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Preface 

Event-B is a formal method for system-level modelling and analysis. The Rodin 

Platform is an Eclipse-based toolset for Event-B that provides effective support 

for modelling and automated proof. The platform is open source and is further 

extendable with plug-ins. A range of plug-ins has already been developed 
including ones that support animation, model checking and UML-B. 

While much of the continued development and use of Rodin takes place within 

the DEPLOY Project, there is a growing group of users and plug-in developers 

outside of DEPLOY. In July 2009, DEPLOY organised a workshop at the 

University of Southampton to bring together existing and potential users and 

developers of the Rodin toolset and to foster a broader community of Rodin users 

and developers.  For Rodin users the workshop provided an opportunity to share 

tool experiences and to gain an understanding of on-going tool developments. 

For plug-in developers the workshop provided an opportunity to showcase their 

tools and to achieve better coordination of tool development effort.  Moving 

towards an open source development project will mean that features that cannot 

be resourced from within the project can be developed outside the project.  It will 
also help to guarantee the longer-term future of the Rodin platform. 

This report contains the abstracts of the presentations at the workshop on 16 and 

17 July 2009.  The workshop was preceded by a tutorial for Rodin Plug-in 
developers on 15 July. 

We would like to acknowledge the support of the School of Electronics and 

Computer Science at the University of Southampton (especially the 

organisational work of Maggie Bond), the DEPLOY project and additional 
government funding. 

 

Michael Butler 

Stefan Hallerstede 

Laurent Voisin 

 

July 2009 
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System Modelling and Design:
Refining Software Engineering

Ken Robinson
School of Computer Science & Engineering

UNSW
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email: kenr@cse.unsw.edu.au

June 26 2009

1 Overview

This abstract is a precis of a talk that will illustrate aspects of the teaching
of Event-B within The School of Computer Science & Engineering (CSE ) at
The University of New South Wales (UNSW ) in the second year of our Soft-
ware Engineering program. It is taught in a course named System Modelling &
Design and applied within another pair of courses named Software Engineering
Workshops. This talk will present the objectives and some of the experiences of
those courses.

1.1 Motivation for Using Event-B

The ultimate objective for teaching Event-B to students who will graduate as
software engineers is to illustrate the advantage of a quantifiable systems design
process. This leads to designs about which designers can reason and can obtain
verification of the consistency of their designs through the discharge of proof
obligations —really mathematical analysis.

The courses are not taught as Formal Methods, indeed the author eschews
the “formal methods” description for this activity. The courses are motivated
and taught as engineering methods for the design of systems, especially software
systems. We want students to understand and be able to explain the systems
they produce. Even though the students are quite competent in programming,
experience reveals that they cannot explain their implementations (programs):
the only suggestion they can give for verifying those implementations is testing.
While not denying a place for testing, it is pointed out that their position would
not be acceptable in any other engineering profession.

2 Lessons that Must be Learnt

2.1 Not a Silver Bullet

A point that must be emphasised to students is that the strength of the designs
they produce is strongly dependent on how they express their designs. There is
a real danger that the concept of proof gives the impression that any Event-B
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model whose proof obligations have been discharged “has been proved to be cor-
rect”: it needs to be emphasised that all this really demonstrates is consistency
and that the consequences could be quite weak.

2.2 Use of Abstraction

Abstraction is essential, not as an exotic mathematical exercise, but as an ex-
ercise in presenting the essential behaviour that is to be modelled, rather than
the detail of how it might be implemented; unfortunately what many students
will want to specify. This is one of the hard lessons for students who are used
to programming.

2.3 Behaviour not Programming

Even in Event-B you can still “program”: meaning that the guards and the
actions are determined to achieve the desired behaviour, but the invariant is
too weak and doesn’t model the constraints that would ensure that behaviour.
In the latter case the proof obligations will not express the verification of the
desired behaviour of the model.

2.4 Use Many Refinement Layers

As part of the goal of achieving a meaningful model of a system, it will probably
be useful to have many levels of refinement in order to build adequately strong
invariants and guards and to have greater confidence in the design of the model.

3 The Experience with Event-B

3.1 Contrasting with Classical-B

These courses have been taught in the past using Classical-B. The experience
with moving from Classical-B to Event-B has been very positive and rewarding.
Strangely, although both versions of B have substantially the same mathemati-
cal toolkit, and hence any design that could be expressed in Event-B could be
expressed in Classical-B, the experience is quite different. Event-B appears to
encourage more abstraction and greater use of refinement. This will be illus-
trated with examples of developments, some with contrasts to their modelling
in Classical-B.

3.2 Implementing Models in the Workshop

In the first semester of the parallel workshop course students work in teams to
apply Event-B to the modelling of some system. In the second semester of the
workshop the student teams have to implement a prototype of the system that
they have modelled in Event-B.

When using Classical-B we used implementation tools provided by the B-
Toolkit (B-Core). In 2008 (semester 2) the implementation was done informally
but based on a mapping from Event-B models to an object-oriented design. This
worked very smoothly in 2008, and could be argued to be more beneficial for the
students. Previously, there were some difficulties in understanding how the tool
worked and how to refine their model to use the tool, whereas understanding the
informal translation is quite simple. This method will be pursued and developed
in the coming 2009 semester.
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
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
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

           
       

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

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Abstract

Microprocessor pipelining is a well-established technique that improves
performance and reduces power consumption by overlapping instruction
execution. From the Instruction Set Architecture (ISA) specification, a
pipelined microarchitecture is developed that implements the specifica-
tion. Verifying, however, that an implementation meets this ISA speci-
fication is complex and time-consuming. Current verification techniques
are predominantly test based within a Register Transfer Level (RTL) sim-
ulation and synthesis flow.

One of the key verification issues that must be addressed is that of
overlapping instruction execution. This can introduce hazards where, for
instance, a new instruction reads the value from a register which will
be written by an earlier instruction that has not yet completed. These
are termed Read-After-Write (RAW) data hazards. The presence of haz-
ards depends on the instruction mix presented to the microprocessor and
psuedo-random test generation techniques have been used in an attempt
to achieve adequate test coverage of instruction combinations.

Formal techniques, using both model checking and theorem proving,
have been used in microprocessor verification, but as an adjunct to the
simulation-based flow. These techniques are applied after the design
is completed in the hope of detecting errors not discovered by testing.
Higher-level hardware description languages such as Bluespec and Cal,
which provide an automatic synthesis route to RTL, can speed up the
design process, but it is the verification costs that dominate in the overall
flow and the bulk of the verification must still be done at the Register
Transfer Level.

Using Event-B’s support for refinement with automated proof, a method
is explored where the abstract machine represents directly an instruction
from the ISA that specifes the effect that the instruction has on the micro-
processor register file. Refinement is then used systematically to derive
a concrete, pipelined execution of that instruction. At each refinement
step the importance is shown of addressing the inherent simultaneity that
characterises the pipelined behaviour and, in particular, the effects that
feedback has in pipeline construction. In parallel with this refinement a se-
quential machine, which has a pipelined structure but without instruction
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overlap, is also developed to assist in the process of invariant discovery
and to mirror a commonly-used pipeline design technique.

To illustrate the method, the register-register arithmetic instruction
of a typical System-on-Chip (SoC) microprocessor is chosen that can ex-
hibit RAW data hazards with overlapping execution. A technique, termed
forwarding, where intermediate values are fed back to a stage that needs
them, is employed in modern microprocessors to provide a very efficient
means of managing RAW hazards. Debugging the forwarding logic has,
however, been found to be difficult and expensive. With the introduc-
tion of appropriate invariants it is shown that the concrete, pipelined
refinement will not preserve these invariants unless the RAW hazards are
detected and managed appropriately.

