--- abstract: 'Complex cognition addresses research on (a) high-level cognitive processes – mainly problem solving, reasoning, and decision making – and their interaction with more basic processes such as perception, learning, motivation and emotion and (b) cognitive processes which take place in a complex, typically dynamic, environment. Our focus is on AI systems and cognitive models dealing with complexity and on psychological findings which can inspire or challenge cognitive systems research. In this overview we first motivate why we have to go beyond models for rather simple cognitive processes and reductionist experiments. Afterwards, we give a characterization of complexity from our perspective. We introduce the triad of cognitive science methods – analytical, empirical, and engineering methods – which in our opinion have all to be utilized to tackle complex cognition. Afterwards we highlight three aspects of complex cognition – complex problem solving, dynamic decision making, and learning of concepts, skills and strategies. We conclude with some reflections about and challenges for future research.' altloc: [] chapter: ~ commentary: ~ commref: ~ confdates: ~ conference: ~ confloc: ~ contact_email: ~ creators_id: - ~ - ~ - ~ - funke@uni-hd.de creators_name: - family: Schmid given: Ute honourific: '' lineage: '' - family: Ragni given: Marco honourific: '' lineage: '' - family: Gonzalez given: Cleotilde honourific: '' lineage: '' - family: Funke given: Joachim honourific: '' lineage: '' date: 2011 date_type: published datestamp: 2012-04-25 12:43:18 department: ~ dir: disk0/00/00/81/99 edit_lock_since: ~ edit_lock_until: 0 edit_lock_user: ~ editors_id: [] editors_name: [] eprint_status: archive eprintid: 8199 fileinfo: application/pdf;http://cogprints.org/8199/1/Schmid_etal_2011_CognSystemsRes.pdf full_text_status: public importid: ~ institution: ~ isbn: ~ ispublished: pub issn: ~ item_issues_comment: [] item_issues_count: ~ item_issues_description: [] item_issues_id: [] item_issues_reported_by: [] item_issues_resolved_by: [] item_issues_status: [] item_issues_timestamp: [] item_issues_type: [] keywords: 'complex problem solving, dynamic systems, complexity' lastmod: 2012-04-25 12:43:18 latitude: ~ longitude: ~ metadata_visibility: show note: ~ number: ~ pagerange: 211-218 pubdom: TRUE publication: Cognitive Systems Research publisher: Elsevier refereed: TRUE referencetext: "Anderson, J. (1987). Skill acquisition: Compilation of weak-method problem solutions. Psychological Review, 94, 192–210.\r\nAnderson, J., D, B., Byrne, M., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036–1060.\r\nAnderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.\r\nBroadbent, D. E. (1977). Levels, hierarchies, and the locus of control. Quarterly Journal of Experimental Psychology, 29, 181–201.\r\nBuchanan, M. (2002). Nexus: Small worlds and the groundbreaking theory of networks. New York: Norton.\r\nChi, M., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.\r\nCooper, G., & Herskovits, E. (1992). A bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.\r\nCronin, M., & Gonzalez, C. (2007). Understanding the building blocks of system dynamics. System Dynamics Review, 23(1), 1–17.\r\nCronin, M., Gonzalez, C., & Sterman, J. D. (2009). Why don’t well-educated adults understand accumulation? A challenge to researchers, educators and citizens. Organizational Behavior and Human Decision Processes, 108, 116–130.\r\nDix, A., Finlay, J., Abowd, G., & Beale, R. (2004). Human–computer interaction (3rd ed.). New Jersey: Prentice Hall.\r\nDörner, D. (1980). On the difficulty people have in dealing with complexity. Simulation & Games, 11, 87–106.\r\nDörner, D. (1989). Die Logik des Misslingens. Strategisches Denken in komplexen Situationen. Reinbek bei Hamburg: Rowohlt.\r\nDörner, D., Kreuzig, H. W., Reither, F., & Sta ̈udel, T. (1983). Lohhausen. vom umgang mit unbestimmtheit und komplexita ̈t. Bern: Huber.\r\nDörner, D., & Wearing, A. (1995). Complex problem solving: Toward a (computer-simulated) theory. In P. Frensch & J. Funke (Eds.), Complex problem solving: The european perspective (pp. 65–99). Hillsdale, NJ: Lawrence Erlbaum.\r\nDutt, V., & Gonzales, C. (2007). Slope of inflow impacts dynamic decision making. In Proceedings of the 25th International Conference of the System Dynamics Society (pp. 79). Boston, MA: System Dynamics Society.\r\nFeigenbaum, E. (1977). The art of artificial intelligence: themes and case studies in knowledge engineering. In Proceedings of the 5th international joint conference on artificial intelligence (Vol. 2, pp. 1014–1029).\r\nForbus, K. D., & Hinrichs, T. R. (2006). Companion cognitive systems – A step toward human-level AI. AI Magazine, Achieving Human-Level Intelligence through Integrated Systems and Research, 27(2), 83–95, special issue.