
Towards a Cookbook for Modelling and

Refinement of Control Problems

Michael Butler

24 February 2009

1 Introduction

This document is a attempt to develop some guidelines on modelling control
problems in Event-B. It is influenced in part by the Problem Frame approach
of identifying phenomenon in the system. We identify two control problem pat-
terns, the autonomous controller, which involves some plant and a controller,
and the commanded controller, which includes an operator in addition. Within
these patterns we identify several kinds of phenomenon and look at how they
may be used to guide the construction of formal models and the refinement
of formal models. The modelling concepts identifed are intended to encour-
age a focus on the problem rather than on the solution by identifying physical
variables and operator commands at the abstract level. An important charac-
teristic of controllers is the distinction between a physical phenomenon and the
internal representation within a controller. We avoid making this distinction at
the abstract level and introduce it through refinement patterns for sensors and
actuators.

Here we only consider controllers from a discrete viewpoint. A continuous
treatment is the subject of on-going investigations. It may be posible to incor-
porate results on the treatment of continuous behaviour later.

2 Autonomous controller

Let us assume a general system set up consisting of some plant (e.g., a pump in
a steam boiler) and a controller for that pump. We assume there is no (human)
operator involved so refer to this pattern as an autonomous controller. This is
illustrated by the context diagram of Figure 1. In this case the plant represents
the environment of the controller.

In the manner of Problem Frames, we would identify the phenomenon of the
system such as a water level, or a pump status (on, off ). Figure 1 illustrates
that these phenomenon are shared between the controller and the plant (label
A). Since the value/state of these phenomenon can change, we will model them
as variables in our formal model. Since they represent physical phenomenon,

1



!"

#"

#"

Figure 1: Autonomus Controller Pattern

we refer to them as physical variables. We can categorise physical variables as
follows:

Uncontrolled physical variable: This type of phenomenon is not under the
control of the controller and its state is determined by forces in the plant,
e.g., the water level. We will use up to stand for uncontrolled physical
variables.

Controlled physical variable: This type of phenomenon is under the control
of the controller and its state is determined by the controller, e.g., the
pump status. We will use cp to stand for controlled physical variables.

Note that by making the distinction in this way we are already biasing the
problem description towards a controller viewpoint. This is not unreasonable
since our job (presumably) is to build a controller that solves the given problem
in the given environment.

Controlled and uncontrolled physical variables are incorporated into a B
model simply as variables. The types of these variables should be determined
by the nature of the phenomenon. For example, a water level would be typed
as integer or real1. A pump status would be typed by an enumerated set that
distinguishes the different status values.

Corresponding to the uncontrolled and controlled variables, we introduce
two kind of events in the model, plant events and control events. Plant events
can update the uncontrolled variables in a way that may depend on both the
controlled and uncontrolled variables. Schematically they would be of the form:

P = when GP (up, cp)
then up := FP (up, cp) end

Note we use P for plant events and C for control events. For simplicity of
presentation, the above scheme assumes a deterministic update. The scheme
could easily be generalised to nondeterministic events.

It seems reasonable to assume a loose coupling between separate physical
variables thus each plant event should update just one uncontrolled variable and
we would have at least one plant event for each uncontrolled variable. It may
be convenient to have more than one plant event for each physical variable in
order to deal with different cases of update function. For example, in modelling
the environmental update to the water level in a steam boiler, we may have
separate cases for when the pump is on and when the pump is off.

1Real arithmetic is not currently support by Rodin.

2



Control events can update the controlled variables in a way that may depend
on both the controlled and uncontrolled variables. Schematically they would be
of the form:

C = when GC(up, cp)
then cp := FC(up, cp) end

We could assume a tighter coupling between controlled variables than uncon-
trolled variables. Thus each control event could update several controlled vari-
ables (cp1, cp2, etc) simultaneously. As with plant events, we may have several
cases for control events. For example, in a pump controller we might have one
control event for when the water level is below a threshold and another for when
it is above the threshold.

