This site has been permanently archived. This is a static copy provided by the University of Southampton.
---
abstract: 'The increase of the affinity of agonists with an increase in pH and experiments using thiol-specific reagents indicate that G protein-coupled receptors contain an ionizable cysteine residue at the ligand binding site. Since treatment of receptors with reducing agents produces functional activation and potentiates agonist stimulation, it is likely that this free sulfhydryl modulates receptor activation. We have derived a two-state acid-base model for cysteine modulation of ligand binding which leads to a description of ligand efficacy. We have shown that pH-dependent binding of agonists is closely correlated with measurements of ligand efficacy at the 5-HT2A receptor. In general, efficacy is determined by the preference of a ligand for the base of the receptor. Efficacy may also be described in thermodynamic terms as the coupling free energy involving a ligand and the acid and base states of the receptor. Molecular modeling of the third transmembrane domain of the 5-HT2A receptor, which contains a conserved cysteine, shows that efficacy is determined by the difference between the electrostatic interaction energies of a ligand with the acid and base forms of the receptor model. The difference in interaction energy between the two forms of cysteine makes the largest contribution to this electrostatic interaction energy difference. Therefore, the cysteine makes the largest contribution to ligand efficacy. Using this approach, we can distinquish between the efficacies of agonists with varying molecular structures and account for the differences between the properties of agonists and antagonists.'
altloc:
- http://www.bio-balance.com/GPCR_Activation.pdf
chapter: ~
commentary: ~
commref: ~
confdates: ~
conference: ~
confloc: ~
contact_email: ~
creators_id: []
creators_name:
- family: Rubenstein
given: Lester A.
honourific: ''
lineage: ''
- family: Lanzara
given: Richard G.
honourific: ''
lineage: ''
date: 1998
date_type: published
datestamp: 2005-02-16
department: ~
dir: disk0/00/00/40/95
edit_lock_since: ~
edit_lock_until: ~
edit_lock_user: ~
editors_id: []
editors_name:
- family: Csizmadia
given: Imre
honourific: ''
lineage: ''
eprint_status: archive
eprintid: 4095
fileinfo: /style/images/fileicons/application_pdf.png;/4095/1/Cys_Paper.pdf
full_text_status: public
importid: ~
institution: ~
isbn: ~
ispublished: pub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: 'sulfhydryl, ligand efficacy, thiol, two-state model, receptor theory, signal activation, molecular model, cysteine'
lastmod: 2011-03-11 08:55:51
latitude: ~
longitude: ~
metadata_visibility: show
note: ~
number: ~
pagerange: 57-71
pubdom: TRUE
publication: Journal of Molecular Structure (Theochem)
publisher: Elsevier Science
refereed: TRUE
referencetext: |+
REFERENCES
1. Strader, C. D., T. M. Fong, M. R. Tota, D. Underwood, and R. A. F. Dixon.
Structure and function of G protein-coupled receptors. Annu. Rev.
Biochem. 63:101-132 (1994).
2. Stephenson, R. P. A modification of receptor theory. Brit. J. Pharmacol.
11:379-393 (1956).
3. Kenakin, T. Efficacy as the molecular property of a ligand. Trends
Pharmacol. Sci. 16:84-85 (1995).
4. De Lean, A., J. M. Stadel, and R. J. Lefkowitz. A ternary complex model
explains the agonist-specific binding properties of the adenylate cyclase-
coupled _-adrenergic receptor. J. Biol. Chem. 255:7108-7117 (1980).
5. Samama, P., S. Cotecchia, T. Costa, and R. J. Lefkowitz. A mutation-
induced activated state of the _2-adrenergic receptor. J. Biol. Chem.
268:4625-4636 (1993).
6. Lefkowitz, R. J., S. Cotecchia, P. Samama, and T. Costa. Constitutive
activity of receptors coupled to guanine nucleotide regulatory proteins.
Trends Pharmacol. Sci. 14:303-307 (1993).
