%A Julie M. Harris %A Jane H. Sumnall %T Detecting binocular 3-D motion in static 3-D noise: No effect of viewing distance. %X Relative binocular disparity cannot tell us the absolute 3-D shape of an object, nor its 3-D trajectory if it is moving, unless the visual system has independent access to how far away the object is at any moment. Indeed, as the viewing distance is changed, the same disparate retinal motions will correspond to very different real 3-D trajectories. In this paper we were interested in whether binocular 3-D motion detection is affected by viewing distance. We used a visual search task in which the observer is asked to detect a target dot, moving in 3-D, amidst 3-D stationary distractor dots. We found that distance does not affect detection performance. Motion-in-depth is consistently harder to detect than the equivalent lateral motion, for all viewing distances. For a constant retinal motion with both lateral and motion-in-depth components, detection performance is constant despite variations in viewing distance that produce large changes in the direction of the 3-D trajectory. We conclude that binocular 3-D motion detection relies on retinal, not absolute visual signals. %D 2000 %K vision stereopsis motion-in-depth viewing distance %L cogprints849