It may be convenient to partition the control events into separate responsi-
bility groupings. An open question is whether responsibility groupings are based
around (i) uncontrolled phenomenon or (ii) controlled phenomenon. An exam-
ple of (i) would be having one group of control events responsible for responding
to changes to the water level and another responsible for changes in tank pres-
sure. An example of (ii) would be having one group of events responsible for
managing the pump status and another for managing the alarm status.2

Sensing and actuating

In any control system, the controller gets (estimates of) the values of uncon-
trolled physical variables via sensors and the controller sets the values of con-
trolled variables via actuators. At this level of abstraction, we have not explicitly
modelled sensing and actuation events. These can be viewed as part of the so-
lution to a control problem and thus we introduce them later via refinement
(Sections 5 and 6).

Recap

In order to model an automomous controller we have identified the following
Event-B modelling concepts:

• uncontrolled variables

• controlled variables

• plant events

• control events
2My current thinking is in favour of case (i) at an abstract level since it seems to be based

more directly on the problem. Case (ii) feels more like a design solution.

3



3 Responsiveness

A critical consideration is how responsive we consider a controller to be to
changes in the environment. Do we assume that the controller can respond
to every (discrete) change in the uncontrolled variables? If we regard this as-
sumption as being too strong, then we cannot specify very much about the
controller response to changes in the uncontrolled physical variables (caused by
environmental forces). This is precisely where the link between continuous and
discrete behaviour influences the modelling of control problems. This remains
an open question in the Event-B context, but we can make the assumption
that the controller does indeed respond to every discrete change in the uncon-
trolled variables. We can enforce this responsiveness assumption in the model
by introducing an auxiliary boolean variable upr for each uncontrolled physical
variable up. This is used to prevent an uncontrolled physical variable from being
modified more than once in between control events. The schematic plant and
controller events of Section 2 are extended as follows:

P = when GP (up, cp) ∧ upr = F
then up := FP (up, cp) || upr := T end

C = when GC(up, cp)
then cp := FC(up, cp) || upr := F end

Note the asymmetry. This scheme allows many control events in between each
plant event. This is weaker than requiring alternation between plant and con-
troller but it is sufficient to encode the responsiveness assumption. It also further
enforces our bias towards the controller in the problem description.

In the case where there is more than one uncontrolled physical variable, we
would have one responsiveness auxiliary variable for each uncontrolled physical
variable. To ensure that the controller is sufficiently responsive, we need to
ensure that every plant change should lead to a controller response. This could
be checked by having enabledness proof obligations on the control events to
ensure that when a responsiveness variable upr is true, then there is some control
event that will set upr to false, i.e., some control event that will respond to the
change in upr:

upr = T ⇒ grd(C1) ∨ · · · ∨ grd(Cn)

Note that the encoding of responsiveness could be introduced as a (super-
position) refinement of a more abstract model which does not incorporate re-
sponsiveness. Also it may be convenient to have several stage of augmentation
(horizontal) refinement to introduce plant and controller features in a layer
fashion before introducing the responsiveness assumption. These are open and
subjective issues.

Recap

In order to model a responsiveness assumption in an automomous controller we
have identified the following Event-B modelling concept:

4



!"

#"

#"

Figure 2: Commanded Controller Pattern

• auxiliary responsiveness flag

4 Commanded Controller

Now we extend the autonomous controller with a human operator as found, for
example, in a mechanical press, a cruise control or a train control. This pattern
is illustrated by the diagram of Figure 2. We refer to this as a commanded
controller since the operator issues commands to the controller which influence
the way it controls the plant. For example, in a cruise control, an operator (the
driver) may switch the cruise control on or may modify the target speed.

To deal with the commanded controller, we identify two additional modelling
concepts corresponding to phenomenon shared between the operator and the
controller (B in Figure 2):

Command event: This is an event modelling a command by the operator. In
a cruise control this would include commands such as switch on or increase
target speed.

