
6. The Bounded Re-transmission Protocol

Jean-Raymond Abrial

2009

Purpose of this Lecture 1

- The Bounded Re-transmission Protocol is a file transfer protocol

- This is a problem dealing with fault tolerance

- We suppose that the transfer channels are unreliable

- We present classical solutions to handle that problem: timers.

- We would like to see how we can formalize such timers

1

The Bounded Retransmission Protocol 2

- A sequential file is transmitted from a Sender to a Receiver

- The file is transmitted piece by piece through a Data Channel

- After receiving some data, the Receiver sends an acknowledgment

- After receiving it, the Sender sends the next piece of data, etc.

ReceiverSender

Acknowledgment

Data Channel

Channel

- Messages can be lost in the Data or Acknowledgment channels
2

Requirements (1) 3

The goal of the BRP is to totally or partially
transfer a certain non-empty original sequential
file from one site to another.

FUN 1

A total transfer means that the transmitted file is
a copy of the original one. FUN 2

A partial transfer means that the transmitted file is
a genuine prefix of the original one. FUN 3

3

Unreliability of the Communications (1) 4

- Messages can be lost in the Data or Acknowledgment channels

- The Sender starts a timer before sending a piece of data

- The timer wakes up the Sender after a delay dl

- This occurs if the Sender has not received an acknowledgment

in the meantime

4

Unreliability of the Communications (2) 5

- dl is guaranteed to be greater than twice the transmission time

- When waken up, the Sender is then sure that the data or the

acknowledgment has been lost

- When waken up, the Sender re-transmits the previous data

- The Sender sends an alternating bit together with a new data

- This ensures that the Receiver does not confuse (?) a new data

with a retransmitted one.

5

Abortion of Protocol at the Sender Site 6

- The Sender can re-transmit the same data at most MAX+1 times

- After this, the Sender decides to abort

- How does the Receiver know that the Sender aborted?

6

Abortion of Protocol at the Receiver Site 7

- Each time the Receiver receives a new piece of data, it starts a timer

- The timer wakes up the Receiver after a delay (MAX + 1) × dl

- This occurs if the Sender has not received a new data in the

meantime.

- After this delay, the Receiver is certain that the Sender has aborted

- Then the Receiver aborts too.

7

Final Situation of the Protocol 8

- At the end of the protocol, we might be in one of the three situations:

(1) The file has been transmitted entirely and the Sender

has received the last acknowledgment

(2) The file has been transmitted entirely but the Sender

has not received the last acknowledgment

(3) The file has not been transmitted entirely

8

Requirements (2) 9

Each site may end up in any of the two situations:

- either it believes that the protocol has terminated
successfully,

- or it believes that the protocol has aborted

FUN 4

When the Sender believes that the protocol has
terminated successfully then the Receiver
believes so too.

FUN 5

9

Requirements (3) 10

However, it is possible for the Sender to
believe that the protocol has aborted
while the Receiver believes that it has
terminated successfully.

FUN 6

When the Receiver believes that the protocol
has terminated successfully, this is because
the original file has been entirely copied on
the Receiver’s site.

FUN 7

When the Receiver believes that the protocol has
aborted, this is because the original file has
not been copied entirely on the Receiver’s site.

FUN 8

10

Pseudo-code for the Protocol 11

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

11

The Sender sends Data 12

SND snd
when

SND snd is waken up
then

Acquire data from Sender’s file;
Store acquired data on Data Channel;
Store Sender’s bit on Data Channel;
Start Sender’s timer;
Activate Data Channel;

end

12

The Receiver Receives Data 13

RCV rcv
when

Data Channel interrupt occurs
then

Acquire Sender’s bit from Data Channel;
if Sender’s bit = Receiver’s bit then

Acquire Data from Data Channel;
Store data on Receiver’s file;
Modify Receiver’s bit;
if data is not the last one then

Start Receiver’s timer;
end

end
Reset Data Channel Interrupt;
Wake up RCV snd;

end

13

The Receiver sends Acknowledgment 14

RCV snd
when

RCV snd is waken up
then

Activate Acknowledgment Channel;
end

14

The Sender Receives Acknowledgment 15

SND rcv
when

Acknowledgment Channel interrupt occurs
then

Remove Data from Sender’s file;
Reset retry counter;
Modify Sender’s bit;
Wake up event SND snd;
Reset Acknowledgment Channel interrupt;
if Sender’s file is not empty then

Wake up event SND snd
end

end

15

Timer Interrupt Occurs at Sender’s Site 16

SND timer
when

Sender’s timer interrupt occurs
then

if retry counter is equal to MAX+1 then
Abort protocol on Sender’s site;

else
Increment retry counter;
Wake up event SND snd;

end
end

16

Timer Interrupt occurs at Receiver’s Site 17

RCV timer
when

Receiver’s timer interrupt occurs
then

Abort protocol on Receiver’s site
end

17

About the Pseudo-code 18

- Quite often, protocol are "specified" by such pseudo-codes

- In fact, such a pseudo-code raises a number of questions:

- Are we sure that this description is correct?

