---
abstract: 'Building on the work of Peter Hinst and Geo Siegwart, we develop a pragmatised natural deduction calculus, i.e. a natural deduction calculus that incorporates illocutionary operators at the formal level, and prove its adequacy. '
altloc:
- http://www.phil.uni-greifswald.de/fileadmin/mediapool/ifp/pdf/A_Speech_Act_Calculus.pdf
- http://hal.archives-ouvertes.fr/hal-00609242/en/
- http://philpapers.org/archive/CORASA.1.pdf
chapter: ~
commentary: ~
commref: ~
confdates: ~
conference: ~
confloc: ~
contact_email: ~
creators_id:
- moe4284@gmx.de
- Friedrich.Reinmuth@web.de
creators_name:
- family: Cordes
given: Moritz
honourific: M. A.
lineage: ''
- family: Reinmuth
given: Friedrich
honourific: M. A.
lineage: ''
date: 2011-07-18
date_type: completed
datestamp: 2011-08-30 04:20:50
department: ~
dir: disk0/00/00/75/96
edit_lock_since: ~
edit_lock_until: 0
edit_lock_user: ~
editors_id: []
editors_name: []
eprint_status: archive
eprintid: 7596
fileinfo: application/pdf;http://cogprints.org/7596/1/A_Speech_Act_Calculus.pdf
full_text_status: public
importid: ~
institution: ~
isbn: ~
ispublished: unpub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: 'Speech Act Calculus, Natural Deduction, Logic, Pragmatisation'
lastmod: 2011-08-30 04:20:50
latitude: ~
longitude: ~
metadata_visibility: show
note: Translation of our paper "Ein Redehandlungskalkül. Ein pragmatisierter Kalkül des natürlichen Schließens nebst Metatheorie"; online available at http://hal.archives-ouvertes.fr/hal-00532643/en/ .
number: ~
pagerange: ~
pubdom: FALSE
publication: ~
publisher: ~
refereed: FALSE
referencetext: "BOSTOCK, D. Intermediate Logic (1997): Intermediate Logic. Oxford: Clarendon Press.\r\n\r\nDALEN, D. V. Logic and structure (2004): Logic and structure. 4. ed. Berlin: Springer.\r\n\r\nDEISER, O. Mengenlehre (2004): Einführung in die Mengenlehre. Die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo. 2nd ed. Berlin: Springer.\r\n\r\nEBBINGHAUS, H.-D. Mengenlehre (2003): Einführung in die Mengenlehre. 4th ed. Heidelberg: Spektrum, Akad. Verl.\r\n\r\nEBBINGHAUS, H.-D.; FLUM, J.; THOMAS, W. Mathematische Logik (1996): Einführung in die mathematische Logik. 4th ed. Heidelberg: Spektrum, Akad. Verl.\r\n\r\nGLOEDE, K. Mathematische Logik (2006/07): Skriptum zur Vorlesung Mathematische Logik. Mathematisches Institut der Universität Heidelberg. http://www.math.uni-heidelberg.de/logic/skripten/math_logik/ mathlogik.pdf.\r\n\r\nGRÄDEL, E. Mathematische Logik (2009): Mathematische Logik. SS 2009. Mathematische Grundlagen der Informatik. RWTH Aachen. http://www.logic.rwth-aachen.de/files/MaLo/script-2up.pdf.\r\n\r\nHINST, P. Pragmatische Regeln (1982): Pragmatische Regeln des logischen Argumentierens. In: GETHMANN, C. F. (ed.): Logik und Pragmatik. Frankfurt am Main: Suhrkamp, pp. 199–215.\r\n\r\nHINST, P. Logischer Grundkurs (1997/1998): Logischer Grundkurs I. Logische Propädeutik und Mengenlehre. WS 1997/1998. LMU München.\r\n\r\nHINST, P. Logik (2009): Grundbegriffe der Logik. Typescript, München.\r\n\r\nKALISH, D.; MONTAGUE, R.; MAR, G. Logic (1980): Logic. Techniques of formal reasoning. 2nd ed. San Diego, Ca: Harcourt Brace Jovanovich.\r\n\r\nKLEINKNECHT, R. Grundlagen der modernen Definitionstheorie (1979): Grundlagen der modernen Defini-tionstheorie. Königstein/Ts.: Scriptor-Verl.\r\n\r\nLINK, G. Collegium Logicum (2009): Collegium Logicum: Logische Grundlagen der Philosophie und der Wissenschaften. 2 volumes. Paderborn: Mentis, vol. 1.\r\n\r\nPELLETIER, F. J. A Brief History of Natural Deduction (1999): A Brief History of Natural Deduction. In: History and Philosophy of Logic, vol. 20.1, pp. 1–31. Online at http://www.sfu.ca/~jeffpell/papers/NDHistory.pdf.\r\n\r\nPELLETIER, F. J. A History of Natural Deduction (2001): A History of Natural Deduction and Elementary Logic Textbooks. 1999. In: WOODS, J.; BROWN, B. (eds.): Logical Consequence: Rival Approaches. Proceedings of the 1999 Conference of the Society of Exact Philosophy. Oxford: Hermes Science Publishing, pp. 105–138. Online at http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf.\r\n\r\nPRAWITZ, D. Natural deduction (2006): Natural deduction. A proof-theoretical study. Unabridged republ. of the ed. Almqvist & Wiksell, Stockholm, 1965. Mineola, NY: Dover Publ.\r\n\r\nRAUTENBERG, W. Mathematical Logic (2006): A Concise Introduction to Mathematical Logic. 2nd ed. New York: Springer.\r\n\r\nSHAPIRO, S. Classical Logic (2000 et seqq.): Classical Logic. In: ZALTA, E. N. (ed.): The Stanford Encyclope-dia of Philosophy, Winter 2009 Edition. http://plato.stanford.edu/archives/win2009/entries/logic-classical/.\r\n\r\nSIEGWART, G. Vorfragen (1997): Vorfragen zur Wahrheit. Mu?nchen: Oldenbourg.\r\n\r\nSIEGWART, G. Denkwerkzeuge (2002 et seqq.): Denkwerkzeuge. Eine Vorschule der Philosophie. http://www.phil.uni-greifswald.de/bereich2/philosophie/personal/prof-dr-geo-siegwart/skripte.html.\r\n\r\nSIEGWART, G. Alethic Acts (2007): Alethic Acts and Alethiological Reflection. An Outline of a Constructive Philosophy of Truth. In: SIEGWART, G.; GREIMANN, D. (eds.): Truth and speech acts. Studies in the philosophy of language. New York [u.a.]: Routledge, pp. 41–58.\r\n\r\nTENNANT, N. Natural logic (1990): Natural logic. 1st ed., Repr. in paperback with corrections. Edinburgh: Edinburgh Univ. Press.\r\n\r\nWAGNER, H. Logische Systeme (2000): Logische Systeme der Informatik. WS 2000/2001. Universität Dort-mund. http://lrb.cs.uni-dortmund.de/Lehre/LSI_WS9900/lsiws2000.pdf."
relation_type: []
relation_uri: []
reportno: ~
rev_number: 20
series: ~
source: ~
status_changed: 2011-08-30 04:20:50
subjects:
- phil-logic
succeeds: ~
suggestions: ~
sword_depositor: ~
sword_slug: ~
thesistype: ~
title: A Speech Act Calculus. A Pragmatised Natural Deduction Calculus and its Meta-theory
type: other
userid: 11524
volume: ~