The concrete Event-B model implements forwarding in a way that cor-
responds directly to the techniques used in microprocessor design and is
proved, automatically, in the Rodin environment to be a correct refine-
ment of the abstract ISA specification. The concrete model also has a
direct correspondence to an equivalent hardware description in the high-
level languages Bluespec and Cal, which like Event-B are based on guarded
atomic actions. The method proposed therefore has the potential to be
integrated into an existing high-level synthesis methodology, providing
an automated design and verification flow from high-level specification to
hardware.
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As design complexity rapidly grows, verification consumes an ever increasing
part of the time invested into the design of a system. Design decisions are made
to optimise architectures in order to gain high performance or reduce power
consumption. However, the impact of design decisions on verification is rarely
considered when these decisions are being made. In the hardware community up
to 70% of the design effort has reportedly been spent on verification. In practice,
many verification projects take much longer than anticipated; delays in design
verification are often the reason for delayed tape-out of a circuit. It is of great
importance to at least make designers aware of the verification effort behind
design options.

While methods are available to assess how much more performance gained or
how much less power is consumed by a particular design choice, it is remarkable
how little knowledge there is on estimating the verification effort needed to gain
confidence in the functional correctness of a design. Of particular interest to us
were the approaches that lead to the power estimation techniques which today
underpin the tools used for low power design. We replicated this approach, and
transferred the method to make design decisions verification-aware.

In principle, all microprocessor designs show a certain degree of similarity.
Therefore, we estimate the verification effort for a new design, based on the com-
parison of the new design’s features to a reference model for which the verification
effort is known. Since current simulation-based methods do not provide quanti-
tative and objective comparability, we used Event-B as a tool which supports a
rigorous method that is also generic and extendible for different design option
comparisons. In addition, it also supports hierarchical modelling to allow early
design exploration, i.e. the comparisons of design choices at higher abstraction
levels, well before the final concrete model can be described. Last but not least,
by using Event-B and Rodin the reference model is also correct by construction
due to the property-preserving refinement enforced in this framework.

Briefly, the reference model is built via a series of refinement steps, where
each step splits an instruction set until each instruction falls into a unique con-
crete subset. During the refinements, the key point was to leave an open choice
point at each level of abstraction to accommodate different design options. To
enable quantitative comparisons, the number of events is used as an indicator
! Studying for a PhD under the supervision of Dr. Kerstin Eder
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for verification effort; this is based on the observation that in simulation-based
verification a certain number of tests would be associated with each event in the
model. Using the reference model, the impact of different design decisions, such
as multi-destination instructions and constant registers, on verification effort can
be compared at the appropriate levels of abstraction.

Additionally, a Rodin plug-in for collecting statistics, such as the number
of events, number and type of POs, etc, has been developed. Further research
could be done on investigating how leaving things undefined in a design, which
is very common in practice, impacts verification effort. Investigations are also
being made into the development of a more automatic method to generate a
processor model; the one I developed was a purely manual effort. During the
model development I found that visualising the hierarchy description was helping
me to present the features of the hierarchical model. Therefore, a visualisation
plug-in also interests me a lot.
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1 Introduction

According to [8], Hoare and Misra outline the importance of experimenting in formal methods which
involves the application of theories and tools in order to push forward scientific progress in formal
methods. Experiments assist us to understand the strengths and weaknesses of theories and tools.
We have chosen a flash-based filestore as a case study for our experiments. This case study was
proposed as a challenging system by Joshi and Holzmann [9] in 2005. As presented in [9], the
challenge is how to deal with failures that may occur while performing file or flash operations. For
example, how do we cope with fault-tolerance when flash instructions being performed fail, or when
power loss?

In our formal development, the flash specification we chose is the Open NAND Flash Interface
(ONFi) proposed in [10]. This specification is open and is mostly referenced by researchers who
are working in this area. Physical characteristics of the flash device constrain the way it is used.
Thus, physical characteristics and failure management are important to be concentrated. Reading
and writing content of any file from and to the flash device are consistent with an abstract model of
a file system.

Our experiment presented here is the development of a verified refinement chain for a flash-based
filestore using Event-B and Rodin. This experiment is an extension of the work we presented in [7]
where we outlined a model of a tree-structured file system. The extension we address here consists
of replacing the abstract file system by the flash specification and dealing with fault-tolerance. Our
contribution are evidence of the applicability of Event-B and Rodin to a flash file store.

2 Methodologies

An incremental refinement was employed as our strategy to develop a model of a flash-based file
system. The refinement was used in two different approaches, horizontal or feature augmentation
and vertical refinements or structural refinement [6]. The horizontal development was mainly pre-
sented in [7]. The vertical refinement is the focus of this paper. Horizontal refinement is aimed
at introducing new requirements or properties which are not addressed in the initial model or may
be postponed to other levels. Thus, in each refinement step, additional state variables and related
events might be extended to incorporate those augmented features. The system models will be
enlarged gradually when new properties are added. On the other hand, the purpose of structural
refinement is to replace an abstract structure with more design details in each refinement step down
to an implementation. This kind of refinement may involve data refinement, event decomposition
and machine decomposition.

2.1 Horizontal refinement

Horizontal refinement was used in an incremental way to construct a model of an abstract file
system. The model was begun with an abstract tree structure. After that, new features – files
and directories, file content, permissions and other properties such as name and created date –
were gradually introduced in refinement steps. We eventually achieved five-layered specification
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describing an abstract file system. We regard the full chain of horizontal refinements as representing
the specification, not just the most abstract level. That is, the specification is the abstract level plus
a series of feature augmentations.

The event-extension feature 1 provided by the tool was mainly used to construct the refinement
chain of the model. In each refinement step, when new features or properties were introduced, the
related events were extended by adding more details corresponding to those features. The extension
may involve adding parameters, guards and actions.

2.2 Vertical refinement

Structural refinement, which is the focus of this experiment, was used to relate the abstract file system
with the specification of the flash interface layer. The event-decomposition technique presented in [4]
was used to decompose the events readfile and writefile into sub-events in order to map them with
page-read and page-programme interfaces provided by the flash interface layer. The decomposition
is based on the assumption that the content of the file is read from or written into the storage one
page at a time.

Decomposing those two events were done in two refinement steps. After that, the flash speci-
fication which is based on the ONFi standard was introduced in the following step. The abstract
content of each file was replaced by the content on the flash array which is represented by the fat
table. This table is a mapping of each file to a table that maps each logical page-id of the file to its
corresponding row address in the flash. The corresponding row address represents the location (in
the flash) on which the content of that page is.

2.3 Machine decomposition and Further refinements

The machine decomposition technique [4] was applied to decompose the machine of the last refine-
ment into two machines representing the specification of the file system layer and the flash interface
layer. The reason we do this is to carry out further refinements of the flash model separately from
the file system model. The machine decomposition we applied here follows the style described in [4].
Namely, variables are partitioned and sub-machines interact with each other via synchronisation over
shared parameterised events.

After we have done a machine decomposition, the flash model was refined individually by adding
more details of the flash specification. For example, each LUN has at least one page register used
for buffering data. Writing a page is done in two phases. The first is writing the given data into a
page register within the selected LUN and the second is programming the data on the page register
into the flash array at the given row address. Event block-erase is also specified. This event has the
effect of erasing the given block in order to be reused (or rewritten). To reclaim a dirty block, the
block that contains obsolete data and may has one or more pages with valid data, all valid pages
within the block must be relocated. After relocation has been completed, the given block becomes
obsolete and ready to be erased.

