---
abstract: 'In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures. '
altloc: []
chapter: ~
commentary: ~
commref: ~
confdates: ~
conference: ~
confloc: ~
contact_email: ~
creators_id: []
creators_name:
- family: Duch
given: Wlodzislaw
honourific: ''
lineage: ''
date: 1996
date_type: published
datestamp: 2000-08-02
department: ~
dir: disk0/00/00/09/14
edit_lock_since: ~
edit_lock_until: ~
edit_lock_user: ~
editors_id: []
editors_name: []
eprint_status: archive
eprintid: 914
fileinfo: /style/images/fileicons/application_pdf.png;/914/1/96compmind.pdf|/style/images/fileicons/text_html.png;/914/5/96compmind.html
full_text_status: public
importid: ~
institution: ~
isbn: ~
ispublished: pub
issn: ~
item_issues_comment: []
item_issues_count: 0
item_issues_description: []
item_issues_id: []
item_issues_reported_by: []
item_issues_resolved_by: []
item_issues_status: []
item_issues_timestamp: []
item_issues_type: []
keywords: 'psychophysics, mind models, neural networks, computational neuroscience, memory, consciousness'
lastmod: 2011-03-11 08:54:22
latitude: ~
longitude: ~
metadata_visibility: show
note: ~
number: ~
pagerange: 136-153
pubdom: FALSE
publication: Computer Physics Communication
publisher: Elsevier
refereed: TRUE
referencetext: |
\bibitem{schrod} E. Schr\"{o}dinger, Ann. Phys. 63 (1920) 481
\bibitem{murray} D.J. Murray, Behavioral and Brain Sci. 16 (1993) 115-186
\bibitem{compbrain} P.S. Churchland, T.J. Sejnowski, The computational
brain. (MIT, Bradford Book 1992)
\bibitem{pauli} W. Pauli, Der Einfluss archetypischer Vorstellungen und die
Bildungnaturwissenschaftlischer Theorien bei Kepler, in: Naturerklrung und
Psyche (Rascher, Zurich 1952), pp. 109-194
\bibitem{cogneuro} M. S. Gazzaniga, ed. The Cognitive Neurosciences. (MIT,
Bradford Book 1995)
\bibitem{nnfaq} Frequently Asked Questions URL is
http://wwwipd.ira.uka.de/\~{}prechelt/FAQ/neural-net-faq.html
or it may be obtained via ftp from rtfm.mit.edu, catalog
pub/usenet/news.answers file neural-net-faq
\bibitem{gerstner} W. Gerstner and J. Leo van Hemmen, Biol. Cybern. 67
(1992) 195
\bibitem{Rakover} S.S. Rakover, Precise of Metapsychology: Missing
Links in Behavior, Mind, and Science. PSYCOLOQUY 4 (1993)
metapsychology.1.rakover.
\bibitem{stapp} H.P. Stapp, Mind, matter and quantum mechanics (Springer
Verlag, Heidelberg 1993)
\bibitem{penrose} R. Penrose, The Emperor's new mind (Oxford Univ. Press
1989); In the Shadow of the Mind (Oxford Univ. Press 1994)
\bibitem{dennett} D.C. Dennett, Consciousness explained (Little Brown,
Boston 1991)
\bibitem{newell} A. Newell, Unified theories of cognition. (Harvard Univ.