7. Battaglia, G., M. Shannon, B. Borgundvaag, and M.Titeler. pH-dependent
modulation of agonist interactions with [3H]-ketanserin-labelled receptors.
Life Sci. 33:2011-2016 (1983).
8. Hall, M. D, H. Gozlan, M. B. Emerit, S. El Mestikawy, L. Pichat, and M.
Hamon. Differentiation of pre- and post-synaptic high affinity serotonin
receptor binding sites using physico-chemical parameters and modifying
agents. Neurochem. Res. 11:891-912 (1986).
9. Motulsky, H. J., and P. A. Insel. Influence of sodium on the _2-adrenergic
receptor system of human platelets: role for intraplatelet sodium in receptor binding. J. Biol. Chem. 258:3913-3919 (1983).
10. Gende, O. A., M. C. Camilion de Hurtado, and H. E. Cingolani. Efecto de
las variaciones del pH sobre la union de agonistas y antagonistas al
receptor beta adrenergico. Acta Physiol. Pharmacol. Latinoam. 35:205-
216 (1985).
11. Hollis, C. M., and P.G. Strange. Studies on the structure of the ligand-
binding site of the brain D1 dopamine receptor. Biochem. Pharmacol.
44:325-334 (1992).
12. Neve, K. A. Regulation of dopamine D2 receptors by sodium and pH. Mol.
Pharmacol. 39:570-578 (1991).
13. Williamson, R. A., and P.G. Strange. Evidence for the importance of a
carboxyl group in the binding of ligands to the D2 dopamine receptor. J.
Neurochem. 55:1357-1365 (1990).
14. Presland, J. P., and P.G. Strange. pH dependence of sulpiride binding to
D2 dopamine receptors in bovine brain. Biochem. Pharmacol. 41:R9-R12
(1991).
15. Clancy, B. M., and S. Maayani. 5-Hydroxytryptamine receptor in isolated
rabbit aorta: characterization with tryptamine analogs. J. Pharmacol. Exp.
Ther. 233:761-769 (1985).
16. Clancy, B. M. A pharmocological characterization of the
5-Hydroxytryptamine2 (5-HT2) receptor in the isolated rabbit aorta with
tryptamine analogs, and competitive and nonsurmuntable antagonists:
analyses with steady-state and kinetic methods. Thesis, Mount Sinai
School of Medicine: New York, 1987.
17. Bowman, W. C., and M. J. Rand. Textbook of Pharmacology. Blackwell
Scientific Publications, Oxford (1980).
18. Pedersen, S. E., and E. M. Ross. Functional activation of _-adrenergic
receptors by thiols in the presence or absence of agonists. J. Biol. Chem.
260:14150-14157 (1985).
19. Florio, V. A., and P. C. Sternweis. Mechanisms of muscarinic receptor
action on Go in reconstituted phospholipid vesicles. J. Biol. Chem.
264:3909-3915 (1989).
20. Tang, L.-H., and E. Aizenman. Modulation of the N-methyl-D-aspartate
receptor channel by a voltage-dependent sulfhydryl redox process. Mol.
Pharmacol. 44:473-478 (1993).
21. Suen, E. T., E. Stefanini, and Y.C. Clement-Cormier. Evidence for essential thiol groups and disulfide bonds in agonist and antagonist binding to the
dopamine receptor. Biochem. Biophys. Res. Commun. 96:953-960 (1980).
22 Sidhu, A., S. Kassis, J. Kebabian, and P. H. Fishman. Sulfhydryl group(s)
in the ligand binding site of the D-1 dopamine receptor: specific protection
by agonist and antagonist. Biochemistry 25:6695-6701 (1986).
23. Dewar, K. M., and T. A. Reader. Specific [3H]SCH23390 binding to
dopamine D1 receptors in cerebral cortex and neostriatum: role of disulfide and sulfhydryl groups. J. Neurochem. 52:472-482 (1989).
24. Hall, A. S., C. Errol, S. E. Bryson, S. G. Ball, and A. J. Balmforth. Thiol
group identification at or near the agonist binding site of the vascular
dopamine receptor. Eur. J. Pharmacol. Mol. Pharmacol. 226:253-258
(1992).