Note that the wear-levelling process 2 is an important feature that has not been completed in
our development yet. It is in our on-going work.

3 Conclusion and Discussion

Feature augmentation was a mechanism used for constructing a model of an abstract file system
which was presented in [7]. Instead of specifying everything in one level that may give rise of proof
difficulty, we decided to partition the whole system features into sub-features which were chosen
to be introduced in refinement steps. We have found that this approach makes model easier to
construct and prove. Additionally, we also have found that the event-extension feature provided by
the Rodin tool makes model easier to construct and modify. Namely, some modifications can be
made at the abstract levels individually without an affecting of modifying the concrete levels. This

1The extension feature is available in the Rodin toolset release 0.9.0 or higher.
2A technique used for prolonging the life time of flash memory covering reclaiming and erasing blocks within a

flash chip.
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is in contrast to while we were developing the model of [7] using the Rodin tool release 0.8.2 with no
event-extension.

As evidence of applying the event-decomposition technique to our case study, we have found that
the event-decomposition technique is very effective for breaking an atomic event. It can be applied to
other work whose events may require to decompose in order cope with fault-tolerance or concurrency.
An atomic event can be partition into sub-events that can be performed in an interleaved fashion.

The machine decomposition was used to separate part of the flash interface layer from the file
system layer. The purpose is to deal with further refinements of the flash interface layer separately.
Sine those two layers are in different place and interact with each other via the shared parameterised
events. Based on this evidence, we believe that machine decomposition is applicable for other
developments whose specification involves a number of sub-modules that can be partitioned and
refined individually. Recently, the Rodin dose not provide any tool to decompose machines directly,
we still need to decompose machines manually using the editor of the Rodin tool. Thus, in the
future, it would be useful if a machine-decomposition tool could be developed.

In each step of iteration of modelling, modification and proof, POs generated by the tool were
used as guidelines for modelling and reasoning about the model. For example, they were used to
determine which gluing invariant should be added to the machine, which event guard should be
added in order to strengthen the model, as well as which form of expressions should be used to make
prove easier. That means this technique let us get a higher number of automatic proof.

Although proof statistics show a high degree of automatic proof (93%), some improvements still
be required. Main tool is automatic proof and retaining proofs when models change but ML proofs
require to be reproved every time the models change. This wastes a lot of time if there are many
POs to be discharged.

Lastly, additional improvement that can be added to the language is the separation of external
and internal parameters. The separation would make events more readable and easier to specify
interactive systems. Another improvement, providing generic theories such as tree-theory would be
useful for specifying and reasoning about systems that require tree manipulation.
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Abstract:

Sets, lists, and maps are elementary data structures frequently used

both in programs and in (declarative) specifications. Program analysis

tools therefore need to decide verification conditions containing

variables of such types. Unfortunately, the SMT-Lib standard, which is

the format most commonly used to integrate theorem provers and

SMT-Solvers into program verification systems, does not provide sets,

lists, or maps as primitive datatypes. The solution normally chosen for

verification systems is to encode these datatypes into arrays or

uninterpreted functions, which has several drawbacks: it is not possible

to employ dedicated decision procedures for these theories, much

structure of the verification problems is lost, and the encodings often

exploit prover-specific features. We therefore propose a new theory of

finite sets, lists, and maps for the SMT-Lib standard.
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Abstract

Event-B [3] is a formalism for discrete system modelling. Key features of Event-B include the
use of set theory as a modelling notation, the use of refinement to model systems at different
levels of abstraction, and the use of mathematical proof to verify consistency between refinement
levels. Event-B provides two constructs to model systems; contexts describe static properties
(constants and carrier sets) whereas machines model dynamic behaviour (variables and events).
Proof obligations are generated to verify the consistency of models with regards to some well-defined
criteria [3].
The Rodin [4] platform is the software tool that accompanies Event-B. It is developed as a collection
of Eclipse plug-ins to benefit from the modularity of the Eclipse architecture. Our work will exploit
this important feature of Rodin to develop a mechanism by which the mathematical language of
Event-B can be augmented with new datatypes and definitions of new expression operators (e.g.,
symmetric difference) and new basic predicates (e.g., reflexivity of a relation). The mechanism will
also allow the prover infrastructure to be easily extensible with new proof rules (inference rules
and rewrite rules) without the detour through writing Java code as is the current practice. This
work will go a long way in realising the mathematical extensions envisaged in [2].
In line with the Rodin approach to modelling using two constructs and generating proof obligations
to verify consistency, we propose a new construct we shall call Theory. This new construct was
partially inspired by Isabelle’s [1] theories where the user can specify datatypes, functions (amongst
other things) alongside theorems to be proved. The Isabelle theory can also make contributions
to the prover by extending the set of simplification rules it can apply. The theory construct in
Event-B will achieve the two objectives outlined previously, and will be developed in a similar
fashion to contexts and machines.

Keywords: Event-B, rule-based prover, rewrite rules, inference rules, mathematical ex-
tensions
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We propose two plug-ins for the Rodin toolset. Firstly, we aim to create a proof planning
plug-in, which we believe will enhance proof automation by exploiting common patterns of
reasoning. Secondly, the reasoning patterns will be extended with modelling patterns, allow-
ing us to explore the interplay between reasoning and modelling, i.e. reasoned modelling.
In addition to proof automation, this reasoned modelling plug-in will provide modelling
guidance based on the reasoning process.

1 Proof planning in Rodin

Event-B promotes an incremental style of design where the activities of modelling and analysis are
closely intertwined. Therefore Event-B and Rodin provide an ideal system for our reasoned modelling
research, which will explore the interplay between reasoning and modelling.

Our starting point is the notion of proof planning, a technique for automating the search for proofs
through the use of high-level proof outlines, known as proof plans [4]. A proof plan provides a way of
representing common patterns of reasoning, patterns that provide heuristic guidance for proof search.
A novel feature of proof planning is the ability to analyse and patch proof-failures, known as the proof
critics mechanism [9].

One of proof planning’s biggest success stories is proof by mathematical induction [5]. Induction is
essential for reasoning about inductively defined data types (which are part of the Rodin roadmap [2]).
Specific successes are: mathematical induction: program verification, synthesis, and optimisation;
hardware verification; correction of faulty specifications; non-inductive proof: summing series; limit
theorems; automatic proof patching: conjecture generalisation, lemma discovery, induction revision,
case splitting, loop invariant discovery.

We believe Event-B models contain many reasoning patterns, thus a proof-planning plug-in will
enhance proof automation within Rodin. Note that proof planning has a track record in promoting tool
integration [10, 12].

2 Reasoned modelling in Rodin

Proof plans capture reasoning patterns, and proof critics capture reasoning patches, like lemma specula-
tion and conjecture generalisation. In an Event-B development, there is often a strong interplay between
the modelling and reasoning perspectives. For example, the patching of a model is guided by analysing
failed proof obligations. This is illustrated in Abrial’s “Cars on a Bridge” example [1], where modifica-
tion of events (guards and actions) and invariants are guided by failed proof obligations. In the Mondex
smart-card case study [7], gluing invariants are discovered in an iterative process where each modification
is a result of the analysis of failed proof obligations.

We thus propose a new paradigm which explores the interplay between modelling and reasoning.
This will be achieved by extending proof plans and proof critics to incorporate both modelling and
reasoning patterns. We call this reasoned modelling.

