--- abstract: 'In this methodological work I explore the possibility of explicitly modelling expectations conditioning the R&D decisions of firms. In order to isolate this problem from the controversies of cognitive science, I propose a black box strategy through the concept of “internal model”. The last part of the article uses artificial neural networks to model the expectations of firms in a model of industry dynamics based on Nelson & Winter (1982).' altloc: - http://147.210.86.202/ifrede/e3i/publications/WP/article.php3?SELECTWP=2001-2 chapter: ~ commentary: ~ commref: ~ confdates: ~ conference: ~ confloc: ~ contact_email: ~ creators_id: - yildi creators_name: - family: Yildizoglu given: Murat honourific: '' lineage: '' date: 2001 date_type: published datestamp: 2004-10-08 department: UFR Sciences Economiques et de Gestion dir: disk0/00/00/38/65 edit_lock_since: ~ edit_lock_until: ~ edit_lock_user: ~ editors_id: [] editors_name: [] eprint_status: archive eprintid: 3865 fileinfo: /style/images/fileicons/application_pdf.png;/3865/1/2001%2D2.pdf full_text_status: public importid: ~ institution: 'E3i, IFReDE,GRES' isbn: ~ ispublished: unpub issn: ~ item_issues_comment: [] item_issues_count: 0 item_issues_description: [] item_issues_id: [] item_issues_reported_by: [] item_issues_resolved_by: [] item_issues_status: [] item_issues_timestamp: [] item_issues_type: [] keywords: 'Bounded rationality, Learning, Genetic Algorithms, Artificial Neural Networks, Industrial Dynamics, Innovation' lastmod: 2011-03-11 08:55:42 latitude: ~ longitude: ~ metadata_visibility: show note: 'JEL Classification : L1, D92, D4, C63' number: ~ pagerange: ~ pubdom: FALSE publication: ~ publisher: ~ refereed: FALSE referencetext: |- Ballot, G. & Taymaz, E. (1997), ‘The dynamics of firms in micro to macro model with training’, Journal of Evolutionary Economics 4. Ballot, G. & Taymaz, E. (1999), ‘Technological change, learning and macroeconomic coordination: An evolutionary model’, Journal of Artificial Societies and Social Simulation, http://www.soc.surrey.ac.uk/JASS/2/2/3.html, 2(2). Dennett, D. C. (1998), Brainchildren. Essays on Designing Minds., Penguin Books, London. Dosi, G., Faggiolo, G. & Marengo, L. (1999), Learning in evolutionary environments, in K. Dopfer, ed., ‘Evolutionary Foundations of Economics’, Cambridge University Press, Cambridge. Goldberg, D. E. (1991), Genetic Algorithms, Addison-Wesley, Reading: MA. Hodgson, G. M. (1994), Economics and Evolution, Polity Press, Cambridge: UK. 17 Hofstadter, D. R. (1979), Godel, Escher, Bach: An Eternal Golden Braid, Basic Books, New York. Holland, J. H. (1996), Hidden Order. How Adaptation Builds Complexity., Addison-Wesley, Reading (MA). Holland, J. H. (1998), Emergence. From Chaos to Order, Addison-Wesley, Reading (MA). Jonard, N. & Yildizoglu, M. (1999), Sources of technological diversity, Cahiers de l’Innovation 99030, CNRS, Paris. Knight, F. H. (1921), Risk, Uncertainty and Profits, number Reprint, Chicago University Press, Chicago. Kwasnicki, W. (1998), ‘Skewed distributions of firm sizes - an evolutionary perspective’, Structural Change and Economic Dynamics 9(1), 135–158. Kwasnicki, W. & Kwasnicka, H. (1992), ‘Market, innovation, competition. an evolutionary model of industrial dynamics’, Journal of Economic Behavior and Organization 19, 343–368. Masters, T. (1993), Practical Neural Network Recipes in C++, Academic Press, San Diego:CA. Mitchell, M. (1996), An Introduction to Genetic Algorithms, The MIT Press, Cambridge: MA. Nelson, R. R. & Winter, S. (1982), An Evolutionary Theory of Economic Change, The Belknap Press of Harvard University, London. Rubinstein, A. (1998), Modeling Bounded Rationality, TheMIT Press, Cambridge: MA. Salmon, M. (1995), Bounded rationality and learning: Procedural learning, in M. Kirman, Alan; Salmon, ed., ‘Learning and Rationality in Economics’, Blackwell, Oxford, pp. 236–275. Sargent, T. J. (1995), Bounded Rationality in Macroeconomics, Oxford University Press. Silverberg, G. & Verspagen, B. (1995), ‘Long term cyclical variations of catching up and falling behind. an evolutionary model’, The Journal of Evolutionary Economics 5, 209–22. Silverberg, G. & Verspagen, B. (1999), Evolutionary theorizing on economic growth, in K. Dopfer, ed., ‘The Evolutionary Principles of Economics’, Cambridge University Press, Norwell, MA. 18 Silverberg, J. & Verspagen, B. (1996), From the artificial to the endogenous, in M. Helmstadter, Ernst; Perlman, ed., ‘Behavioral norms, technological progress, and economic dynamics: Studies in Schumpeterian economics’, University of Michigan Press, Ann Arbor. Simon, H. A. (1958), The role of expectations in adaptive or behavoristic model, in M. Bowman, ed., ‘Expectations, Uncertainty and Business Behavior’, Social Science Council, New York, pp. 49–58. Simon, H. A. (1976), From substantial to procedural rationality, in Latsis, S. J. (ed), Method and Appraisal in Economics, Cambridge University Press, Cambridge, pp. 129–148. Simon, H. A. (1982), Models of Bounded Rationality, Vol. 2, Behavioral Economics and Business Organization, The MIT Press, Cambridge: MA. Watson, C. J., Billingsley, D. J., Croft, D. J. & Huntsberger, D. V. (1993), Statistics for Management and Economics, fifth edition, Allyn and Bacon, Boston. Watson, M. (1997), Intelligent Java Applications, Morgan Kaufmann, San Fransisco: CA. Wilson, S. W. (1995), ‘Classifier Fitness Based on Accuracy’, Evolutionary Computation 3(2), 149–175. http://prediction-dynamics.com/. Winter, S. (1984), ‘Schumpeterian competition in alternative technological regimes’, Journal of Economic Behavior and Organization 5, 287–320. Yildizoglu, M. (2001), ‘Competing R&D strategies in an evolutionary industry model’, forthcoming in Computational Economics. Available at http://yildizoglu.montesquieu.u-bordeaux.fr/ . relation_type: [] relation_uri: [] reportno: 2001-2 rev_number: 12 series: ~ source: ~ status_changed: 2007-09-12 16:53:56 subjects: - comp-sci-mach-learn - comp-sci-neural-nets - comp-sci-art-intel - socsim succeeds: ~ suggestions: ~ sword_depositor: ~ sword_slug: ~ thesistype: ~ title: 'Connecting adaptive behaviour and expectations in models of innovation: The Potential Role of Artificial Neural Networks' type: techreport userid: 5133 volume: ~