Commanded variable: This represents a variable whose value is determined
by an operator command and that influences the way the controller con-
trols the plant via controller events. For example, in a cruise control sys-
tem we might have a status commanded variable with values {off, standby, active}
and a target speed commanded variable.

We use cm for commanded variable and M for command event. A command
event may depend on several commanded variables and will update several com-
manded variables:

M = when GM (cm1, cm2)
then cm1 := FM (cm1, cm2) end

It is sometimes the case that a commanded variable is updated via several
different commands, e.g, increase target speed, decrease target speed. In these
cases it is sometimes useful to abstract these into a single command event that
modifies the variable in some general or possibly nondeterministic way, e.g.,

5



abstract increase target speed and decrease target speed into a single modify
target speed event. The distinctions between different cases of the same abstract
command event can be introduced through refinement. The usefulness of doing
this kind of command abstraction is that is leads to a smaller abstract model that
‘distills’ the essence of a control problem into a form that is easier to validate
than having one which several events that are similar. This is a subjective point.

At this abstract level we are using the command events to model the way
in which the controller responds to an operator command. We can deal with
the controller requesting execution of a command separately via refinement (Sec-
tion 7). In Section 3 we introduced the encoding of a responsiveness assumption
because we separate the plant events that modify uncontrolled physical variables
from the control events that modify controlled physical variables in response.
Our treatment of command as events does not make a distinction between re-
questing a command and the controller response to that. This means we do
not need to deal with responsiveness to commands at this level. This will be
addressed in Section 7.

What is the rationale for focusing on the controller response to commands
in an abstract model? It is based on the observation that this is where the
distinctive properties of a control problem reside. The essence of the a particular
control problem is describable in terms of physical variables (controlled and
uncontrolled) and commanded variables. The identification of command events
is determined by the identified commanded variables. The choice of command
requests (as made by the operator) is in turn determined by the command
events.

This is not to say that the separation of command requests and responses
is uninteresting. Important issues to address include the delay between request
and response, the possibility of errors (e.g., signal corruption) or combing several
commands on to a single part of the interface (e.g., a single button serving
several distinct functions in different commanded states). This issue does not
seem to be specific to any particular control problem and the hope is that it can
be dealt with in a generic way. Thus we can separate it into a later refinement.

Recap

In order to model a commanded controller we have identified the following
Event-B modelling concepts which serve in addition to those for the autonomous
controller:

• commanded variables

• command events

5 Introducing Sensing

As already stated, in any control system the controller reads the values of un-
controlled physical variables via sensors. This means we need to distinguish

6



!"#

!"$#

%"#

%"&#

Figure 3: Pattern for introducing sensed values

between the value of an uncontrolled physical variable and the value of that
variable as stored internally by the controller. We refer to the the internal con-
troller version as a sensed variable. This is illustrated in the Problem Frame
diagram of Figure 3 where the sensed values design domain is introduced. We
view the introduction of the sensed variable as a design step and incorporate it
via refinement. Along with a sensed variable, we also introduce a corresponding
sensor event to set the sensed variable.

In Section 2 we saw the following general scheme for a plant event:

P = when GP (up, cp)
then up := FP (up, cp) end

This plant event sets the value of uncontrolled variable up.
In a refinement step we want to introduce a sensed variable ups corresponding

to uncontrolled physical variable up. We also introduce a sensor event that
copies the value of up to ups. To model whether up and ups correspond, we
introduce an auxiliary flag upsf that is set by sensor event for up. So the sensor
event S corresponding to uncontrolled variable up is as follows:

S = ups := up || upsf := T

In Section 2 we saw the following general scheme for a control event:

C = when GC(up, cp)
then cp := FC(up, cp) end

We refine a control event of this form so that it depends on the sensed variable
ups rather than uncontrolled physical variable up. We only allow the control
event to fire if the sensed value is up to date (auxiliary flag upsf is true) and we
set this auxiliary flag back to false:

