--- abstract: 'After presenting evidence that the electrical activity recorded from the brain surface can reflect metastable state transitions of neuronal configurations at the mesoscopic level, I will suggest that their patterns may correspond to the distinctive spatio-temporal activity in the Dynamic Core (DC) and the Global Neuronal Workspace (GNW), respectively, in the models of the Edelman group on the one hand, and of Dehaene-Changeux, on the other. In both cases, the recursively reentrant activity flow in intra-cortical and cortical-subcortical neuron loops plays an essential and distinct role. Reasons will be given for viewing the temporal characteristics of this activity flow as signature of Self-Organized Criticality (SOC), notably in reference to the dynamics of neuronal avalanches. This point of view enables the use of statistical Physics approaches for exploring phase transitions, scaling and universality properties of DC and GNW, with relevance to the macroscopic electrical activity in EEG and EMG.' altloc: [] chapter: ~ commentary: ~ commref: ~ confdates: ~ conference: ~ confloc: ~ contact_email: ~ creators_id: [] creators_name: - family: Werner given: Gerhard honourific: M.D. lineage: '' date: 2006-11 date_type: published datestamp: 2006-12-08 department: ~ dir: disk0/00/00/52/75 edit_lock_since: ~ edit_lock_until: ~ edit_lock_user: ~ editors_id: [] editors_name: [] eprint_status: archive eprintid: 5275 fileinfo: /style/images/fileicons/application_pdf.png;/5275/1/BrainDynamics.pdf full_text_status: public importid: ~ institution: ~ isbn: ~ ispublished: ~ issn: ~ item_issues_comment: [] item_issues_count: 0 item_issues_description: [] item_issues_id: [] item_issues_reported_by: [] item_issues_resolved_by: [] item_issues_status: [] item_issues_timestamp: [] item_issues_type: [] keywords: 'Metastability, Self-Organized Criticality, phase Transitions, Dynamic Core Hypothesis, Global Workspace, Non-Linear Dynamics, Operational Architectonics, Microstates' lastmod: 2011-03-11 08:56:43 latitude: ~ longitude: ~ metadata_visibility: show note: 'Some aspects of this paper were presebted at a meeting of a Special Interest Group of INNS, November 4, 2006, Arlington TX' number: ~ pagerange: ~ pubdom: FALSE publication: ~ publisher: ~ refereed: FALSE referencetext: | Bak,P., C. Tang, and K. Wiesenfeld, 1988. Self-organized criticality. Physical Review A 38:364-374. Bak, P., 1996. How Nature works: the science of self-organized criticality. Copernicus, New York. Basar, E., 1983. Toward a physical approach to integrative Physiology: brain dynamics and physical causality. Amer.J.Physiol.245, R510-R533. Basar, E., 2004. Macrodynamics of electrical activity in the whole brain. International Journal of Bifurcation and Chaos 14:363-381. Beggs, J. M., Plenz, D., 2003. Neuronal avalanches in neocortical circuits. J. Neurosci 23,11167-11177. Beggs, J. M., Plenz. D., 2004. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24:5216-5229. Binney, J., 1992, The theory of critical phenomena. Clarendon Press, Oxford. Blanchard, P., Cessac, B., Kruger, T., 2000. What can one learn about self-organized criticality from Dynamical system theory ? J. Statist. Phyics 98:375-404. Breakspear, M., Stam, C.J., 2005.Dynamics of a neural system with a multiscale architecture. Phil.Trans.R.Soc.B 360:1051-1074. Changeux, J-P., 1983. L’homme neuronal. Fayard, Paris. Changeux, J-P., Dehaene, S., 1989. Neuronal models of cognitive functions. Cognition 33:63-109. Changeux,J-P., Michel,C.M., 2004. Mechanism of neural Integration at the Brain-scale Level pp.347-370, In: Microcircuits, Grillner, S. and Graybiel, A.M., edits., The MIT Press, Cambridge MA. Chialvo, D.R., 2004. Critical brain networks, Physica A 340:756-765. Chialvo, D.R.,2006. The brain near the edge. 9th Granada Seminar on Computational Physics, Granada, Spain. Cosmelli, D., Lachaux, J-P. Thompson, E., 2006. Neurodynamics of consciousness. forthcoming in: The Cambridge Handbook of Consciousness, Zelazo, P.D., Moscovitch, M., Thomson, E.,edits. Dehaen, S., Changeux, J-P., Nadal, J-P., 1987. Neural networks that learn temporal sequences by selection. Proc Natl Acad Sci USA 84:2727-2731. Dehaene, S., Kerszberg, M., Changeux, J-P., 1998. A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 95,14529-14534. Dehaene, S., Naccache, L., 2001. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79:1-37. Dehaene, S, Sergent, C., Changeux, J-P., 2003. A neuronal network model linking subjective reports and objective physiological data during conscious perception, Proc Natl Acad Sci USA 100:8520-8525. Deahaene, S., Changeux, J-P., 2004, Neuronal mechanisms for access to consciousness. In M Gazzaniga ed. The Cognitive Neurosciences , 3rd edit, Norton, N.Y., pp.1145-1157. Dickman, Rp, Munoz, M. A., Vespignani, A., Zapperi, S.,.2002/2006. Paths to self-organized criticality. arXiv:cond-mat/9910454 v2. Edelman, G.M., 1989, The remembered present: a biological theory of consciousness. Basic Books, NY. Edelman, G.M., 1993. Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron 10:115-125. Edelman, G.M., Tononi, G., 2001. Consciousness: how matter becomes Imagination. Penguin, London. Eguiluz, V.M., Chialvo, D.R., Cecchi, G,, Baliki, M., Apkarian, A.V., 2005. Scale-free Brain functional networks. Phys. Rev. Lett. 94:018102. Fingelkurts, A .A., Fingelkurts, A. A., 2001, Operational architectonics of the human brain biopotential field: Towards solving the mind-brain Problem. Mind and Brain 2:262-296. Fingelkurts, A. A. , Fingelkurts, A. A.,2004. Making complexity simpler: multivariability and metastability in the brain. Internat J.Neurosci 114:843-862. Fingelkurts ,An.A., Fingelkurts Al.A., Kivisaari,R., Pekkonen,E, Ilmoniemi, R.J., Kahkonen, S.A., 2004. Local and remote functional connectivity of neocortex under the inhibition influence. NeuroImage 22: 1390-1406. Fingelkurts, A. A., Fingelkurts, A. A., 2005. Mapping of the brain operational architectonics. pp 59-98, in: F J Chen, ed , Focus on brain mapping research, Nova Science Publ. http://www.bm-science.com/team/chap.3.pdf Fingelkurts, A.A., Fingelkurts, A.A., 2006. Timing in cognition and EEG brain dynamics: discreteness versus continuity. Cogn.Process 7:135-162. Flyvbjerg, H., 1996., Simplest possible self-organized critical system, Phys Rev Lett 76:940-943. Freeman, W.J., 2000. Neurodynamics. Springer, New York. Freeman, W.J . 2003. The wave packet: an action potential for the 21st century. J.Integr. Neurosci. 2:3-30. Freeman, W.J., 2005. A field-theoretic approach to understanding scale-free neocortical dynamics. Biol.Cybern. 92:350-359. Freeman, W.J., Holmes, M.D., 2005. Metastability, instability, and state transitions in neocortex. Neural Networks 18:497-504. Frigg, R., 2003. Self-organized criticality –what it is and what it isn’t. Stud. Hist. Phil. Sci 34:613-632. Gisiger, T., 2001. Scale invariance in biology: coincidence or footprint of a universal mechanism ? Biol. Rev. 76:161-209. Grimmett, G., 1989. Percolation. Springer N.Y. Jensen, H. J., 1998. Self-organized criticality, Cambridge University Press. Kadanoff, L.P., Goetze, W., Hamblen, D., Hecht, R., Lewis, E.A.S., Palciauskas, V.V. , Rayl, M., Swift, L., 1967. Static phenomena near critical points: theory and experiment. Rev. Modern Physics 39:395-431. Kadanoff, L. P., Nagel, S. R., Wu, L., Zhou, S., 1989. Scaling and universality in avalanches. Physical Rev A 39:6524-6537. Kadanoff, L.P., 1990. Scaling and universality in statistical physics. Physica A 163:1-14. Kaplan, A.Y.A., Fingelkurts, A.A., Fingelkurts, A.A., Darkhovsky, B.S., 1997. Topological mapping of sharp reorganization synchrony in multichannel EEG. Am J Electroneurodiagostic Technol. 37:265-275. Koenig, T., Prichep, L., Lehmann D., 2002., Millisecond by millisecond, year by year: normative EEF microstates and developmental stages. Neuroimage 16:41-48. Koukou,M.,Lehmann,D.,1987. An Information processing perspective of psychophysiological measurements. J.Psychophysiol. 1: 109-112. Kozma, R., Puljic, M., Balister, P., Bollobas, B., Freeman, W.J., 2005, Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol. Cyber. 92:367-379. Lehmann, d., 1984. EEF assessment of brain activity: spatial aspects, segmentation and imaging. Int.J.Psychophysiol. 