4. File Transfer Protocol

Jean-Raymond Abrial

2009

- To introduce another example: the file transfer protocol
- To present a number of additional mathematical conventions
- To slighly enlarge the usage of the Proof Obligation Rules
- Example studied in many places, in particular in the following book
- L. Lamport *Specifying Systems: The TLA+ Language and Tools* for Hardware and Software Engineers Addison-Wesley 1999

- A file is to be transfered from a Sender to a Receiver
- On the Sender's side the file is called f
- On the Receiver's side the file is called g
- At the beginning of the protocol, g is supposed to be empty
- At the end of the protocol, g should be equal to f

The protocol ensures the copy of a file from one site to another one	FUN-1
--	-------

The file is supposed to be made of a sequence of items	FUN-2
--	-------

The file is send piece by piece between the two sites	FUN-3
---	-------

- Our approach at modeling is one of an external observer
- The observer "sees" the state space first from very far away
- He then approaches the future system and sees more details
- As he approaches he also sees more things happening

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)
- First refinement: The file is transmitted gradually (FUN3)
- Second refinement: The two agents are separated
- Third refinement: Towards an implementation

INITIAL SITUATION

SENDER

RECEIVER

g

FINAL SITUATION

SENDER

RECEIVER

variables: g	inv0_1: $g \in \mathbb{N} \leftrightarrow D$
--------------	--

- The carrier set *D* makes this development generic

$x \in S$	set membership operator
N	set of natural numbers: $\{0,1,2,3,\ldots\}$
$a \dots b$	interval from a to b : $\{a, a+1, \ldots, b\}$ (empty when $b < a$)
$a\mapsto b$	pair constructing operator
S imes T	Cartesian product operator
$S\subseteq T$	set inclusion operator
$\mathbb{P}(S)$	power set operator

$S \leftrightarrow T$	set of binary relations from $old S$ to $old T$
S o T	set of total functions from $old S$ to $old T$
$S \nleftrightarrow T$	set of partial functions from $old S$ to $old T$
$\operatorname{dom}(r)$	domain of a relation <i>r</i>
$\operatorname{ran}(r)$	range of a relation r

A Binary Relation r from a Set A to a Set B

A Partial Function F from a Set A to a Set B

 $F = \{a1 \mapsto b2, a3 \mapsto b4, a5 \mapsto b2, a7 \mapsto b6\}$ dom (F) = {a1, a3, a5, a7} ran (F) = {b2, b4, b6}

A Total Function F from a Set A to a Set B

dom(F) = A

- An anticipated event will be updated later and made convergent

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)
- First refinement: The file is transmitted gradually (FUN3)
- Second refinement: The two agents are separated
- Third refinement: Towards an implementation

- The observer comes closer to the future system
- So far he was just seeing the beginning and the end
- Now the observer will see some intermediate moves
- He sees the file being gradually transfered from Sender to Receiver
- But he still has a partial view

A new event is introduced: receive

File transfer. Event receive

- The new variable r lies within the interval $1 \dots n + 1$
- The variable g is equal to f restricted to its r 1 first values

- Introducing additional variable r

inv1_1:
$$r \in 1..n+1$$

inv1_2: $g = (1..r-1) \lhd f$

- g is defined to be the domain restriction of f to $1 \dots r - 1$

$s \lhd r$	domain restriction operator
$s \lhd r$	domain subtraction operator
$r \vartriangleright t$	range restriction operator
r i t	range subtraction operator

The Domain Restriction Operator

 $\{a3,\ a7\} \lhd F$

The Domain Subtraction Operator

 $\{a3, a7\} \triangleleft F$

The Range Restriction Operator

 $F
ho \{b2, b4\}$

The Range Subtraction Operator

 $F
ho \{b2\}$

- The variant is decreased by the convergent event

variant1: n+1-r

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)
- First refinement: The file is transmitted gradually (FUN3)
- Second refinement: The two agents are separated
- Third refinement: Towards an implementation

What the Observer will now See

A More Accurate Version (1)