C ′ = when GC(ups, cp) ∧ upsf = T

then cp := FC(ups, cp) || upsf := F end

We have that C ′ refines C and S refines skip. The correctness of the refine-
ment relies on the following invariant:

Inv : upsf = T ⇒ ups = up

7



To ensure this invariant is preserved, we need to assume that the environment
does not change up in between the sensor event and the control event. This is
encoded by strengthening the guard of the plant event so that upsf is required
to be false:

P ′ = when GP (up, cp) ∧ upsf = F

then up := FP (up, cp) end

This refinement pattern for introducing sensed variables and sensor events is
independent of the responsiveness pattern as described in Section 3 but it will
also work together with the responsiveness pattern. Incorporating the respon-
siveness together with the sensing will result in plant events being followed by
sensor events which will in turn be followed by control events.

The sensing pattern is applicable to both the autonomous and commanded
controller patterns.

Recap

In order to introduce sensing in a model through refinement we have identified
the following Event-B modelling concepts:

• sensed variables

• sensor events

• auxiliary sensor flag

6 Introducing Actuation

In the previous section we used refinement to separate the change to uncontrolled
physical variables from the sensing of those physical variables. In this section
we use refinement to introduce a distinction between a controller decision about
controlled physical variables from the actuation of those physical variables. For
example, in a steam boiler pump, a controller event might decide to switch the
pump on. The controller will send a signal to the pump and a short while later
the pump will respond to that signal by becoming active.

Now for every controlled physical variable cp we introduce a new actuation
variable cpa in which the value for cp decided by the controller is stored. The
actuation variable is regarded as internal to the controller. This is illustrated
in the Problem Frame diagram of Figure 4 where the actuation values design
domain is introduced.

In Section 2 we saw the following general scheme for a control event:

C = when GC(up, cp)
then cp := FC(up, cp) end

8



!"#

!"$#

%"#

%"&#

Figure 4: Pattern for introducing actuation values

In the refinement we introduce a control event C ′ that assigns to actuation
variable cpa instead of physical variable cp. We also introduce an auxiliary flag
cpaf that is set to true when the actuation variable has been set by C ′:

C ′ = when GC(up, cpa)
then cpa := FC(up, cpa) || cpaf := T end

We introduce an actuation event that copies the value of the actuation variable
to the controlled physical variable:

A = when cpaf = T

then cp := cpa || cpaf := F end

Now here is where the refinement set up differs from the sensing pattern.
Instead of C ′ refining C it refines skip and the actuation event A refines the
abstract control event C:

C ′ refines skip, A refines C

The reason for this arrangement is that we view an abstract control event as
having a direct effect on a physical controlled variable3. With the actuation
refinement pattern, the actuation of a controlled physical variable is achieved
by the actuation event. The controller decision, as represented by the event C ′,
has been internalised to the controller. The correctness of the refinement relies
on the following invariants

Inv1 : cpaf = F ⇒ cps = cp

Inv2 : cpaf = T ∧ GC(up, cp) ⇒ cpa = FC(up, cp)

3An alternative would be to treat a controlled physical variable cp as a new variable
introduced in the refinement and assume that the more abstract model refers to actuation
variables rather than controlled physical variables. Then C′ would refine C and the actuation
events would refine skip. What I dislike about this alternative is that we would not be
specifying controlled physical variables in the abstract model, only actuation variables which
are internal to the controller. The abstract model should specify the problem not the solution.

9



Figure 5: Pattern for introducing operator buttons

To ensure this invariant is preserved, we need to assume that the environment
does not change up in between the internal control event c′ and the actuation
event A. This is encoded by strengthening the guard of the plant event so that
upaf is required to be false:

P ′ = when GP (up, cp) ∧ upsf = F

then up := FP (up, cp) end

This actuation refinement pattern is independent of the responsiveness pat-
tern as described in Section 3 but it will also work together with the respon-
siveness pattern. Incorporating the responsiveness together with the sensing
and actuation pattens will result in plant events being followed by sensor events
which will in turn be followed by internal control events which in turn will be
followed by actuation events.

