, A. & Pottenger, W.M. (2002). Detecting patterns in the LSI term-term matrix. Workshop on the Foundation of Data Mining and Discovery, IEEE International Conference on Data Mining.
Landauer T.K. (2002). On the computational basis of learning and cognition: Arguments from LSA. In N. Ross (Ed.), The psychology of Learning and Motivation, 41, 43-84.
Landauer, T. K. & Dumais, S. T. (1997). A solution to Plato's problem : the Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.
Lemaire, B. & Denhi�re, G. (submitted). Effects of higher-order co-occurrences on semantic similarity of words.
Levy, J.P., Bullinaria, J.A. & Patel, M. (1998). Explorations in the derivation of semantic representations from word co-occurrence statistics. South Pacific Journal of Psychology, 10, 99-111.
Levy, J.P., Bullinaria, J.A. (2001). Learning lexical properties from word usage patterns: which context words should be used? In R. French & J.P. Sougne (Eds)Connectionist Models of Learning, Development and Evolution: Proceedings of the Sixth Neural Computation and Psychology Workshop, 273-282. London:Springer.
Lowe, W. & McDonald, S. (2000). The direct route: mediated priming in semantic space. In Gernsbacher, M. A. and Derry, S. D., editors, Proceedings of the 22nd Annual Meeting of the Cognitive Science Society, 675-680, New Jersey. Lawrence Erlbaum Associates.
Prince, V. & Lafourcade, M. (2003). Mixing semantic networks and conceptual vectors: the case of hyperonymy. In Proc. of ICCI-2003 (2nd IEEE International Conference on Cognitive Informatics), South Bank University, London, UK, August 18 - 20, 121-128.
Sahlgren, M. (2001). Vector-based semantic analysis: representing word meaning based on random labels. Semantic Knowledge Acquisition and Categorisation Workshop at ESSLLI '01, Helsinki, Finland.
Sahlgren, M. (2002). Towards a flexible model of word meaning. AAAI Spring Symposium 2002. March 25-27, Stanford University, Palo Alto.
Spence, D.P. & Owens K.C. (1990). Lexical co-occurrence and association strength. Journal of Psycholinguistic Research 19, 317-330.
Steyvers, M., Shiffrin R.M., & Nelson, D.L. (in press). Word Association Spaces for predicting semantic similarity effects in episodic memory. In A. Healy (Ed.), Cognitive Psychology and its Applications: Festschrift in Honor of Lyle Bourne, Walter Kintsch, and Thomas Landauer. Washington DC: American Psychological Association.
Steyvers, M., & Tenenbaum, J. (submitted). Graph theoretic analyses of semantic networks: small worlds in semantic networks.
Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327-352.
Wolfe, M. B. W., Schreiner, M. E., Rehder, B., Laham, D., Foltz, P. W., Kintsch & W., Landauer, T. K. (1998).Learning from text: Matching readers and texts by Latent Semantic Analysis. Discourse Processes, 25, 309-336.
relation_type: []
relation_uri: []
reportno: ~
rev_number: 12
series: ~
source: ~
status_changed: 2007-09-12 16:53:26
subjects:
- comp-sci-stat-model
- comp-sci-mach-learn
- psy-ling
succeeds: ~
suggestions: ~
sword_depositor: ~
sword_slug: ~
thesistype: ~
title: Incremental Construction of an Associative Network from a Corpus
type: confpaper
userid: 4300
volume: ~