RECEIVER

SENDER

RECEIVER

33

_

f s a b n c

d ______g

r

_

Send

_

_

f f a S b S n C n

_

_

Receive

_

35

_

_

f s a b n c

	f
	a
S	b
n	c

r

r

_

r

a

Send

_

_

f s a b n c

		f
		a
		b
n	S	c

d		

g

r

_

g

r

_

g

a

r

Receive

—

f f a a b b n s n s C C

d b

g a r

_

g
a
b

r

37

_

_

Send

_

_

f

a

b

_

g	
a	
b	

r

Receive

_

39

 f f f f a a a a b b b b n s C **n s** C n C n C S S d d d d b b c C g g g g a a a a r b b b r r C

r

_

- We introduce an additional variable s, and a data item d

carrier sets:
$$D$$
inv2_1: $s \in 1 \dots n+1$ constants: $n, f, d0$ inv2_2: $s \in r \dots r+1$ variables: g, r, s, d inv2_3: $d \in D$ inv2_4: $s = r+1 \Rightarrow d = f(r)$

axm2_1: $d0 \in D$

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)
- First refinement: The file is transmitted gradually (FUN3)
- Second refinement: The two agents are separated
- Third refinement: Towards an implementation

inv2_2:
$$s \in r ... r + 1$$

RECEIVER

RECEIVER

axm3_1: $parity \in \mathbb{N} \rightarrow \{0, 1\}$ **axm3_2:** parity(0) = 0axm3_3: $\forall x \cdot (x \in \mathbb{N} \Rightarrow parity(x+1) = 1 - parity(x))$ thm3_1: $\forall x, y \cdot \begin{pmatrix} x \in \mathbb{N} \\ y \in \mathbb{N} \\ x \in y .. y + 1 \\ parity(x) = parity(y) \\ \Rightarrow \\ x = y \end{pmatrix}$

carrier sets:Dconstants:n, f, parityvariables:g, s, r, d, p, q

inv3_1: p = parity(s)inv3_2: q = parity(r)

axm3_1: $parity \in \mathbb{N} \to \{0, 1\}$ axm3_2: parity(0) = 0axm3_3: $\forall x \cdot \begin{pmatrix} x \in \mathbb{N} \\ \Rightarrow \\ parity(x+1) = 1 - parity(x) \end{pmatrix}$

final
when
$$r=n+1$$

then
skip
end

receive
when

$$p \neq q$$

then
 $g := g \cup \{r \mapsto d\}$
 $r := r + 1$
 $q := 1 - q$
end

- More mathematical conventions
- How to write a model
- What kind of things we have to prove
- How the proof can help finding invariants
- Many things can be done by tools
- A small theory of parities

Gradual Observation of the Intended System

$x \in S$	Set membership operator
N	set of Natural Numbers: $\{0,1,2,3,\ldots\}$
$a \dots b$	Interval from a to b : $\{a, a + 1, \dots, b\}$ (empty when $b < a$)
$a\mapsto b$	pair constructing operator
S imes T	Cartesian product operator
$S\subseteq T$	set inclusion operator
$\mathbb{P}(S)$	power set operator

$S \leftrightarrow T$	Set of binary relations from $old S$ to $old T$
S o T	Set of total functions from $old S$ to $old T$
$S \nleftrightarrow T$	Set of partial functions from $old S$ to $old T$
$\operatorname{dom}(r)$	Domain of a relation r
$\operatorname{ran}(r)$	Range of a relation <i>r</i>

$s \lhd r$	domain restriction operator
$s \lhd r$	domain subtraction operator
$r \vartriangleright t$	range restriction operator
r i t	range subtraction operator

A Binary Relation r from a Set A to a Set B

A Partial Function F from a Set A to a Set B

 $F = \{a1 \mapsto b2, a3 \mapsto b4, a5 \mapsto b2, a7 \mapsto b6\}$ dom (F) = {a1, a3, a5, a7} ran (F) = {b2, b4, b6}

A Total Function F from a Set A to a Set B

dom(F) = A

The Domain Restriction Operator

 $\{a3,\ a7\} \lhd F$

The Domain Subtraction Operator

59

 $\{a3, a7\} \triangleleft F$

The Range Restriction Operator

 $F
ho \{b2, b4\}$

The Range Subtraction Operator

 $F
ho \{b2\}$

- List of Carrier Sets (identifiers)
- List of Constants (identifiers)
- List of Axioms (predicates built on sets and constants)
- List of Variables (identifiers)
- List of Invariants (predicates built on sets, constants, and variables)
- List of Events