Press, Cambridge, MA 1990)
\bibitem{developm} E. Thelen, L.B. Smith, A Dynamic Systems Approach to the
Development of Cognition and Action (MIT Press 1994)
\bibitem{nnaprox} W. Duch, G.H.F. Diercksen, {\it Neural networks as tools
to solve problems in physics and chemistry} Comp. Physics Communic. {\bf 82}
(1994) 91-103
\bibitem{rashevsky} N. Rashevsky, Mathematical Biophysics (Dover, NY 1960)
\bibitem{neurocomp} J.A. Anderson, E. Rosenfeld (Eds). Neurocomputing:
Foundations of Research (MIT Press, MA 1988); J.A. Anderson, A. Pellionisz,
E. Rosenfeld (Eds). Neurocomputing 2: Directions for Research (MIT Press,
MA. 1990)
\bibitem{grossberg} S. Grossberg, The Adaptive Brain (North Holland 1987)
\bibitem{hebb} D. Hebb, The Organization of Behavior (J. Wiley, NY 1949)
\bibitem{CALM} J. Murre, CALM, Categorization and Learning Modules (Erlbaum
1992)
\bibitem{FSM} W. Duch, G.H.F. Diercksen, {\it Feature Space Mapping as a
universal adaptive system}. Comp. Phys. Communic. (1995);
Duch W (1996) Systems Analysis-Modeling-Simulation (submitted),
{\it From cognitive models to neurofuzzy systems - the mind space approach.}
\bibitem{RBF} T. Poggio and F. Girosi, Proc. of the IEEE 78 (1990) 1481; J.
Platt, Neural Comput. 3 (1991) 213; V. Kadirkamanathan, M. Niranjan, Neural
Comput. 5 (1993) 954
\bibitem{harmon} L.D. Harmon and E.R. Lewis, Neural modeling. Physiological
Reviews 46 (1968) 513-591
\bibitem{cowan} J.D. Cowan, A statistical mechanics of nervous activity.
Lectures on Math. in Life Sciences 2 (1970) 1-57, ed. by M. Gerstenhaber
(Am. Math. Soc, Providence RI)
\bibitem{freeman} W.J. Freeman, Mass Action in the Nervous system (Academic
Press, NY 1975)
\bibitem{hopfield} J.J. Hopfield, Proc. Nat. Acad. Sci. 79 (1982) 2554;
ibid 81 (1984) 3088
\bibitem{amit} D.J. Amit, Modeling brain function. The world of attractor
neural networks. (Cambridge Univ. Press 1989); T.L.H. Watkin, A. Rau, M.
Biehl, Rev. Modern Phys. 65 (1993) 499
\bibitem{annios} P.A. Annios, Mathematical models of memory traces and
forgetfulness. Kybernetik 10 (1972) 165-167; 11 (1972) 5-14
\bibitem{caianiello} E.R. Caianiello, Outline of a theory of thought
processes and thinking machines. Journal of Theor. Biology 2 (1961) 204-235;
E.R. Caianiello, A theory of neural networks. In: Neural Computing
Architectures, ed. I. Aleksander (MIT Press, MA 1989)
\bibitem{LTP} T.H. Brown, P.F. Chapman, E.W. Kairiss, C.L. Keenan,
Long-term synaptic potentiation. Science {\bf 242} (1988) 724--728
\bibitem{levine} D.S. Levine, Introduction to neural and cognitive modeling
(L. Erlbaum, London 1991)
\bibitem{visualcortex} E. Erwin, K. Obermayer, K. Schulten, Models of
Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical
Comparison. Neural Computation 7 (1995) 425-468
\bibitem{kohonen} T. Kohonen, Self-Organizing Maps (Springer Series in
Information Sciences, Vol. 30, 1995)
\bibitem{population} A.P. Georgopoulos, M. Taira, A. Lukashin, Cognitive
neurophysiology of the motor cortex. Science 260 (1993) 47-52
\bibitem{Mussa-Ivaldi} F.A. Mussa-Ivaldi, From basis functions to basis
fields. Vector field approximation from spare data. {\em Biol. Cybernetics}
67 (1992) 479-489
\bibitem{dualpop} E. Koechlin and Y. Burnod, Dual population coding in the
neocortex: a model of interaction between representation and attention in
the visual cortex. (preprint, Inst. des Neurosciences, Universit\'e Pierre
et Marie Curie, Paris 1995)
\bibitem{skarda} C. Skarda, W.J. Freeman, How brains make chaos to make
sense of the world. The Behavioral and Brain Sci. 10 (1987) 161-195
\bibitem{pulvermueller} Pulvermueller F, Preissl H, Eulitz C, Pantev C,
Lutzenberger W, Elbert T and Birbaumer N. (1994) PSYCOLOQUY 5(48)
brain-rhythms.1.pulvermueller
\bibitem{griniasty} M. Griniasty, M. Tsodyks, D. Amit, Conversion of
temporal correlations between stimuli to spatial correlations between
attractors. Neural Comput. 5 (1993) 1-17
\bibitem{engel} A.K. Engel, P. K\"onig, A.K. Kreiter, T.B. Schillen, W.
