This site has been permanently archived. This is a static copy provided by the University of Southampton.
%A Peter D. Turney
%J Computational Linguistics
%T Similarity of Semantic Relations
%X There are at least two kinds of similarity. Relational similarity is
correspondence between relations, in contrast with attributional similarity,
which is correspondence between attributes. When two words have a high
degree of attributional similarity, we call them synonyms. When two pairs
of words have a high degree of relational similarity, we say that their
relations are analogous. For example, the word pair mason:stone is analogous
to the pair carpenter:wood. This paper introduces Latent Relational Analysis (LRA),
a method for measuring relational similarity. LRA has potential applications in many
areas, including information extraction, word sense disambiguation,
and information retrieval. Recently the Vector Space Model (VSM) of information
retrieval has been adapted to measuring relational similarity,
achieving a score of 47% on a collection of 374 college-level multiple-choice
word analogy questions. In the VSM approach, the relation between a pair of words is
characterized by a vector of frequencies of predefined patterns in a large corpus.
LRA extends the VSM approach in three ways: (1) the patterns are derived automatically
from the corpus, (2) the Singular Value Decomposition (SVD) is used to smooth the frequency
data, and (3) automatically generated synonyms are used to explore variations of the
word pairs. LRA achieves 56% on the 374 analogy questions, statistically equivalent to the
average human score of 57%. On the related problem of classifying semantic relations, LRA
achieves similar gains over the VSM.
%N 3
%K analogies, semantic relations, vector space model, noun-modifier expressions, latent relational analysis
%P 379-416
%V 32
%D 2006
%L cogprints5098