In addition to proof centric patches, like lemma speculation and conjecture generalisation, a reasoned
modelling critic will also suggest changes to models. We expect to capture modelling heuristics in such
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A Proposal for a Rodin Reasoned Modelling Plug-in

critics, however, full automation will not be possible or desirable, since there can be many suggestions
and only the user (modeller) will have the required insight of the intended behaviour or requirement.
The plug-in will provide high-level modelling suggestions to the user, based on failures and analysis of
(low-level) proof obligations. Heuristics, can be used to prioritise suggestions. Note that proof planning
has a track record in using proof failure to evolve models [6, 11].

In addition to containing reasoning patterns, a reasoned modelling plan will contain modelling pat-
terns. One example is the discovery of gluing invariants. Such a plan may, as in [7], cause intermediate
refinements. Thus, a plan may contain local and global changes, in one or many machines and contexts.
Moreover, it will contain information on both how to model and how to verify the corresponding proof
obligations. Also, due to the flexibility of our approach, we believe we can encode a rich set of general
refinement patterns. Note that since reasoned modelling is centred around modelling and reasoning, it
deviates from other suggested Event-B design and refinement patterns, like [3, 8], which have a clear
modelling focus.
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Writing a formal specification for real-life, industrial problems is a difficult and
error prone task, even for experts in formal methods. When specifying a formal
model it is crucial to validate, that the model’s behaviour corresponds to the
requirements and to our expectations to preseve us from additional costs of
changing at a late point of the development. Animation and visualization can
help us to gain confindence that the model satisfies our requirements.

For the B-Method, we presented the Prolog based animator and model checker
ProB, which aims to support the writing of formal specifications. ProB allows
a user to gain confidence that the specification does meet the requirements. The
user can check the presence of desired functionality and inspect the behavior of
a specification.

We developed a plug-in version of ProB allowing to animate and model-
check Event-B models. The plug-in version so far supports the most often used
subset of the features provided by the tcl/tk version of ProB. In addition, it
offers to export the models for usage in the tcl/tk version.

The architecture of the ProB plug-in was designed to be as open as posible
for later extensions by tool developers. All activities are encapsulated in com-
mands. Developers can write their own commands (sometimes they require to
change the Prolog side of ProB) or combine existing commands. The imple-
mentation of the commands delivered with the plug-in makes heavy usage of
combining basic commands. For instance, the command to explores a state calls
a number of basic commands such as a command to get the values for the state
variables, to get the status of the invariant (broken or not) or to get information
about timeouts.

Our presentation gives an short introduction into using the ProB plug-in
for Rodin. We will demonstrate how to install and use the plug-in as well as give
useful hints for users that are new to ProB. We will also give a quick overview
together with pointers, how the tool can be extended and used by other plug-ins.

! This research is being carried out as part of the DFG funded research project
GEPAVAS and the EU funded FP7 research project 214158: DEPLOY (Industrial
deployment of advanced system engineering methods for high productivity and de-
pendability).
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SAL [4] is a model-checking framework combining a range of tools for reason-
ing about information systems, in particular concurrent systems, in a rigorous
manner. The core of SAL is a language for constructing system specifications
in a compositional way. The SAL tool suite includes a state of the art symbolic
(BDD-based) and bounded (SAT-based) model checkers.

The overall aim of our work is to investigate the potential applications of
SAL in a combination with the Rodin platform, a development tool for the
Event-B formalism. Unlike SAL, Rodin relies mostly on theorem proving for
model analysis. We are looking for a way of complementing the Rodin platform
with a plugin that would automate some of the more difficult tasks such as
liveness, deadlock freeness and reachability analysis.

1 Translating Event-B into SAL

During our initial experiments we have translated a number of Event-B models
into the input language of SAL and verified them. The benchmark for our efforts
is ProB[1, 2]. Since ProB is Prolog-based we had started with an expectations
of achieving some perfomance advantage for a considerable subset of problems.

Figure 1 presents the comparative performance of the ProB Event-B model
checker and SAL run on the result of transforming the same model into SAL.
The first model is a synthetic benchmark based on bubble sort algorithm. The
other four models are the examples bundled with ProB distribution. These
demonstrate the translation and the performance of some of the most ”inconve-
nient” parts of Event-B syntax for SAL: sets, functions, relations and operators
on them such as union, intersection, cardinality and etc.

In these models, we used a classical representation of sets in predicates
adopted from [5]. Reasoning on timings we obtained during our experiments,
we drew preliminary conclusions about efficiency of SAL model checker on our
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Figure 1: Comparison of ProB and SAL model checkers

models and provided a number of optimisations which led to a significant per-
formance benefit for the models operating on sets.

2 Ongoing work

Our ongoing work is focusing on incorporating the SAL model checker into the
Rodin platform. A number of steps are being performed to achieve this. We are
aiming at developing a nearly complete mapping of Event-B to the SAL input
language. We do not consider it practical to attempt to cover the whole of the
Event-B mathematical language due to semantic gap between two. SAL doesn’t
natively support the full set of Event-B constructs, so it makes reasonable to
consider only the part which is feasible and gives benefits in comparison with
existing tool. Therefore, we intend for our tool to cooperate with the ProB
model checker so that models that cannot be handled with SAL are automati-
cally handled by ProB.

The result of developing the language mapping would be an automated trans-
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lation of Event-B models into SAL. The next step is in providing a user with a
meaningful feedback from the tool.

Based on experience obtained during our manual experiments, we drew a
general approach of translation of the main Event-B model elements such as
events, invariant, variables, etc [3]. Our current work is automation of such
translation. At the appendix we provide a very simple example showing the
input and output models of our translator. We intend to develop it further into
a model checking plugin for the Rodin platform.
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Appendix

MACHINE M0
SEES c0

VARIABLES
var1
var2

INVARIANTS
inv1 : var1∈N
inv2 : var1>3
inv3 : var2∈N1
inv4 : var2>var1

EVENTS
INITIALISATION
BEGIN
act1 : var1:=4
act2 : var2:=5

END

evt1
ANY a
WHERE
grd1 : a∈N
grd2 : a>2
grd3 : var1<10

THEN
act1 : var1:=var1+a

END
END

translated: context =
begin
main: module =
begin
local var1:{var1:NAT|var1>3}
local var2:NAT1

initialization
var1=4;
var2=5;

transition
[
([](a:{a:NAT|a>2}): evt1:

var1<10 -->
var1’=var1+a;

)
]

end;

invariant: theorem main |- G(
var2>var1

);
end
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A roadmap for the Rodin toolset∗

Jean-Raymond Abrial Michael Butler Stefan Hallerstede
Laurent Voisin

Event-B is a formal method for system-level modelling and analysis. Key
features of Event-B are the use of set theory as a modelling notation, the use
of refinement to represent systems at different abstraction levels and the use of
mathematical proof to verify consistency between refinement levels.

The Rodin Platform1 is an Eclipse-based toolset for Event-B that provides
effective support for refinement and mathematical proof. Keep aspects of the
are support for abstract modelling in Event-B; support for refinement proof;
extensibility; open source. To support modelliing and refinement proofs Rodin
contains a modelling database surrounded by various plug-ins: a static checker,
a proof obligation generator, automated and interactive provers. The extensi-
bility of the platform has allowed for the integration of various plug-ins such as
a model-checker (ProB), animators, a UML-B transformer and a LATEX gener-
ator. The database approach provides great flexibility, allowing the tool to be
extended and adapted easily. It also facilitates incremental development and
analysis of models. The platform is open source, contributes to the Eclipse
framework and uses the Eclipse extension mechanisms to enable the integration
of plug-ins.

