4. File Transfer Protocol

Jean-Raymond Abrial

2009

- To introduce another example: the file transfer protocol
- To present a number of additional mathematical conventions
- To slighly enlarge the usage of the Proof Obligation Rules
- Example studied in many places, in particular in the following book
- L. Lamport Specifying Systems: The TLA+ Language and Tools
for Hardware and Software Engineers Addison-Wesley 1999

An Example: File Transfer Protocol

- A file is to be transfered from a Sender to a Receiver
- On the Sender's side the file is called f
- On the Receiver's side the file is called g
- At the beginning of the protocol, g is supposed to be empty
- At the end of the protocol, g should be equal to f

Requirement Document

The protocol ensures the copy of a file from one site to another one

FUN-1

The file is supposed to be made of a sequence of items

FUN-2

The file is send piece by piece between the two sites

FUN-3

Modeling Approach

- Our approach at modeling is one of an external observer
- The observer "sees" the state space first from very far away
- He then approaches the future system and sees more details
- As he approaches he also sees more things happening
- Initial model: The file is transmitted in one shot (FUN1 and FUN2)
- First refinement: The file is transmitted gradually (FUN3)
- Second refinement: The two agents are separated
- Third refinement: Towards an implementation

INITIAL SITUATION

SENDER

RECEIVER

FINAL SITUATION

SENDER

RECEIVER

File transfer. The constant part of the state: n and f

$$
\begin{array}{ll}
\operatorname{axm0} 1: & n \in \mathbb{N} \\
\operatorname{axm0} 2: & 0<n \\
\operatorname{axm0} 3: & f \in 1 \ldots n \rightarrow D
\end{array}
$$

$$
\text { inv0 1: } \quad g \in \mathbb{N} \leftrightarrow D
$$

- The carrier set D makes this development generic

$x \in S$	set membership operator
\mathbb{N}	set of natural numbers: $\{0,1,2,3, \ldots\}$
$a \ldots b$	interval from a to $b:\{a, a+1, \ldots, b\}$ (empty when $b<a)$
$a \mapsto b$	pair constructing operator
$S \times T$	Cartesian product operator
$S \subseteq T$	set inclusion operator
$\mathbb{P}(S)$	power set operator

$S \leftrightarrow T$	set of binary relations from S to T
$S \rightarrow T$	set of total functions from S to T
$S \rightarrow T$	set of partial functions from S to T
$\operatorname{dom}(r)$	domain of a relation r
$\operatorname{ran}(r)$	range of a relation r

A Binary Relation r from a Set A to a Set B

$$
\operatorname{dom}(F)=A
$$

- An anticipated event will be updated later and made convergent
progress
status anticipated then
$\boldsymbol{g}: \in \mathbb{N} \leftrightarrow \boldsymbol{D}$
end

Development Approach

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)
- First refinement: The file is transmitted gradually (FUN3)
- Second refinement: The two agents are separated
- Third refinement: Towards an implementation
- The observer comes closer to the future system
- So far he was just seeing the beginning and the end
- Now the observer will see some intermediate moves
- He sees the file being gradually transfered from Sender to Receiver
- But he still has a partial view

A new event is introduced: receive

- The new variable r lies within the interval $1 . . n+1$
- The variable g is equal to f restricted to its $r-1$ first values
- Introducing additional variable r

$$
\begin{array}{ll}
\text { inv1_1: } & r \in 1 \ldots n+1 \\
\text { inv1 2: } & g=(1 \ldots r-1) \triangleleft f
\end{array}
$$

- \boldsymbol{g} is defined to be the domain restriction of f to $1 . . r-1$

$s \triangleleft \boldsymbol{r}$	domain restriction operator
$s \not r \boldsymbol{r}$	domain subtraction operator
$\boldsymbol{r} \triangleright \boldsymbol{t}$	range restriction operator
$\boldsymbol{r} \otimes \boldsymbol{t}$	range subtraction operator

$\{a 3, a 7\} \triangleleft \boldsymbol{F}$

$$
\{a 3, a 7\} \notin \boldsymbol{F}
$$

The Events

- The variant is decreased by the convergent event
variant1: $n+1-r$

Development Approach

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)
- First refinement: The file is transmitted gradually (FUN3)
- Second refinement: The two agents are separated
- Third refinement: Towards an implementation