- Are we sure that this protocol terminates?

- What kinds of properties should this protocol maintain?

- Hence the formal development which is presented now

18

Refinement Strategy 19

(0) FUN 4: Defining the final "belief" situation

(1) and (2) FUN 5 and FUN 6: Connecting the "beliefs"

(3) FUN 1 to FUN 3, FUN 7 and FUN 8: Partial Transmission and

final situation of the Receiver

(4) Introducing the Sender

(5) Introducing unreliable channels and timers.

19

Reminder (1) 20

The goal of the BRP is to totally or partially
transfer a certain non-empty original sequential
file from one site to another.

FUN 1

A total transfer means that the transmitted file is
a copy of the original one. FUN 2

A partial transfer means that the transmitted file is
a genuine prefix of the original one. FUN 3

20

Reminder (2) 21

Each site may end up in any of the two situations:

- either it believes that the protocol has terminated
successfully,

- or it believes that the protocol has aborted

FUN 4

When the Sender believes that the protocol has
terminated successfully then the Receiver
believes so too.

FUN 5

21

Reminder (3) 22

However, it is possible for the Sender to
believe that the protocol has aborted
while the Receiver believes that it has
terminated successfully.

FUN 6

When the Receiver believes that the protocol
has terminated successfully, this is because
the original file has been entirely copied on
the Receiver’s site.

FUN 7

When the Receiver believes that the protocol has
aborted, this is because the original file has
not been copied entirely on the Receiver’s site.

FUN 8

22

Initial Model: Introduction 23

Our initial model deals with requirements FUN-4:

Each site may end up in any of the two situations:

- either it believes that the protocol has terminated
successfully,

- or it believes that the protocol has aborted

FUN 4

23

Initial Model: Defining Constants 24

set: STATUS
constants: working

success
failure

axm0 1: STATUS = {working, success, failure}

axm0 2: working 6= success

axm0 3: working 6= failure

axm0 4: success 6= failure

24

Initial Model: Variables and Invariants 25

- Variables s st and r st denote the status of the participants

(Sender and Receiver respectively).

variables: s st
r st

inv0 1: s st ∈ STATUS

inv0 2: r st ∈ STATUS

25

Initial Model: Events 26

- Initially, both participants are working

- Event "brp" is an "oserver" fired when both participants are not working

init
s st := working
r st := working

brp
when

s st 6= working
r st 6= working

then
skip

end

Next are two anticipated events:

SND progress
status

anticipated
when

s st = working
then

s st :∈ {success, failure}
end

RCV progress
status

anticipated
when

r st = working
then

r st :∈ {success, failure}
end

26

First and Second Refinement: Introduction 27

When the Sender believes that the protocol has
terminated successfully then the Receiver
believes so too.

FUN 5

However, it is possible for the Sender to
believe that the protocol has aborted
while the Receiver believes that it has
terminated successfully.

FUN 6

inv1 1: s st = success ⇒ r st = success

27

Events of First Refinement 28

SND success
refines

SND progress
status

convergent
when

s st = working
r st = success

then
s st := success

end

SND failure
refines

SND progress
status

convergent
when

s st = working
then

s st := failure
end

variant1: {success, failure} \ {s st}

28

Events of Second Refinement 29

RCV success
refines

RCV progress
status

convergent
when

r st = working
then

r st := success
end

RCV failure
refines

RCV progress
status

convergent
when

r st = working
s st = failure

then
r st := failure

end

variant2: {success, failure} \ {r st}

29

The Sender and the Receiver: a First View 30

SENDER

INITIAL SITUATION FINAL SITUATION

RECEIVER

SENDER

RECEIVER

i

x

y

z

x

y

z

x

y

n n

f f

g g

30

Third Refinement: More Constants 31

- Set D denotes the objects in the files

- Constant n denotes the size of the non-empty file

- Constant f denotes the original file.

set: D

constants: n
f

axm1 1: 0 < n

axm1 2: f ∈ 1 .. n → D

31

Third Refinement: the Variables 32

- Variable r denotes the size of file g

- Variable g denotes the transmitted file.

variables: r
g

inv3 1: r ∈ 0 .. n

inv3 2: g = (1 .. r) � f

inv3 3: r st = success ⇔ r = n

32

Third Refinement: the Events 33

Both these events are cheating: they have access to f(r + 1), f(n), and n.