In its present form, Rodin provides a powerful and effective toolset for Event-
B development and it has been validated by means of numerous medium-sized
case studies. Naturally further improvements and extensions are required in
order to improve the productivity of users further and in order to scale the
application of the toolset to large industrial-scale developments. A roadmap
has been produced which outlines the planned extensions to the Rodin toolset
over the coming years. The roadmap1 covers the following issues: model con-
struction; composition and decomposition; team-based development; extending
proof obligations and mathematical language; proof and model checking; ani-
mation; requirements handling and traceability; document management; auto-
mated model generation.

∗The continued development of the Rodin toolset is funded by the EU research project
ICT 214158 DEPLOY (Industrial deployment of system engineering methods providing high
dependability and productivity) www.deploy-project.eu. The toolset was originally developed
as part of the project IST 511599 RODIN (Rigorous Open Development Environment for
Complex Systems).

1Available from www.event-b.org
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Abstract. The use of formal methods has constantly increased, al-
though with basically two constraints: their use has been concentrated
mostly in Europe, their Mother land and they have been used only by
big companies which are in charge to develop some kind of safety critical
applications, what, in a first look seems correct. The aim of this paper is
to present the usage stage of formal methods in other parts of the world,
mainly South America, and Far East. A personal comparison of some
formal method tools, namely: Atelier B[1], RODIN[2], and SCADE[3]is
also presented. The comparison methodology is based on three different
points of view: capability, I mean, how these tools can satisfy project
constraints, usability, basically, what’s the difficulty the user faces when
trying to use the tool, and adequacy to the current development pro-
cess.This work describes also real applications in industry, sometimes
not the formal method usage itself, but how the formal method culture
can drasticaly helps on the development process. Finally, some of the
gaps in industry wishes that could be fulfilled by some applications are
sorted.

1 Introduction

The primary objective of this paper is to present the curent State of Practice
of Formal Methods in coutries outside Europe, namely, Brazil and Korea. In
this sense, I would like to present it as the utilization of formal methods in
general, and, moreover, not only the application of one method or another, but
how the principles that guide the formal methods usage can help in the software
development process.

But, before talking directly about the subject of this paper, I’d like to give
some background information about the reason I started to work with Formal
Methods, and my involvement in academia. Then, I will present a general sce-
nario of how these methods are being used nowadays in the places I meintioned
before. In the remaining of this paper, I will present some industrial areas where
we can find already some use of formal methods.

Finally, I will present a comparison of three tools, namely, AtelierB[1],
RODIN[2] and SCADE[3]. This comparison is based on three aspects, tool capa-
bility, usability and adaptation to the current development process. I will show
also, some real application of these tools, and the work that was performed to
change the way that industry was used to think about software development,
even in safety critical areas.



At the end, I will present some gaps that, from my personal point of view,
can be fulfilled with some new or in development phase, plugins and language
extensions.

1.1 The AeS Group

The AeS Group has developed railway sub-systems since 1998. Among the sys-
tems developed by the group, the door system became one of the most important
in the railway market due mainly to the architecture used (modular, and with
distributed processing) and, since this kind of system deals with human lives,
the strong concern of the group with reliability and safety.

Due to the advances in technology, many safety functions that were handled
by hardware are now responsibility of the embedded software. This fact triggered
motivation to use formal methods in standards relevant to software safety [4].
Some standards can be followed to increase the safety level of an equipment. One
of them is the IEC 61508 [5]. This standard presents four levels of safety, the
so called Safety Integrity Level - SIL, and above level 2, a formal specification
is required or suggested to achieve a certain level of completeness, robustness,
and safety, that grows as the level grows. The goal of using formal methods is
to produce an unambiguous and consistent specification which is as complete,
error-free and without contradictions as possible, however simple to verify.

Nowadays, AeS Group has also the support of DEPLOY project and some
universities like University of Southampton, and University of York. Of course,
AeS Group is also supported by companies like ClearSy and Esterel.

1.2 General scenario

In order to picture out the differences in formal method application outside
Europe, I will give you some information about the current software engineering
process that is being applied at this moment in the process of safety-related
application development.

Basicaly, the software development process presented in the IEC 61508[5] is
well known in South American companies, but as the time to market is, normaly,
extremaly short, those recomendations are put aside, and the craft process is
followed. This process is basically the reception of the primary specification,
the coding phase is made relying on the personal expertise, and the tests are
performed as few as possible. It’s already a good scenario to use formal methods
and try to better the process without changing the manual tasks.

Talking about Far East, those process are barely known. As presented in
[6], the adoption of the recomendations referenced in the software development
process are in it’s infancy phase, meaning that even the standard understanding
are not clear enough.

Based on this view, it’s crystal clear that is not possible to go directly to
the pure application of formal methods. First, it’s necessary to create a better
culture of software development process.
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2 Where formal methods (could be) are used

Many different industrial areas, where safety and reliability issues are highly
important characteristics, have been using, or at least have tried formal methods
in order to increase their confidence that those requirements are met. Those
industries are, mainly, Nuclear[7], Medical devices[8], Avionics, Aerospacial and
transportation [9]. Some examples are the emergency contention measures in
nuclear power plants, health support devices in medical applications, automatic
pilot on avionics, positioning systems in aerospacial and signaling systems in
tranportation just to cite a few.

This means that there is plenty of space for the adoption of supporting tools
that could help either the development process (either system or software) in the
sense of automatizing some parts of it, and also, in some cases, for speeding up
those development tasks difficult to perform, while the developer uses his efforts
in other more conceptual phases.

In order to change this scenario, the distance between mathematical notation
and the normal procedures used so far has to be shortened, and for that some
highly desired characteristics should be included in the current tools in order to
reflect the activities that are normally performed in those industries.

Fortunately, it might not be so difficult as, at least, the development model
that has been adopted in those industries (V model??) is not different from the
model used in a formal model development.

3 Tool comparison

In order to verify how the current tools can be modified to reflect the industrial
needs, I prepared a brief comparison of some existent tools. I have restricted
this comparison to some tools that I know better and that have been used in
my application field, that is, railways application. Those tools are, Atelier B,
RODIN and SCADE.

3.1 Chart comparison

Aspect capability usability adaptation Results
AtelierB 2 1 2 5
RODIN 2 2 1 5
SCADE 2 3 3 8

Table 1. Comparsion table
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4 Experiences

Basically, my experiences in formal methods are both as a practitioner and as
a researcher. In the last 3 years I’ve been trying to introduce formal methods
in the projects I have worked on, and I can say that even if they can not fulfill
all industrial needs they can help a lot to better model the development process
and the resultant product (or software).

Despite all odds, and as pointed in [10], it was not necessary to have someone
with strong knowledge in mathematics, altough the basic concepts were needed.
Moreover, it was not necessary a big team in none of the described projects in
order to sucefully cary on the project. In the second project I cited before, just
one person did all the work.

In all of these projects, the most dificult task, and the one that took more
time was the requirement elicitation and analysis. Even if it not direct related
to formal methods, as it has to be carried on does matter the process you adopt,
the goal to build a formal model helps during the classification and elaboration
of each requirement forcing them to be complete and non ambiguous.

At the end, the time (and money) that is spent in the earlier phases of the
development process is greater than in a normal development, but the time (and
much money) that is spent in tests and rework are definitely less. In the case of
the second example (Door system), even using the formal methodology only as
a support tool, the resulting test cases were much more effective, and the period
of tests was shortened by 2 months (from 6 months to 4 months).

Based on these experiences, and others, I summarize in section 5 some fea-
tures that I think could be included in RODIN platform.

5 Gaps or needs

In this section it is summarized some of expectations about the future of sup-
porting tools and point out some characteristics that is presumed as necessary.
Most of them are being prepared, but even though some key points for each one
might be pointed out.

