---
abstract: 'Visual occlusion events constitute a major source of depth information. This paper presents a self-organizing neural network that learns to detect, represent, and predict the visibility and invisibility relationships that arise during occlusion events, after a period of exposure to motion sequences containing occlusion and disocclusion events. The network develops two parallel opponent channels or "chains" of lateral excitatory connections for every resolvable motion trajectory. One channel, the "On" chain or "visible" chain, is activated when a moving stimulus is visible. The other channel, the "Off" chain or "invisible" chain, carries a persistent, amodal representation that predicts the motion of a formerly visible stimulus that becomes invisible due to occlusion. The learning rule uses disinhibition from the On chain to trigger learning in the Off chain. The On and Off chain neurons can learn separate associations with object depth ordering. The results are closely related to the recent discovery (Assad & Maunsell, 1995) of neurons in macaque monkey posterior parietal cortex that respond selectively to inferred motion of invisible stimuli.'
altloc:
- http://www.cs.unc.edu/Research/brainlab/PAPERS/occlu9601.ps.gz
chapter: ~
commentary: ~
commref: ~
confdates: ~
conference: ~
confloc: ~
contact_email: ~
creators_id: []
creators_name:
- family: Marshall
given: J A
honourific: ''
lineage: ''
- family: Alley
given: R K
honourific: ''
lineage: ''
- family: Hubbard
given: R S
honourific: ''
lineage: ''
date: 1996
date_type: published
datestamp: 1998-04-28
department: ~
dir: disk0/00/00/04/38
edit_lock_since: ~
edit_lock_until: ~
edit_lock_user: ~
editors_id: []
editors_name:
- family: Touretsky
given: D S
honourific: ''
lineage: ''
- family: Moser
given: M C
honourific: ''
lineage: ''
- family: Hasselmo
given: M E
honourific: ''
lineage: ''
eprint_status: archive
eprintid: 438
fileinfo: /style/images/fileicons/application_postscript.png;/438/2/occlu9601.ps
full_text_status: public
importid: ~
institution: ~
isbn: ~
ispublished: pub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: ~
lastmod: 2011-03-11 08:53:56
latitude: ~
longitude: ~
metadata_visibility: show
note: ~
number: ~
pagerange: 816-822
pubdom: FALSE
publication: Advances in Neural Information Processing Systems
publisher: 'Cambridge MA: Mit Press'
refereed: FALSE
referencetext: ~
relation_type: []
relation_uri: []
reportno: ~
rev_number: 10
series: ~
source: ~
status_changed: 2007-09-12 16:27:53
subjects:
- bio-ani-cog
- comp-neuro-sci
- comp-sci-art-intel
- comp-sci-mach-vis
- comp-sci-neural-nets
succeeds: ~
suggestions: ~
sword_depositor: ~
sword_slug: ~
thesistype: ~
title: Learning to predict visibility and invisibility from occlusion events
type: bookchapter
userid: 106
volume: ~