The actuation pattern is applicable to both the autonomous and commanded
controller patterns.

Recap

In order to introduce actuation in a model through refinement we have identified
the following Event-B modelling concepts:

• actuation variables

• internal controller events

• actuation events (refining abstract control events)

• auxiliary actuation flag

7 Introducing Operator Requests (Buttons)

In the commanded controller modelling pattern of Section 4 we identified the
concepts of commanded variable and command event. We said that the com-
mand event models the response by the controller to a command from the oper-
ator. In this section we separate a command request by the operator from the
response to that command by the controller. We assume that an operator re-
quests commands by means of a button or some such device. This is illustrated
by the diagram in Figure 5.

10



Recall from Section 4 that a command event has the form:

M = when GM (cm1, cm2)
then cm1 := FM (cm1, cm2) end

Let us assume that the operator uses a button to request a command. Associated
with a button b, we introduce an event B that is used to model the pressing of
that button and a flag bf that is set to true when the button b has been pressed
and is set to false when the button press is responded to. The button press
event has the following form:

B = when bf = F
then bf := T end

The link between the button b and a command event M is made by strengthening
the guard of the command event so that auxiliary flag bf is required to be true.
The bf flag is also set to false by the refined command event:

M ′ = when bf = T ∧ GM (cm1, cm2)
then cm1 := FM (cm1, cm2) || bf := F end

Our button modelling pattern incorporates a responsiveness assumption:
once a button has been pressed, the controller will respond (modelled by the
command events) before the button can be pressed again. If appropriatem this
could be weakened to a model in which button presses are queued.

It some systems, the same button is used for several different functions. We
can model this by using the same button flag bf for different command events.
For example we might have two command events Ma and Mb being linked with
the same button b:

Ma′ = when bf = T ∧ GMa(cm1, cm2)
then cm1 := FMa(cm1, cm2) || bf := F end

Mb′ = when bf = T ∧ GMb(cm1, cm2)
then cm1 := FMb(cm1, cm2) || bf := F end

The case distinction between different usages of the same button will be made by
the guards GMa and GMb respectively. If the guards overlap then the choice of
command event will be nondeterministic between Ma and Mb. If the command
events Ma and Mb have quite different effects, then having overlapping guards
would be a poor operator interface design since the operator could not predict
which effect pressing the button b will have.

The incorporation of the buttons could be treated as a synchronised com-
position between two Event-B machines, a buttons machine in parallel with the
existing controller machine. In the buttons machine, the command event would
simply depend on bf :

M = when bf = T
then cm1 := bf := F end

11



In the controller machine, the command event M would be as in the abstract
model. In the composition of the buttons machine with the controller machine,
the corresponding command events would be made to synchronise.

The treatment of the operator interface as boolean buttons could be enriched
to incorporate values associated with operator commands (such as target speed
value). This could be modelled, for example, by having a value variable bv

associated wth a button b. Other models for the interface could also be explored
such as sets of signals from some rich datatype of signals.

We could incorporate error behaviour in the operator interface layer by in-
troducing error events that set the button variables so some undesirable values.

8 Incorporating an operator display

An operator display is used to present values of commanded variables and pos-
sibly also physical variables to the operator. Treatment of this is yet to be
added.

9 Decomposition

An important decomposition step is to separate a specification of the controller
from the rest of the system (plant and operator). The sensing and actuation
represent the interface between the controller and and the plant and operator.
Introduction of the sensing and actuation mechanisms (via refinement) allows for
the separation of the controller specifications from the overall (refined) model.
Whether anything else is required before decomposing the controller from the
rest of the system requires further exploration.

12