– Requirements - It’s a fact that requirement problems are responsible for more
than 40% of the total problems in a project ??. With this in mind, this is
the most important feature that should be integrated in RODIN platform.

– Traceability - Even if it’s related also to requirements, I think RODIN plat-
form might have also capability to perform this task

– intermadiate languages - This is something that’s already been done by
UMLB plugin, but I think that one interesting feature is missing. Besides
the ability to create state machines, for example, the ability to execute these
models would be gratefully appreciated. With that, we would be able to
verify if our assumptions are correct, with no need to go inside the proof
obligations.

– test case generation - This, in my opinion, is one of the biggest gaps in
industry right now.
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6 Conclusion

As it’s more a positional paper than a research paper itself, I will present my per-
sonal conclusions to you. The application of formal methods in industry is grow-
ing, however most of the times as a result of some projects involving academia
and industry, like DEPLOY project.

It’s clear that outside Europe, formal methods usage is still incipient, and
more effort in showing the benefits of that use is needed. In order to facilitate this
approach we need tools that do not scare the customer in a first sight, otherwise
the fear not to perform a good job will be always greater than the possibility of
creating better products.

If these barriers could be broken, I think that the use of formal methods
would spread out really fast.

If the introduction of the features I mentioned before could be a reality, it
would be a great step for this project.

If the managers are open mind, and admit waiting a bit more in the begining
of the development to see real results, (light or heavy) formal methods applica-
tion could be a lot cost-effective and can, at the end, decrese the costs of the
whole project by decreasing the costs in test and maintenance phases.
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System Evolution via Animation and Reasoning
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The development of correct abstract models is a creative task and one of the major challenges in the
construction of design models. This, along with the fact that software systems tend to evolve makes the
challenge of writing good abstract models even harder. Our research addresses this challenge. We are
exploring different ways of giving support to the user on design decisions, more specifically, on decisions
about UML-B designs. In order to do so, we are investigating the role of patterns and anti-patterns
within UML-B models, i.e., common patterns of design behaviour and design flaws, respectively. Also,
we will investigate the way in which formal reasoning can inform UML-B designs about defects in the
models, so that through this feedback (unproven proof obligations, counter-examples, etc.) we can
suggest potential improvements to the design.

1 Illustrative Example

In this example we use the contract net protocol [2] to illustrate how the results of reasoning techniques
can be used to suggest improvements to UML-B designs. We base our UML-B model on the Event-B
specification of the protocol developed in [1]. The contract net system is a protocol for distributed
negotiation processes. Its purpose is to find an agent or group of agents (the participants) that best fit
the requirements to complete a task that is proposed by another agent (the initiator). The initiator
begins the process by sending a call for proposals to the other agents in the system. The agents that
receive the request can answer by sending a proposal to the initiator. Then, the initiator selects a
proposal or group of proposals to be in charge of completing the task. The participants are informed
about the selection and then the communication finishes when the participants inform the initiator
that the task has been completed.

In order to illustrate the behaviour of the protocol we use activity diagrams. While activity
diagrams are not currently part of the UML-B profile, we believe that the integration of a diagram
that allows the modelling of the internal behaviour of Event-B specifications is beneficial. In particular,
such diagrams can help users in having a better understanding of the systems they develop as well as
benefit the analysis and feedback given to UML-B designs. In Figure 1 we present a small fragment
of the activity diagram for the refinement of the contract net protocol proposed in [1]. This fragment
of the model contains the reception of acceptance and rejection messages of the proposals sent by the
participants.

Figure 1: The contract net protocol - Acceptance and rejection of messages.
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A proposal of a participant is either accepted or rejected, which means that the sets acceptR and
rejectR should be disjoint, i.e. acceptR ∩ rejectR = ∅ is introduced as an invariant of the model. As
the model stands, both receive acceptance and receive rejection events may violate the invariant. For
instance, assuming c #→ a is a member of rejectR, it is possible for the event receive acceptance to be
triggered since it does not evaluate that c #→ a should not be part of the set rejectR. This represents
a bug in the model.

There are different alternatives that can be suggested in order to correct this bug. One of these
alternatives is to request the user to confirm if the invariant is indeed the correct one. If confirmation
about the correctness of the invariant is received, another alternative is the strengthen of the guards
of the receive acceptance and receive rejection events. The generation of guards strengthening can be
determined via proof failure analysis. This alternative is shown in Figure 2. In this model a guard
is added to each event in order to eliminate the possibility of invalidating the invariant, i.e., in the
receive acceptance event c #→ a should not be a member of the rejectR set (i.e. c #→ a /∈ rejectR)
and in the receive rejection event c #→ a should not be a member of the acceptR set (i.e. c #→ a /∈
acceptR).

Figure 2: Alternative model of the acceptance and rejection of messages: Guards strengthening.

Eliminating the design bug requires user interaction, since only the user knows what is intended.
However, the interaction can take place at the level of alternative models rather than failed proof
obligations. In this example we have suggested two alternatives, one is the verification of the invariant
and the other one is a modification of the model in the form of an activity diagram. However, as
mentioned before, there are several alternatives that can be suggested; therefore, the final decision is
left to the user.

2 Conclusions

We have shown by an illustrative example how formal techniques can be used to inform the design, and
how we can use their feedback to give suggestions to the user at a more abstract level than failed proof
obligations. As alternative paths of research, we are also interested in helping UML-B users generate
and patch invariants for their models since this has proved to be a hard task in the development
of UML-B designs. Furthermore, as explained before, we want to study the use of patterns and
anti-patterns to define abstract system-level models. Finally, we also believe that by having a UML
diagram that models the internal behaviour of the system, one may be able to find inconsistencies in
user specifications.

References

[1] E. Ball and M. Butler. Event-b patterns for specifying fault-tolerance in multi-agent interaction. Methods, Models
and Tools for Fault Tolerance, LNCS 5454:104–129, 2009.

[2] R. G. Smith. The contract net protocol: High-level communication and control in a distributed problem solver.
IEEE Trans. Computers, 29(12):1104–1113, 1980.

2



BRANIMATION !

Atif Mashkoor, Jean-Pierre Jacquot

LORIA – DEDALE Team – Nancy Université
Vandoeuvre-Lès-Nancy, France

{firstname.lastname}@loria.fr

1 The problem

Brama is one of animation tools for Event-B specifications supported by Rodin Plat-
form. It enables quick validation of models. While animating an Event-B specification
with Brama, sometimes we stumble upon some technical issues which prevent its exe-
cution. The situations where Brama cannot animate a specification can be arranged in a
typology of five typical cases:

1 Brama does not support the finite clause in axioms
2 Brama must interpret quantifications as iterations

2.1 Brama only operates on finite sets
2.2 Brama cannot compute finite sets defined in comprehension with nested quan-

tification
2.3 Brama explicitly requires typing information of all those sets over which itera-

tion is performed in an axiom
3 Brama cannot compute dynamic functional bindings in substitutions

3.1 Brama does not support dynamic mapping of variables in substitutions
3.2 Brama does not support dynamic function computation in substitutions

4 Brama does not compute functions defined analytically
4.1 Functions with analytical definitions in context cannot be computed in events
4.2 Functions using case analysis can not be expressed in a single event
4.3 Invariants based on function computations can not be evaluated

5 Brama has limited communication with its external graphical animation environ-
ment

2 The solution

For each situation, we have defined a “heuristic” to transform the original specification
into one that can be animated [1]. The heuristics are described following a rigid pattern
as shown by fig 1.

We design the heuristics to preserve the behavior of the specification as specified
by original model, and not its formal properties. So if some of the proof obligations can
not be discharged, this is still acceptable.