RCV rcv current data
status

convergent
when

r st = working
r + 1 < n

then
r := r + 1
g := g ∪ {r + 1 7→ f(r + 1)}

end

RCV success
when

r st = working
r + 1 = n

then
r st := success
r := r + 1
g := g ∪ {r + 1 7→ f(n)}

end

variant3: n − r

33

Third Refinement: Synchronization 34

RCV_success

RCV_failure

SND_success brp

SND_failure

RCV_rcv_current_data

init

34

Fourth Refinement: Introducing the Sender (More Variables) 35

- Variable s is the Sender pointer sent to the Receiver

- Variable d is the data sent to the Receiver

- Variable w is the Sender activation bit

- When w is TRUE it means the Sender has just received the acknowledgement

- When w is FALSE it means the Sender has sent the information to the Receiver

variables: . . .
w
s
d

inv4 1: s ∈ 0 .. n − 1

inv4 2: r ∈ s .. s + 1

inv4 3: w = FALSE ⇒ d = f(s + 1)

35

The Main Communication 36

SND snd current data −→ (d, s)
↘

↑ RCV rcv current data
↙

SND rcv current ack ←− (r)

36

Fourth Refinement: the Events (1) 37

init
r := 0
g := ∅
r st := working
s st := working
s := 0
d :∈ D
w := TRUE

brp
when

r st 6= working
s st 6= working

then
skip

end

37

Fourth Refinement: the Events (2) 38

- New Events: the Sender prepares data d to be sent

SND snd data
when

s st = working
w = TRUE

then
d := f(s + 1)
w := FALSE

end

- These events clearly refine skip and maintain invariant inv4 3

inv4 3: w = FALSE ⇒ d = f(s + 1)

38

Fourth Refinement: the Events (3) 39

- The Receiver receives data d and pointer s. It sends pointer r.

RCV rcv current data
when

r st = working
w = FALSE
r = s
r + 1 < n

then
r := r + 1
g := g ∪ {r + 1 7→ d}

end

RCV success
when

r st = working
w = FALSE
r = s
r + 1 = n

then
r st := success
r := r + 1
g := g ∪ {r + 1 7→ d}

end

- The Receiver still cheats: it accesses constant n and boolean w

39

Refinement of RCV rcv current data 40

(abstract-)RCV rcv current data
when

r st = working
r + 1 < n

then
r := r + 1
g := g ∪ {r + 1 7→ f(r + 1)}

end

(concrete-)RCV rcv current data
when

r st = working
w = FALSE
r = s
r + 1 < n

then
r := r + 1
g := g ∪ {r + 1 7→ d}

end

- Observe guard strengthening

- This invariant helps proving event refinement

inv4 3: w = FALSE ⇒ d = f(s + 1)

40

Refinement of RCV success 41

(abstract-)RCV success
when

r st = working
r + 1 = n

then
r st := success
r := r + 1
h := h ∪ {n 7→ f(n)}

end

(concrete-)RCV success
when

r st = working
w = FALSE
r = s
r + 1 = n

then
r st := success
r := r + 1
h := h ∪ {r + 1 7→ d}

end

- Observe guard strengthening

- This invariant helps proving event refinement

inv4 3: w = FALSE ⇒ d = f(s + 1)

41

Fourth Refinement: the Events (4) 42

- The first event is new. It clearly refines skip

- The activation bit is set to TRUE (activating the event "SND snd data")

- The Sender receives acknowledgment (pointer r)