Singer. Temporal coding in the neocortex: new vistas on integration in the
nervous system. Trends in Neurosc. 15 (1992) 218-226
\bibitem{john} E.R. John, M. Schimokochi, F.P. Bartlett, Neural readout
from memory during generalization. Science {\bf 164} (1969) 1534-1536
\bibitem{kelso} J.A. Scott Kelso, Dynamic Patterns (Bredford Book, MIT
Press 1995)
\bibitem{bishop} C.M. Bishop, Training with noise is equivalent to
Tikhonov regularization. Neural Computation 7 (1995) 108-116
\bibitem{clark} R. Clark, Dynamical systems. Stability, symbolic
dynamics and chaos (CRC Press, London 1995)
\bibitem{mayer} R.E. Mayer, Thinking, problem solving, cognition. (WH
Freeman 1992)
\bibitem{mindspace} W. Duch (1994) UMK-KMK-TR 1/94 report, {\it A solution
to the fundamental problems of cognitive sciences}, available from
ftp.phys.uni.torun.pl/pub/papers/kmk
\bibitem{chuaosc} P. Deregal, Chua's oscillator: a zoo of attractors, J. of
Circuits, Systems and Computers 3 (1993) 309-359; L.O. Chua, C.A. Desoer,
E.S. Kuh, Linear and nonlinear circuits (McGraw-Hill, New York 1987);
M.P. Kennedy, Three Steps to Chaos, IEEE Trans. Circuits and Systems
40 (1993) 640-674
\bibitem{synergetic} H. Haken, Synergetic computers and cognition
(Springer, 1991)
\bibitem{olfaction} H. Lilienstr\"om, Modeling the dynamics of olfactory
cortex using simplified network units and realistic architecture", Int.
J. Neural Systems 2 (1991) 1-15; X. Wu, H. Lilienstr\"om, Regulating
the nonlinear dynamics of olfactory cortex, Network 5 (1994) 47-60
\bibitem{geldard} F.A. Geldard, The human senses (Wiley, New York 1962)
\bibitem{simulacrum} B. MacLennan, Field computation in the brain,
CS-92-174 (Univ. of Tennessee, Knoxville, TN 37996) % maclennan@cs.utk.edu
\bibitem{casey} M.P. Casey, Computation in Discrete-Time Dynamical Systems
(UCSD 1995, available in neuroprose).
\bibitem{fauconnier} G. Fauconniere, Mental Spaces (Cambridge Univ. Press
1994)
\bibitem{neurons-symbols} I. Aleksander, H. Morton, Neurons and symbols
(Chapman and Hall 1993)
\bibitem{MBR} D. Waltz, Memory-based reasoning, in: M.A. Arbib, The
Handbook of Brain Theory and Neural Networks (MIT Press 1995), pp.
568-570
\bibitem{brainsize} J.N.H. Heemskerk, J.M.J. Murre, Brain-size
neurocomputers. (1995, draft); J.N.H. Heemskerk, Overview of neural
hardware (1995, draft), available from ftp.mrc-apu.cam.ac.uk/pub/nn);
\bibitem{baars} B.J. Baars, A cognitive theory of consciousness
(Cambridge Univ. Press 1988)
\bibitem{verhulst} F. Verhulst, Metaphors for psychoanalysis. Nonlinear
Science Today 4 (1994) 1-6
relation_type: []
relation_uri: []
reportno: ~
rev_number: 14
series: ~
source: ~
status_changed: 2007-09-12 16:35:27
subjects:
- behav-neuro-sci
- comp-sci-art-intel
- comp-sci-mach-dynam-sys
- comp-sci-neural-nets
succeeds: ~
suggestions: ~
sword_depositor: ~
sword_slug: ~
thesistype: ~
title: Computational physics of the mind
type: journalp
userid: 568
volume: 97