! This is a proposal for tool/plug-in development
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Fig. 1. The heuristic pattern

3 The observations

We experiment our heuristics on two case studies: a formal domain model of land trans-
portation [2] and a situated multi-agent platooning system [3]. From these two experi-
ences, we come to know that:

– Most well written specifications need to go through this transformational process
in order to be animated correctly.

– Once heuristics are applied some of the proofs are impossible to discharge.
– We should not introduce these heuristics early during the specification phase before

animation as they will further complicate the already complex text.
– It is a good idea to animate each refinement step like verification to gain confidence

in your specification. Problems then can be detected and fixed right on the spot.

4 The need for tool

Though the proposed heuristics solve the aforementioned Brama problems, yet their
manual application is tedious, cumbersome and may be error prone if not applied care-
fully. Therefore a plug-in/tool is required which can apply these transformations au-
tomatically to specifications. We don’t want this tool to be highly intelligent or so-
phisticated, it can only performs basic functions, for example, removal of finite clause,
provision of typing information, event replications, etc.

References
1. Mashkoor, A., Jacquot, J.P.: Incorporating Animation in Stepwise Development of Formal

Specification. Research Report INRIA-00392996, LORIA, Nancy, France (2009)
2. Mashkoor, A., Jacquot, J.P., Souquières, J.: B événementiel pour la modélisation du domaine:

application au transport. In: Approches Formelles dans l’Assistance au Développement de
Logiciels (AFADL’09), Toulouse, France (2009) 1–19

3. Lanoix, A.: Event-B specification of a situated multi-agent system: Study of a platoon of
vehicles. In: 2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software
Engineering (TASE), IEEE Computer Society (2008) 297–304



1,2 2

1)

2)

{fredrik.degerlund, richard.gronblom@abo.fi}





Code Generation for Event-B with Intermediate
Specification

Andy Edmunds and Michael Butler
University of Southampton

July, 2009

Abstract

The Event-B method and tools [1] provides a formal approach to mod-
elling systems, and incorporates the notion of refinement. The work that
we present bridges the abstraction gap between the lowest level of Event-B
refinement and a working implementation, similar to B0 in classical-B [3].
We introduce an approach using an intermediate specification which allows
a developer to specify processes with interleaving (non-atomic) operations.
The specification of access to shared data is via a monitor abstraction with
atomic procedure calls. Each process has a single non-atomic operation
facilitating interleaving behaviour; the sub-clauses of a non-atomic opera-
tion consist of labelled atomic clauses. We use the clause labels as program
counters, in a style similar to that of the +CAL Algorithm Language [6].
The Labelled atomic clauses map to events guarded by a program counter
(the label is used as the program counter). Using this approach we are
able to introduce various non-atomic implementation level constructs to
specify branching and looping behaviour. The intermediate specification
is an abstraction, in that it hides implementation details of locking and
blocking, and provides the developer with a clear view of atomicity.

We show how non-atomic operations are given Event-B semantics, and
how each labelled clause maps to an atomic event. Automatic translation
of an an intermediate specification will give rise to an Event-B model and
source code of the chosen target language. Our work progresses to spec-
ifications that use object oriented techniques, with our approach called
Object-oriented Concurrent-B (OCB) [4]. We describe how we model
object-oriented implementations using the OCB notation. The techniques
we use to model instantiation are similar to that of UML-B and U2B [7, 8].
For our initial investigations we choose Java 1.4 [2] as a target for working
programs. However the techniques we employ could be applied to other
object-oriented languages. Java’s built-in synchronization mechanism is
used to provide mutually exclusive access to data. The Java program will
have atomicity that corresponds to the formal model and OCB clauses,
and makes use of synchronized method calls. There is a close correspon-
dence between the OCB model structure and the resulting Java classes.

An extension to OCB has been developed in which a number of ob-
jects can be updated within a single atomic clause; this is facilitated by
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new Java SDK 5.0 [5] features such as non-blocking lock acquisition. The
extension allows a process direct access to variables of a shared object
using dot notation; and also allows multiple procedure calls in a single
atomic clause. To facilitate Transactional-OCB we introduce implemen-
tation specific features to Event-B atomic actions (reminiscent of those
of classical-B); such as a sequential operator, and atomic branching and
looping.
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Abstract

Generally, the design and the proof of distributed algorithms is a very difficult task due to the lack
of knowledge of the global state and the non determinism in the execution of the processes. Formal
methods like Event-B can guarantee that these algorithms run correctly and efficiently. However,
the specification of distributed algorithms in the Event-B language remains a high level description
of distributed algorithms. In this paper, we propose a general approach to translate an Event-B
specification of a distributed algorithms into a Java implementation. Our approach is implemented
with a tool called B2Visidia that allows the designer to directly manipulate programs of distributed
algorithms specified in Event-B.

1 Introduction

In order to reduce complexity of distributed algorithms and construct proofs of correctness, it is nec-
essary to use formal methods. Particularly, Event-B is a well suited method for the specification of
distributed algorithms [7, 8, 5]. It is supported by a powerful tool called ”RODIN” [9]. It also maintains
very well the refinement techniques that can transform an abstract, non-deterministic, specification into
a concrete, deterministic system, in several stages. However, the mathematical aspect makes it very diffi-
cult to understand and to use it, especially for non experienced designers. Also, formal proof correctness
of distributed algorithms are often long, hard and tedious. Simulation can help to understand and to dis-
cover many errors quickly and easily in algorithms before delving into a correct proof. In this context, we
propose a new approach to implement and to visualize Event-B specifications of distributed algorithms.
More precisely, we have developed a general method and a tool called B2Visidia to generate a Java im-
plementation of a distributed algorithm specified in Event-B, which will run in the Visidia environment
[4, 2, 3]. B2Visidia is based on the formal method Event-B and the Visidia environment for visualizing
and experimenting distributed algorithms formally proved. We think that, the most important idea behind
the construction of this tool is to allow the test and the debug of the specification of distributed algorithms
and to provide a library of proved algorithms under Visidia which is a platform for implementing and
visualizing distributed algorithms. Also, it allows to generate a Java implementation of a large class of
distributed algorithms specified in Event-B. We use the high-level encoding of distributed algorithms by
graph relabeling systems [6]. Moreover it offers an easy way for Event-B designer to generate a Java
code.
In order to automatically translate Event-B in other languages, the most important work has been pro-
posed by Stephen Wright [10]. It consists of generating a C code from Event-B with a multi-phased
translation process. In this work, the author proposes a tool named B2C that has been developed as a
plug-in to ”RODIN”.
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B2Visidia: A Tool to Generate a Java Code from Event-B Specifications of Distributed Algorithms

2 Global architecture

Translating an Event-B model in a concrete lan-
guage (such as Java language) is not possible in one
shot. Since, Event-B specifies any system without
taking into account its implementation. B2Visidia
makes it possible to translate an Event-B specifica-
tion (with a few added annotations) into a Java code
for Visidia. As presented in the following figure, our
approach includes three stages: the initial step con-
sists in preparing the source file stored as an XML
file in the Rodin platform. The goal is to generate a
simple and translatable text file that holds the useful
parts for the translation.