SND rcv current ack
when

s st = working
w = FALSE
s + 1 < n
r = s + 1

then
w := TRUE
s := s + 1

end

SND success
when

s st = working
w = FALSE
s + 1 = n
r = s + 1

then
s st := success

end

42

Refinement of SND success 43

(abstract-)SND success
when

s st = working
r st = success

then
s st := success

end

(concrete-)SND success
when

s st = working
w = FALSE
s + 1 = n
r = s + 1

then
s st := success

end

- The presence of inv1 3 ensures that the guard is strengthen

inv3 3: r st = success ⇔ r = n

43

Fourth Refinement: the Events (5) 44

- This new events will receive a full explanation in the next refinement

SND time out current
when

s st = working
w = FALSE

then
w := TRUE

end

44

Fourth Refinement: Synchronization of the Events 45

RCV_success

RCV_failure

SND_failure

RCV_rcv_current_data

SND_success brp

SND_time_out_current

SND_rcv_current_ack

SND_snd_data

init

45

Fifth Refinement: Introducing more Activation Bits 46

- At most one activation bit is TRUE at a time

variables: . . .
db
ab
v

inv5 1: w = TRUE ⇒ db = FALSE

inv5 2: w = TRUE ⇒ ab = FALSE

inv5 3: w = TRUE ⇒ v = FALSE

inv5 4: db = TRUE ⇒ ab = FALSE

inv5 5: db = TRUE ⇒ v = FALSE

inv5 6: ab = TRUE ⇒ v = FALSE

46

Activation bits at work 47

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
w v

47

Activation bits at work 48

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

48

Activation bits at work 49

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

49

Activation bits at work 50

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

50

Activation bits at work 51

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
w v

51

Activation bits at work 52

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

52

Activation bits at work 53

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

53

Activation bits at work 54

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

54

Fifth Refinement: Introducing the Last Item Indicator 55

- These invariants define the last data indicator

variables: . . .
l

inv5 7: db = TRUE ∧ r = s ∧ l = FALSE ⇒ r + 1 < n

inv5 8: db = TRUE ∧ r = s ∧ l = TRUE ⇒ r + 1 = n

- This bit is sent by the Sender to the Receiver

- When equal to TRUE, this bit indicates that the sent item is the last one

55

Fifth Refinement: Introducing the Retry Counter c 56

- Constant MAX denotes the maximum number of retries

- The sender fails iff the retry counter c exceeds MAX (inv5 10)

constants: . . .
MAX

variables: . . .
c

axm5 1: MAX ∈ N

inv5 9: c ∈ 0 .. MAX + 1

inv5 10: c = MAX + 1 ⇔ s st = failure

56

Fifth Refinement: the Events (1) 57

init
r := 0
g := ∅
r st := working
s st := working
s := 0
d :∈ D
w := TRUE
db := FALSE
ab := FALSE
v := FALSE
l := FALSE
c := 0