25. Quennedey, M., J. Bockaert, and B. Rouot. Direct and indirect effects of
sulfhydryl blocking agents on agonist and antagonist binding to central _1- and _2-adrenoceptors. Biochem. Pharmacol. 33:3923-3928 (1984).
26. Mattens, E., S. Bottari, A. Vokaer, and G. Vauquelin. Arginine and cysteine
residues in the ligand binding site of alpha 2- adrenergic receptors. Life
Sci. 36:355-362 (1985).
27. Nakata, H.,J. W. Regan, and R. J. Lefkowitz. Chemical modification of _2-
adrenoceptors: possible role for tyrosine in the ligand binding site.
Biochem. Pharmacol. 35:4089-4094 (1986).
28. Regan, J. W., H. Nakata, R. M. DeMarinis, M. G. Caron, and R. J. Lefkowitz.
Purification and characterization of the human platelet _2-adrenergic
receptor. J. Biol. Chem. 261:3894-3900 (1986).
29. Strauss, W. L., and J. C. Venter. A sulfhydryl group of the canine cardiac
beta-adrenergic receptor observd in the absence of hormone. Life Sci.
36:1699-1706 (1985).
30. Rath, P., P. H. M. Bovee-Geurts, W. J. DeGrip, and K. J. Rothschild.
Photoactivation of rhodopsin involves alterations in cysteine side chains:
detection of an S-H band in the meta I _ meta II FTIR difference spectrum.
Biophys. J. 66:2085-2091 (1994).
31. Probst, W. C., L. A. Snyder, D. I. Schuster, J. Brosius, and S. C. Sealfon.
Sequence alignment of the G-protein coupled receptor superfamily. DNA
Cell Biol. 11:1-20 (1992).
32. Noda, K., Y. Saad, R. M. Graham, and S. S. Karnik. The high affinity state
of the _2-adrenergic receptor requires unique interaction between
conserved and non-conserved extracellular loop cysteines. J. Biol. Chem.
269:6743-6752 (1994).
33. Candelore, M. R., S. L. Gould, W. S. Hill, A. H. Cheung, E. Rands, B. A.
Zemcik, I. S. Sigal, R. A. F. Dixon, and C. D. Strader. Identification of
residues essential for the active conformation of the _-adrenergic receptor
by site-directed mutagenesis, in Biology of Cellular Transducing Signals
(J. Y. Vanderhoek, ed). Plenum Press, New York, 11-19 (1990).
34. Liggett, S. B., M. Bouvier, B. F. O'Dowd, M. G. Caron, R. J. Lefkowitz, and A. DeBlasi. Substitution of an extracellular cysteine in the _2-adrenergic
receptor enhances agonist-promoted phosphorylation and desensitization. Biochem. Biophys. Res. Commun. 165:257-263 (1989).
35. Julius, D., K. N. Huang, T. J. Livelli, R. Axel, and T. M. Jessell. The 5HT2
receptor defines a family of structurally distinct but functionally conserved
serotonin receptors. Proc. Natl. Acad. Sci. USA 87:928-932 (1990).
36. Weber, G. Energetics of ligand binding to proteins. Adv. Protein Chem.
29:1-83 (1975).
37. McSwiney, B. A., and W. H. Newton. Reaction of smooth muscle to the H-
ion concentration. J. Physiol. 63:51-60 (1927).
38. Vyklicky, L. Jr., V. Vlachova, and J. Krusek. The effect of external pH
changes on responses to excitatory amino acids in mouse hippocampal
neurones. J. Physiol. 430:497-517 (1990).
39. Battaglia, G., M. Shannon, and M. Titeler. Guanyl nucleotide and divalent
cation regulation of cortical S2 receptors. J. Neurochem. 43:1213-1219
(1984).
40. Wang, C.-D., T. K. Gallagher, and J. C. Shih. Site-directed mutagenesis of
the serotonin 5-hydroxytryptamine2 receptor: identification of amino acids
necessary for ligand binding and receptor activation. Mol. Pharmacol.
