creators_name: Vigo , Ronaldo creators_name: Zeigler, Derek creators_name: Halsey , Phillip creators_id: vigo@ohio.edu creators_id: dz118006@ohio.edu type: journalp datestamp: 2013-11-18 21:03:26 lastmod: 2013-11-18 21:03:26 metadata_visibility: show title: Gaze and informativeness during category learning: Evidence for an inverse relation ispublished: pub subjects: cog-psy subjects: percep-cog-psy subjects: psy-phys full_text_status: public keywords: Category learning; Eye movements; Math modelling; Object-based attention; Representational information. abstract: In what follows, we explore the general relationship between eye gaze during a category learning task and the information conveyed by each member of the learned category. To understand the nature of this relationship empirically, we used eye tracking during a novel object classification paradigm. Results suggest that the average fixation time per object during learning is inversely proportional to the amount of information that object conveys about its category. This inverse relationship may seem counterintuitive; however, objects that have a high information value are inherently more representative of their category. Therefore, their generality captures the essence of the category structure relative to less representative objects. As such, it takes relatively less time to process these objects than their less informative companions. We use a general information measure referred to as representational information theory (Vigo, 2011a, 2013a) to articulate and interpret the results from our experiment and compare its predictions to those of three models of prototypicality. date: 2013-06-03 date_type: published publication: Visual Cognition volume: 21 number: 4 publisher: Taylor and Francis pagerange: 446 -476 refereed: TRUE referencetext: Bourne, L. E. (1966). Human conceptual behavior. Boston, MA: Allyn & Bacon. Cheng, S., & Liu, Y. (2012). Eye-tracking based adaptive user interface: implicit humancomputer interaction for preference indication. Journal on Multimodal User Interfaces, 5, 77�84. Djamasbi, S., Siegel, M., Skorinko, J., & Tullis, T. (2011). Online Viewing and Aesthetic Preferences of Generation Y and the Baby Boom Generation: Testing User Web Site Experience Through Eye Tracking.International Journal of Electronic Commerce,15, 121�158. Dreze, X., & Hussherr, F. X. (2003). Internet advertising: Is anybody watching? Journal of interactive marketing, 17, 8�23. Estes, W. K. (1986). Array models for category learning. Cognitive psychology, 18, 500�549. Estes, W. K. (1994). Classification and cognition (Oxford Psychology Series, No. 22). Oxford: Oxford University Press. Furrer, S. D., & Younger, B. A. (2005). Beyond the distributional input? A developmental investigation of asymmetry in infants’ categorization of cats and dogs. Developmental Science, 8, 544�550. doi:10.1111/j.1467-7687.2005.00446.x Garner, W. R. (1974). The processing of information and structure. New York, NY: Wiley. Hayhoe, M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in Cognitive Sciences, 9, 188�194. doi:10.1016/j.tics.2005.02.009 Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual Review of Psychology, 50, 243�271. doi:10.1146/annurev.psych.50.1.243 Kowler, E. (1991). The role of visual and cognitive processes in the control of eye movement. In E. Kowler (Ed.),Eye Movements and Their Role in Visual and Cognitive Processes(pp. 1�70). Amsterdam: Elsevier. Krajbich, I., & Rangel, A. (2011). A multi-alternative drift diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences, 108, 13852�13857. doi:10.1073/pnas.1101328108 Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22�44. doi:10.1037/0033-295X.99.1.22 Kruschke, J. K. (2003). Attention in learning. Current Directions in Psychological Science, 12, 171�175. doi:10.1111/1467-8721.01254 Little, D. R., Nosofsky, R. M., & Denton, S. E. (2011). Response-time tests of logical-rule models of categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1�27. doi:10.1037/a0021330 Little, D. R., Nosofsky, R. M., Donkin, C., & Denton, S. E. (2012). Logical Rules and the Classification of Integral-Dimension Stimuli. Journal of experimental psychology. Learning, memory, and cognition, 39, 801�820. Liversedge, S. P., & Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in Cognitive Sciences, 4, 6�14. doi:10.1016/S1364-6613(99)01418-7 Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111, 309�332. doi:10.1037/0033-295X.111.2.309 Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5, 229�240. doi:10.1038/nrn1348 Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207�238. doi:10.1037/0033-295X.85.3.207 Mele, M. L., & Federici, S. (2012). Gaze and eye-tracking solutions for psychological research. Cognitive processing, 13, 261�265. Najemnik, J., & Geisler, W. S. (2009). Simple summation rule for optimal fixation selection in visual search. Vision Research, 49, 1286�1294. doi:10.1016/j.visres.2008.12.005 Nelson, J. D. (2005). Finding useful questions: On Bayesian diagnosticity, probability, impact, and information gain.Psychological Review, 112, 979�999. doi:10.1037/0033-295X.112.4.979 Nelson, J. D. & Cottrell, G. W. (2007). A probabilistic model of eye movements in concept formation. Neurocomputing, 70, 2256�2272. doi:10.1016/j.neucom.2006.02.026 Nelson, J. D., McKenzie, C. R. M. Cottrell, G. W., & Sejnowski, T. J. (2010). Experience matters: Information acquisition optimizes probability gain. Psychological Science, 21, 960� 969. doi:10.1177/0956797610372637 Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., Mckinley, S. C., & Glauthier, S. C. (1994). Comparing models of rule-based classification learning: A replication and extension of Shepard, Hovland, and Jenkins (1961). Memory and Cognition, 24, 352�369. Nosofsky, R. M. Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-exception model of classification learning. Psychological Review, 101, 53�79. doi:10.1037/0033-295X.101.1.53 Nosofsky, R. M., & Zaki, S. R. (2002). Exemplar and prototype models revisited: Response strategies, selective attention, and stimulus generalization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 924�940. doi:10.1037/0278-7393.28.5.924. Oakes, L. M., & Ribar, R. J. (2005). A comparison of infants’ categorization in paired and successive presentation familiarization tasks.Infancy, 7, 85�98. doi:10.1207/s15327078in0701_7 Ozanne, J. L. Brucks, M., & Grewal, D. (1992). A study of information search behavior during the categorization of new products. Journal of Consumer Research, 18, 452�463. doi:10.1086/ 209273 Palmeri, T. J., & Nosofsky, R. M. (1995). Recognition memory for exceptions to the category rule. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 548�568. doi:10.1037/0278-7393.21.3.548 Pan, B., Hembrooke, H. A., Gay, G. K., Granka, L. A., Feusner, M. K., & Newman, J. K.(2004, March). The determinants of web page viewing behavior: an eye-tracking study. In Proceedings of the 2004 symposium on Eye tracking research & applications (pp. 147�154). San Antonio, TX. ACM. Quinn, P. C. (2004). Development of subordinate-level categorization in 3-to 7-month-old infants. Child Development, 75, 886�899. doi:10.1111/j.1467-8624.2004.00712.x Quinn, P. C., & Bhatt, R. S. (1998). Visual pop-out in young infants: Convergent evidence and an extension. Infant Behavior and Development, 21, 273�288. doi:10.1016/S0163-6383(98)90006-6 Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124, 372�422. doi:10.1037/0033-2909.124.3.372 Rayner, K., Smith, T. J., Malcolm, G. L., & Henderson, J. M. (2009). Eye movements and visual encoding during scene perception. Psychological Science, 20, 6�10. doi:10.1111/j.1467- 9280.2008.02243.x Rehder, B., & Hoffman, A. B. (2005). Eyetracking and selective attention in category learning. Cognitive Psychology, 51, 1�41. doi:10.1016/j.cogpsych.2004.11.001 Reutskaja, E., Nagel, R., Camerer, C. F., & Rangel, A. (2011). Search dynamics in consumer choice under time pressure: An eye-tracking study. The American Economic Review, 101, 900�926. Rolfs, M. (2009). Microsaccades: Small steps on a long way. Vision Research, 49, 2415�2441. doi:10.1016/j.visres.2009.08.010 Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27�48). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. Reprinted in E.Margolis & S. Laurence (Eds.). (1999), Concepts: Core readings (pp. 189�206). Cambridge, MA: MIT Press. Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structures of categories. Cognitive Psychology, 7, 573�605. doi:10.1016/0010-0285(75)90024-9 Shepard, R. N., Hovland, C. L., & Jenkins, H. M. (1961). Learning and memorization of classifications. Psychological Monographs: General and Applied, 75, 1�42. doi:10.1037/ h0093825 Shepard, R. N. (1974). Representation of structure in similarity data: Problems and prospects. Psychometrika, 39, 373�421. Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 1317�1323. Smith, J. D., Murray, M. J., & Minda, J. P. (1997). Straight talk about linear separability. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 659�680. doi:10.1037/ 0278-7393.23.3.659 Vigo, R. (2009a). Categorical invariance and structural complexity in human concept learning. Journal of Mathematical Psychology, 53, 203�221. Vigo, R. (2009b). Modal similarity. Journal of Experimental and Theoretical Artificial Intelligence, 21, 181�196. Vigo, R., Allen, C. (2009c). How to reason without words: inference as categorization. Cognitive Processing, 10, 77�88. Vigo, R. (2011a). Representational information: A new general notion and measure of information. Information Sciences, 181, 4847�4859. Vigo, R. (2011). Towards a Law of Invariance in Human Conceptual Behavior. In Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 2580�2585). Cognitive Science Society. Vigo, R. (2013a). Meaning over uncertainty in Generalized Representational Information Theory (GRIT): A structure sensitive theory of information. Information, 4, 1�30. Vigo, R. (2013b). The GIST of concepts. Cognition. doi:10.1016/j.cognition.2013.05.008 Vigo, R., & Basawaraj, B. (2013). Will the most informative object stand? Determining the impact of structural context on informativeness judgements. Journal of Cognitive Psychology, 1�19.(in press) Viviani, P. (1990). Eye movements in visual search: cognitive, perceptual and motor control aspects. In E. Kowler (Ed.), Eye Movements and Their Role in Visual and Cognitive Processes (pp. 253�393). Amsterdam: Elsevier. Yarbus, A. L. (1967). Eye-movements and vision. New York, NY: Plenum Press. citation: Vigo , Dr. Ronaldo and Zeigler, Derek and Halsey , Phillip (2013) Gaze and informativeness during category learning: Evidence for an inverse relation. [Journal (Paginated)] document_url: http://cogprints.org/9077/1/Vigo-Zeigler-Halsey-2013.pdf