RECEIVER

Initial Situation

\mathbf{f}	
	\mathbf{a}
\mathbf{n}	\mathbf{b}

d

g
r

\mathbf{f}	
	\mathbf{a}
\mathbf{n}	\mathbf{b}

\mathbf{f}	
	\mathbf{a}
\mathbf{n}	\mathbf{b}

\mathbf{l}	
	\mathbf{f}
\mathbf{n}	\mathbf{b}
	\mathbf{c}

S

S

- We introduce an additional variable s, and a data item d

carrier sets: D	
constants: $n, f, d 0$	
variables: g, r, s, d	
inv2_1: $s \in 1 \ldots n+1$	
inv2 2: $s \in r \ldots r+1$	
inv2 3:	$d \in D$
inv2_4: $s=r+1 \Rightarrow d=f(r)$	

axm2_1: $\quad d 0 \in D$
init

$$
\begin{aligned}
g & :=\varnothing \\
s & :=1 \\
r & :=1 \\
d & :=d 0
\end{aligned}
$$

send

when

$$
\begin{aligned}
& s=r \\
& s \neq n+1
\end{aligned}
$$

then

$$
d, s:=f(s), s+1
$$

end
receive when

$$
s=r+1
$$

then

$$
\begin{aligned}
& h:=h \cup\{r \mapsto d\} \\
& r:=r+1 \\
& \text { end }
\end{aligned}
$$

final
when

$$
r=n+1
$$

then
skip
end

Development Approach

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)
- First refinement: The file is transmitted gradually (FUN3)
- Second refinement: The two agents are separated
- Third refinement: Towards an implementation

send

when

$$
s=r
$$

$$
s \neq n+1
$$

then
$d:=f(s)$
$s:=s+1$
end
receive when

$$
s=r+1
$$

then

$$
\begin{aligned}
& g:=g \cup\{r \mapsto d\} \\
& r:=r+1
\end{aligned}
$$

end
inv2 2: $s \in r . . r+1$

RECEIVER

axm31: parity $\in \mathbb{N} \rightarrow\{0,1\}$
axm32: $\operatorname{parity}(0)=0$
axm3 3: $\forall x \cdot(x \in \mathbb{N} \Rightarrow \operatorname{parity}(x+1)=1-\operatorname{parity}(x))$
thm3_1: $\forall x, y \cdot\left(\begin{array}{l}x \in \mathbb{N} \\ y \in \mathbb{N} \\ x \in y \ldots y+1 \\ \operatorname{parity}(x)=\operatorname{parity}(y) \\ \Rightarrow \\ x=y\end{array}\right)$
carrier sets: D
constants: $n, f, p a r i t y$
variables: $\quad g, s, r, d, p, q$
inv3_1: $p=\operatorname{parity}(s)$ inv3_2: $\quad q=\operatorname{parity}(r)$
axm31: parity $\in \mathbb{N} \rightarrow\{0,1\}$
axm32: $\operatorname{parity}(0)=0$
axm3_3: $\quad \forall x \cdot\left(\begin{array}{l}x \in \mathbb{N} \\ \Rightarrow \\ \operatorname{paritg}(x+1)=1-\operatorname{parity}(x)\end{array}\right)$

$$
\begin{aligned}
& \text { init } \\
& g:=\varnothing \\
& s:=1 \\
& r:=1 \\
& p:=1 \\
& q:=1 \\
& d:=d 0
\end{aligned}
$$

final when

$$
r=n+1
$$

then
skip
end
receive
when
$p \neq q$
then

$$
g:=g \cup\{r \mapsto d\}
$$

$$
r:=r+1
$$

$$
q:=1-q
$$

end

- More mathematical conventions
- How to write a model
- What kind of things we have to prove
- How the proof can help finding invariants
- Many things can be done by tools
- A small theory of parities

Gradual Observation of the Intended System

$x \in S$	Set membership operator
\mathbb{N}	set of Natural Numbers: $\{0,1,2,3, \ldots\}$
$a . . b$	Interval from a to $b:\{a, a+1, \ldots, b\}$ (empty when $b<a)$
$a \mapsto b$	pair constructing operator
$S \times T$	Cartesian product operator
$S \subseteq T$	set inclusion operator
$\mathbb{P}(S)$	power set operator

$S \leftrightarrow T$	Set of binary relations from S to T
$S \rightarrow T$	Set of total functions from S to T
$S \leftrightarrow T$	Set of partial functions from S to T
$\operatorname{dom}(r)$	Domain of a relation r
$\operatorname{ran}(r)$	Range of a relation r

$s \triangleleft \boldsymbol{r}$	domain restriction operator
$s \not r \boldsymbol{r}$	domain subtraction operator
$\boldsymbol{r} \triangleright \boldsymbol{t}$	range restriction operator
$\boldsymbol{r} \otimes \boldsymbol{t}$	range subtraction operator

A Binary Relation r from a Set A to a Set B

A Total Function F from a Set A to a Set B

$$
\operatorname{dom}(F)=A
$$

$\{a 3, a 7\} \triangleleft \boldsymbol{F}$

$$
\{a 3, a 7\} \notin \boldsymbol{F}
$$

- List of Carrier Sets (identifiers)
- List of Constants (identifiers)
- List of Axioms (predicates built on sets and constants)
- List of Variables (identifiers)
- List of Invariants (predicates built on sets, constants, and variables)
- List of Events