\r\nFrensch, P. A., & Funke, J. (Eds.). (1995). Complex problem solving: The European perspective. Hillsdale, NJ: Lawrence Erlbaum Associates. \r\nFunke, J. (1993). Microworlds based on linear equation systems: A newapproach to complex problem solving and experimental results. In G. Strube & K.-F. Wender (Eds.), The cognitive psychology of knowledge. Amsterdam: Elsevier, pp. 313–330.\r\nFunke, J. (2006). Komplexes problemlo ̈ sen. In J. Funke (Ed.). Denken und problemlo ̈sen (Vol. 8). Go ̈ttingen: Hogrefe.\r\nFunke, J. (2010). Complex problem solving: A case for complex cognition? Cognitive Processing, 11(2), 133–142.\r\nGhallab, M., Nau, D., & Traverso, P. (2004). Automated planning: Theory and practice. San Francisco, CA: Morgan Kaufman.\r\nGonzalez, C., Best, B., Healy, A., Bourne, L., & Kole, J. (2010). A cognitive modeling account of fatigue. Journal of Cognitive Systems Research, 12, 19–32.\r\nGonzalez, C., Lerch, F. J., & Lebiere, C. (2003). Instance-based learning in dynamic decision making. Cognitive Science, 27, 591–635.\r\nGreiff, S. (2011). Individualdiagnostik der komplexen Problem- lo ̈sefa ̈higkeit. Mu ̈nster: Waxmann.\r\nHayes-Roth, F., Waterman, D., & Lenat, D. B. (Eds.). (1983). Building expert systems. Menlo Park, CA: Addison-Wesley.\r\nKlein, G., Ross, K. G., Moon, B. M., Klein, D. E., Hoffman, R. R., & Hollnagel, E. (2003). Macrocognition. IEEE Intelligent Systems, 18(3), 81–85.\r\nKlenk, M., & Forbus, K. (2009). Analogical model formulation for transfer learning in ap physics. Artificial Intelligence, 173(18), 1615–1638.\r\nKnauff, M., & Wolf, A. G. (2010). Complex cognition: The science of human reasoning, problem-solving, and decision-making. Cognitive Processing, 11(2), 99–102.\r\nKuehne, S., Forbus, K., Gentner, D., & Quinn, B. (2000). SEQL: Category learning as progressive abstraction using structure mapping. In L. Gleitman & A. Joshi (Eds.), Proc. of the 22nd annual conference of the cognitive science society. Mahwah, NJ: Erlbaum, pp. 770–775.\r\nLaird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An\r\narchitecture for general intelligence. Artificial Intelligence, 33, 1–64. Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in soar: The anatomy of a general learning mechanism. Machine Learning, 1, 11–46.\r\nLangley, P., & Choi, D. (2006). A unified cognitive architecture for\r\nphysical agents. In Proceedings of the twenty-first national conference on artificial intelligence. Boston, MA: AAAI Press.\r\nMarewski, J., Gaissmaier, W., & Gigerenzer, G. (2010). Good judgements do not require complex cognition. Cognitive Processing, 11(2), 103–122.\r\nMarr, D. (1982). Vision. Cambridge, MA: MIT Press.\r\nMitchell, T. M. (1997). Machine learning. New York: McGraw-Hill. Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.\r\nNewman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.\r\nOsman, M. (2010). Controlling uncertainty: A review of human behavior in complex dynamic environments. Psychological Bulletin, 136(1), 65–86.\r\nSchmid, U. (2008). Cognition and AI. Ku ̈nstliche Intelligenz, 22(1), 5–7. \r\nSchwering, A., Krumnack, U., Ku ̈hnberger, K.-U., & Gust, H. (2009). Syntactic principles of heuristic-driven theory projection. Cognitive Science Research, 10, 251–269.\r\nSenge, P. e. a. (1999). The dance of change: The challenges to sustaining momentum in learning organizations. New York: Doubleday. \r\nSterman, J. (2000). Business dynamics: System thinking and modeling for a complex world. New York: Irwin/McGraw-Hill.\r\nSterman, J., & Booth-Sweeney, L. (2002). Cloudy skies: Assessing public understanding of global warming. System Dynamics Review, 18(2), 207–240.\r\nSternberg, R., & Ben-Zeev, T. (2001). Complex cognition: The psychology of human thought. New York: Oxford University Press.\r\nSun, R., & Zhang, X. (2006). Accounting for a variety of reasoning data within a cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence, 18, 169–191.\r\nTenenbaum, J., Griffiths, T., & Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences, 10(7), 309–318.\r\nVanLehn, K. (Ed.). (1991). Architectures for intelligence. Hillsdale, NJ: Lawrence Erlbaum.\r\nWeller, S., & Schmid, U. (2006). Solving proportional analogies by generalization. In KI 2006: Advances in artificial intelligence, 29th annual German conference on AI, KI 2006, proceedings. Heidelberg: Springer.\r\nWooldridge, M. (2002). An introduction to multiagent systems. New York: Wiley." relation_type: [] relation_uri: [] reportno: ~ rev_number: 9 series: ~ source: ~ status_changed: 2012-04-25 12:43:18 subjects: - cog-psy - comp-sci-mach-dynam-sys succeeds: ~ suggestions: ~ sword_depositor: ~ sword_slug: ~ thesistype: ~ title: The challenge of complexity for cognitive systems type: journalp userid: 78 volume: 12