43:931-940 (1993).
41. Ho, B. Y., A. Karschin, T. Branchek, N. Davidson, and H. A. Lester. The role of conserved aspartate and serine residues in ligand binding and in
function of the 5-HT1A receptor: a site-directed mutation study. FEBS Lett.
312:259-262 (1992).
42. Fraser, C. M., C.-D. Wang, D. A. Robinson, J. D. Gocayne, and J. C. Venter. Site-directed mutagenesis of m1 muscarinic acetylcholine receptors:
conserved aspartic acids play important roles in receptor function. Mol.
Pharmacol. 36:840-847 (1989).
43. Wang, C.-D., M. A .Buck, and C. M. Fraser. Site-directed mutagenesis of
_2A-adrenergic receptors: identification of amino acids involved in ligand
binding and receptor activation by agonists. Mol. Pharmacol. 40:168-179
(1991).
44. Strader, C. D., I. S. Sigal, R. B. Register, M. R. Candelore, E. Rands, and R. A. F. Dixon. Identification of residues required for ligand binding to the _-
adrenergic receptor. Proc. Natl. Acad. Sci. USA 84:4384-4388 (1987).
45. Curtis, C. A. M., M. Wheatley, S. Bansal, N. J. M. Birdsall, P. Eveleigh, E. K.
Pedder, D. Poyner, and E. C. Hulme. Propylbenzilylcholine mustard labels
an acidic residue in transmembrane helix 3 of the muscarinic receptor. J.
Biol. Chem. 264:489-495 (1989).
46. Strader, C. D., I. S. Sigal, M. R. Candelore, E. Rands, W. S. Hill, and R. A.
F. Dixon. Conserved aspartic acid residues 79 and 113 of the _-adrenergic receptor have different roles in receptor function. J. Biol. Chem.
263:10267-10271 (1988).
47. Rubenstein, L. A., and R. Osman. The interaction between 5-hydroxy-
tryptamine and tryptophan: a serotonin receptor model. J. Mol. Struct.
(Theochem) 235:321-342 (1991).
48. Fraser, C. M, F.-Z. Chung, C.-D. Wang, and J. C. Venter. Site-directed
mutagenesis of human _-adrenergic receptors: substitution of aspartic
acid-130 by asparagine produces a receptor with high-affinity agonist
binding that is uncoupled from adenylate cysclase. Proc. Natl. Acad. Sci
USA 85:5478-5482 (1988).
49. Zhu, S. Z., S. Z. Wang, J. Hu, and E. E. El-Fakahany. An arginine residue
conserved in most G protein-coupled receptors is essential for the function
of the m1 muscarinic receptor. Mol. Pharmacol. 45:517-523 (1994).
50. Scheer, A., F. Fanelli, T. Costa, P. G. De Benedetti, and S. Cotecchia.
Constitutively active mutants of the _1B-adrenergic receptor: role of highly
conserved polar amino acids in receptor activation. EMBO J. 15:3566-
3578 (1996).
51. Frankel, R. R., T. P. Sakmar, R. M. Graham, and H. G. Khorana. Structure
and function in rhodopsin: studies of the interaction between the
cytoplasmic domain and transducin. J. Biol. Chem. 267:14767-14774
(1992).
52. Gether, U., S. Lin, and B. K. Kobilka. Fluorescent labeling of purified _2
adrenergic receptor: evidence for ligand-specific conformational changes.
J. Biol. Chem. 47:28268-28275 (1995).
relation_type: []
relation_uri: []
reportno: ~
rev_number: 10
series: ~
source: ~
status_changed: 2007-09-12 16:55:42
subjects:
- bio-phys
- neuro-mod
- neuro-physio
- bio-theory
- neuro-pharm
succeeds: ~
suggestions: ~
sword_depositor: ~
sword_slug: ~
thesistype: ~
title: Activation of G protein-coupled receptors entails cysteine modulation of agonist binding
type: journalp
userid: 5406
volume: 430