brp
when

r 6= working
s 6= working

then
skip

end

57

Fifth Refinement: the Events (2) 58

SND snd current data
refines

SND snd data
when

s st = working
w = TRUE
s + 1 < n

then
d := f(s + 1)
w := FALSE
db := TRUE
l := FALSE

end

SND snd last data
refines

SND snd data
when

s st = working
w = TRUE
s + 1 = n

then
d := f(s + 1)
w := FALSE
db := TRUE
l := TRUE

end

58

Fifth Refinement: New Events 59

- Daemons are breaking the channels

DMN data channel
when

db = TRUE
then

db = FALSE
end

DMN ack channel
when

ab = TRUE
then

ab = FALSE
end

- A failure is characterized by all activation bits being FALSE

59

Fifth Refinement: the Events (3) 60

SND time out current
when

s st = working
w = FALSE
ab = FALSE
db = FALSE
v = FALSE
c < MAX

then
w := TRUE
c := c + 1

end

SND failure
when

s st = working
w = FALSE
ab = FALSE
db = FALSE
v = FALSE
c = MAX

then
s st := failure
c := c + 1

end

- Sender aborts after MAX + 1 tries

60

Fifth Refinement: the Events (4) 61

RCV rcv current data
when

r st = working
db = TRUE
r = s
l = FALSE

then
r := r + 1
h := h ∪ {r + 1 7→ d}
db := FALSE
v := TRUE

end

RCV success
when

r st = working
db = TRUE
r = s
l = TRUE

then
r st := success
r := r + 1
h := h ∪ {r + 1 7→ d}
db := FALSE
v := TRUE

end

Reminder: l is the last data indicator

61

Fifth Refinement: Guard Srengthening (1) 62

(abstract-)RCV rcv current data
when

r st = working
w = FALSE
r = s
r + 1 < n

then
r := r + 1
h := h ∪ {r + 1 7→ d}

end

(concrete-)RCV rcv current data
when

r st = working
db = TRUE
r = s
l = FALSE

then
r := r + 1
h := h ∪ {r + 1 7→ d}
db := FALSE
v := TRUE

end

inv5 1’: db = TRUE ⇒ w = FALSE

inv5 7: db = TRUE ∧ r = s ∧ l = FALSE ⇒ r + 1 < n

62

Fifth Refinement: Guard Srengthening (2) 63

(abstract-)RCV success
when

r st = working
w = FALSE
r = s
r + 1 = n

then
r := r + 1
h := h ∪ {r + 1 7→ d}

end

(concrete-)RCV success
when

r st = working
db = TRUE
r = s
l = TRUE

then
r st := success
r := r + 1
h := h ∪ {r + 1 7→ d}
db := FALSE
v := TRUE

end

inv5 1’: db = TRUE ⇒ w = FALSE

inv5 8: db = TRUE ∧ r = s ∧ l = TRUE ⇒ r + 1 = n

63

Fifth Refinement: the Events (5) 64

RCV rcv retry
when

db = TRUE
r 6= s

then
db := FALSE
v := TRUE

end

RCV snd ack
when

v = TRUE
then

v := FALSE
ab := TRUE

end

RCV failure
when

r st = working
c = MAX + 1

then
r st := failure

end

64

Fifth Refinement: the Events (6) 65

SND rcv current ack
when

s st = working
ab = TRUE
s + 1 < n

then
w := TRUE
s := s + 1
c := 0
ab := FALSE

end

SND success
when

s st = working
ab = TRUE
s + 1 = n

then
s st := success
c := 0
ab := FALSE

end

65

Fifth Refinement: Guard Strengthening (1) 66

(abstract-)SND rcv current ack
when

s st = working
w = FALSE
s + 1 < n
r = s + 1

then
w := TRUE
s := s + 1

end

(concrete-)SND rcv current ack
when

s st = working
ab = TRUE
s + 1 < n

then
w := TRUE
s := s + 1
c := 0
ab := FALSE

end

inv5 2’: ab = TRUE ⇒ w = FALSE

- In order to prove guard strengthening we need invariant inv5 11

inv5 11: ab = TRUE ⇒ r = s + 1

inv5 12: v = TRUE ⇒ r = s + 1

- Invariant inv5 12 is needed to prove inv5 11

66

Fifth Refinement: Guard Strengthening (2) 67

(abstract-)SND success
when

s st = working
w = FALSE
s + 1 = n
r = s + 1

then
s st := success

end

(concrete-)SND success
when

s st = working
ab = TRUE
s + 1 = n

then
s st := success
c := 0
ab := FALSE

end

inv5 2’: ab = TRUE ⇒ w = FALSE

- In order to prove guard strengthening we need invariant inv5 11

inv5 11: ab = TRUE ⇒ r = s + 1

inv5 12: v = TRUE ⇒ r = s + 1

- Invariant inv5 12 is needed to prove inv5 11

67

Final Synchronization of the Events 68

SND_snd_current_data SND_snd_last_data

SND_success brp

init

RCV_success

DMN_ack_channel DMN_data_channel

RCV_retry

RCV_snd_ack

RCV_rcv_current_data

SND_rcv_current_ack

SND_failure

RCV_failure

SND_time_out_current

68

Computing Probabilities 69

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

probability of failure: p

probability of failure: p

- We would like to compute the probability of success

- It is a function of:

- p: probability of failure for one channel

- n: size of the file

- MAX + 1: number of re-tries

69

Computing Probabilities 70

Failure on one channel p

70

Computing Probabilities 71

Failure on one channel p

Success on one channel 1 − p

71

Computing Probabilities 72

Failure on one channel p

Success on one channel 1 − p

Success on both channels (1 − p)2

72

Computing Probabilities 73

Failure on one channel p

Success on one channel 1 − p

Success on both channels (1 − p)2

Fails on one try 1 − (1 − p)2

73

Computing Probabilities 74

Failure on one channel p

Success on one channel 1 − p

Success on both channels (1 − p)2

Fails on one try 1 − (1 − p)2

Fails on MAX + 1 tries (1 − (1 − p)2)MAX+1

74

Computing Probabilities 75

Failure on one channel p

Success on one channel 1 − p

Success on both channels (1 − p)2

Fails on one try 1 − (1 − p)2

Fails on MAX + 1 tries (1 − (1 − p)2)MAX+1

Succ. on MAX + 1 tries 1 − (1 − (1 − p)2)MAX+1

75

Computing Probabilities 76

Failure on one channel p

Success on one channel 1 − p

Success on both channels (1 − p)2

Fails on one try 1 − (1 − p)2

Fails on MAX + 1 tries (1 − (1 − p)2)MAX+1

Succ. on MAX + 1 tries 1 − (1 − (1 − p)2)MAX+1

Success for n data (1 − (1 − (1 − p)2)MAX+1)n

76

Computing Probabilities 77

Failure on one channel p

Success on one channel 1 − p

Success on both channels (1 − p)2

Fails on one try 1 − (1 − p)2

Fails on MAX + 1 tries (1 − (1 − p)2)MAX+1

Succ. on MAX + 1 tries 1 − (1 − (1 − p)2)MAX+1

Success for n data (1 − (1 − (1 − p)2)MAX+1)n

p = .1
MAX = 5
n = 100 .995

77