1:267-276. Lehmann, D., Henggeler, B., Koukou,M.,Michel, C.M.,1993. Source localization of brain electric field frequency bands. Cogn.Brain Res. 1:203-210. Lehmann, D, Strik WK, Henggeler B, Koenig T, Koukkou, M., 1998., Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Internat J Psychophysiol 29:1-11 Lehmann, D., Faber, P.L., Gianotti, L.R.R., Kochi, K., Pascual-Marqui, R.D., 2006, Coherence and phase Locking in the scalp EEG and between LORETA model sources, and microstates as putative Mechanisms of brain temporo-spatial functional organization. J. Physiol.Paris 99:29-36. Le vanQuyen, M., 2003. Disentangling the dynamic core: a research program for a neurodynamics at a large scale. Biol Res 36:67-88. Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M, Ilmoniemi, R.J., 2001. Long –range temporal correlations and Scaling behavior in human brain oscillations. J. Neurosci. 21: 1370-1377. Llinas, R., Ribary, U., Contreras, D., Pedroarena, C., 1998. The neuronal basis of consciousness. Phil Trans R Soc Lond B 353:1841-1849. Lumer, E.D., Edelman, G.M., Tononi, G., 1997,. Neural dynamics in a model of the thalamocortical system. I. Layers, loops, and the emergence of fast synchronous rhythms. Cerebral Cortex 7:207-227. McComb, W.D., 2004. Renormalization Methods. Clarendon Press, Oxford Michel, C.M., Seek, M., Landis, T.,1999. Spatiotemporal dynamics of human cognition. News Physiol. Sci. 14: 206-214. Michel, C.M., Thus, G., Morand S. et al., Electric source imaging of human brain functions. Brain Res. Rev. 36:108-118. Nunez, P., 1995. Neocortical Dynamics and human EEG Rhythms, Oxford University Press, N.Y. Nunez, P., 2000. Toward a quantitative description of large-scale neocortical dynamic function and EEG. The Behavioral and Brain Sciences 23:371-437. Odor, G., 2004. Universality classes in nonequilibrium lattice systems. Revs Modern Physics 76:663-724. Olam, Z., Feder, H. J. S., Christensen, K., 1992. Self-organized criticality in a continuous nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68:1244-1247. Paczuski, M., Maslov, S., Bak, P., 1996. Avalanche dynamics in evolution, growth and depinning models. Physical Rev. E 53:414-443. Pietronero, L., Vespignani, A., Zapperi, S., 1994. Renormalization scheme for self-organized criticality in sandpile models. Phys. Rev. Lett. 72:690-1693. Plenz, D., Thiagarajan,T.C., 2006. The organizing principles of neuronal avalanches: cell assemblies in the cortex ? TINS (in print). Raichle, M.E., 2006. The Brain’s dark energy. Science 314:1249-1250. Sigman M., Dehaene, S., 2005. Parsing a cognitive task: a characterization of the Mind’s bottleneck. PLoS 3(2): e37. Sporns, O., Tononi, G., Edelman, G.M., 1991. Modeling perceptual grouping and figure-ground segregation by means of active re-entrant connections. Proc Natl Acad Sci USA 88:129-133. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C., 2004. Organization, development and function of complex brain networks. Trends in Cog. Sci. 8:418-425. Stauffer, D., Aharony, A., 1991/94. Introduction to percolation theory. CRC Press Boca Raton. Tononi, G., Sporns, O., Edelman, G.M., 1992. Reentry and the problem of integrating multiple cortical areas: Simulation of dynamic integration in the visual system. Cerebral Cortex 2:310-335. Vespignani, A.S., Zapperi, S., Pietronero, L., 1995. Renormalization approach to self-organized critical behavior of sandpile models. Physical Rev E 51:1711-1751. Vogels, T.P., Rajan, K., Abbott, L.F., 2005. Neural network Dynamics. Annu. Rev. Neurosci. 28:357-376. Werner,G., 2006. Metastability, Criticality and Phase Transitions in Brain and its Models, BioSystems, in press. Wilson, K. G., 1979. Problems in physics with many scales. Scientific American 241:149-157 (August). Yeomans, J.M., 1992/2002. Statistical Mechanics of Phase Transitions. Clarendon Press, Oxford. relation_type: [] relation_uri: [] reportno: ~ rev_number: 12 series: ~ source: ~ status_changed: 2007-09-12 17:08:37 subjects: - comp-sci-mach-dynam-sys succeeds: ~ suggestions: ~ sword_depositor: ~ sword_slug: ~ thesistype: ~ title: Brain Dynamics across levels of Organization type: preprint userid: 694 volume: ~