To this end we have chosen Tom [1] which is a language and a software environment very well-suited for
programming various transformations on trees/terms and also it can be used to match and rewrite XML
documents. Once the file has been re-written, we perform, in the second step a lexical and a syntactic
analysis of the translatable file to build an Abstract Syntax Tree (AST) of the algorithm specification.
Finally, we generate a code for Visidia. In this step, we use suitable rules to perform the conversion of
AST nodes and generate the corresponding Java code.
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On Event-B and Control Flow
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1 Overview

Event-B is a general-purpose specification language. However, it tackles some
problems less successfully than others. One such class is the problems with
rich control flow properties. Control flow is a not a natural part of an Event-B
specification. The next event to be executed is selected non-deterministically
among the currently enabled events of a machine. The information about event
ordering has to be embedded into guards and event actions. This results in
an entanglement of control flow and functional specification with an additional
downside of extra model variables. This leads to an increased complexity and
reduced readability of a model. One way to decouple control flow from functional
specification is to define control flow information in a dedicated language, as an
extension of a conventional Event-B model.

There are a number of reasons to consider an extension of Event-B with an
event ordering mechanism:

- for some problems the information about event ordering is an essential
part of requirements; it comes as a natural expectation to be able to adequately
reproduce these in a model;

- explicit control flow may help to prove properties related to event ordering;
- sequential code generation requires some form of control flow information;
- since event ordering could restrict the non-determinism in event selection,

model checking is likely to be more efficient for a composition of a machine with
event ordering information;

- there is a potential for a machine editor presenting a visual machine layout
based on control flow information;

- realizing such a mechanism could be an initial step towards bridging the
gap between high-level workflow languages and Event-B.

The purpose of adding flow information to a machine is to express event
ordering, on top of the information already contained in event guards. One
convenient way to achieve this is to define such ordering information in the
form of a next function - a function that for a given event returns the possible
next events. Its general form is as follows:

NF : Event !→ P(Event)

This simple construct is capable of expressing notions such as sequential com-
position, event choice and loop1. As an example, let us consider the following in-
stance of a next function: NF1 = {first !→ {second}, second !→ {first,′ stop}}.

1A more general form NF : P(Event) !→P(P(Event)) is needed to support parallel compo-
sition. Due to space restrictions the discussion is limited to a simpler sequential case.
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Figure 1: The Flow section in the RODIN Platform Event-B Editor.

The function mentions three events and only two of them are in the function
domain. According to this definition, event first is followed by event second
(sequential composition) and event second is followed by first or ′stop (the
choice construct is embedded into the loop construct). A nicer syntactic al-
ternative is ∗(first.second).′stop. Here, dot (.) denotes sequential composition
and ∗(...) stands for a possibly terminating loop. There are also choice a|b and
non-terminating loop ∗ ∗ (...) operators. It is easy to give precise semantics to
this syntax sugar in the terms of properties of a corresponding next function.

Events starting with ′ bear special meaning. ′start is a shortcut for event
INITIALISATION, ′stop is an assumed termination event. Its guard is the
negation of the disjunction of all event guards and its body is undefined. Fi-
nally, event ′skip is used to complete partial expressions (e.g., e is interpreted as
e.′skip). An Event-B machine, not constrained with a flow expression, is under-
stood to comply with the following next function: ′start. ∗ (e1|e2| . . . |ek).′stop.
Informally, the function is interpreted as a potentially terminating loop made
of the choice on all the machine events.

A flow of a machine may not be an arbitrary expression. It must agree with
the definition of machine events and respect a number of consistency conditions.
All of these are either computed from the definition of a flow and a machine
specification or proved by discharging a number proof obligations, much like it is
done for machine consistency and refinement. The exact set of proof obligations,
however, depends on the role a flow plays in a specification. So far, we have
identified two flags that define four varying flow roles. A flow may be abstract
or concrete; a specification with a concrete flow may be implemented by a
sequential program. A flow may be overlaid or equivalent ; an equivalent flow
does not constrain the event ordering prescribed by event guards.

There is a basic consistency proof obligation that shows that a next function
expressed agrees with an Event-B specification on deadlocks and divergencies.
Proving that a flow is concrete or equivalent requires further proof obligations.
The case of a concrete overlaid flow is enough to drive a machine and is normally
a prerequisite for generating an implementation in an imperative programming
language.

A proof-of-concept implementation was realised in the form of RODIN Plat-
form plugin. The plugin extends the machine editor to provide the means for
entering flow expressions and also contributes new proof obligation needed to
establish flow consistency, implementability and equivalence (Figure 1). A num-
ber of challenges were identified such as the need for additional hypothesis and
scalability issues for some proof obligations.
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A Rodin plugin for quantitative timed models∗

Joris Rehm
joris.rehm@loria.fr - LORIA - Nancy Université

We propose to develop a Rodin1 plug-in that experiments a systematic use
of a refinement pattern. The goal of this pattern is to help in modeling of
timed system in Event-B. By timed system we mean system with quantitative
temporal constraints and properties.

The user (of the plug-in) will see and modify an Event-B machine augmented
with a new operator S. This unary operator over an event name e gives the
delay elapsed since the latest triggering of the event e. By using this operator
in the invariant, the user will be able to write and prove temporal properties
over the events. By using this operator in the guard of an event f , the user will
be able to specify temporal constraints over the duration S(e) (which becomes
here the delay between the event e and f). For the possible constraints, we plan
to consider lower time bounds (l ≤ S(e) in guard of f) and upper time bound
(S(e) ≤ u in guard of f). The upper time bound is a bound within the event
f must obligatory occurs, it is not just a possibility. In this text, the usages of
the operator S is called the annotations, it is an extension of the syntaxe of the
B models. The annotations can only appear in invariant or guards.

Our pattern is an Event-B model that encodes the behaviour of the operator
S (we call this model the pattern model). The annotations given by the user
define how to refine the pattern model and how to obtain the behaviour of
S needed for a particular augmented model. The goal of our plug-in is to
generate a normal Event-B model that is the studied (augmented) model where
the annotations are replaced with the superposition of the refined pattern model.

To explain briefly what is the idea of the pattern, we show below an aug-
mented model (on the left) and the generated result (on the right). This small
model define a light that can be on (lo = TRUE) or off (lo = FALSE); the
light can be switch on by a button (the event on) and goes automaticaly off
(event off) after a delay between c − d and c + d. You can see the temporal
annotations in the elements named lb off (Lower Bounds) and up off (Upper
Bounds). The S operator can also appear in the invariant, for example we can
write c + d < S(on)⇒ lo = FALSE.

EVENTS
on b=
Begin
act1: lo := TRUE

End

EVENTS
on b=
Begin
act1: lo := TRUE
act2: s on := 0

End

∗This work was supported by grant No. ANR-06-SETI-015-03 awarded by the Agence
Nationale de la Recherche.

1http://www.event-b.org
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off b=
When
grd1: lo = TRUE
lb off: c− d ≤ S(on)
ub off: S(on) ≤ c + d

Then
act1: lo := FALSE

End

off b=
When
grd1: lo = TRUE
lb off: c− d ≤ s on

Then
act1: lo := FALSE

End
tic b=
Any s
Where
grd1: 0 < s
ub off: lo = TRUE

⇒s on + s ≤ c + d
Then
act1: s on := s on + s

End

To generate the model the plug-in will have to: declare a new variable s e for
all events which appears in the operator S; reset this variable s e to zero in the
event e; replace all S(e) by s e for all e; generate a tic event that increments the
s e clocks (for all e) and add in the guard of tic the predicate : GUARD(f)⇒
s e + s ≤ u for all upper bound S(e) ≤ u in a event f , with GUARD(f) being
the guard of the event e (without temporal annotations).

For the user interface, we plan to specialize the standard “edit” editor of
Rodin. The user will be able to add his annotations and when the machine is
saved, the plugin will generate a normal machine. The proof will be done over
the proof obligations of this generated machine.

For more information about our pattern see [3], another example of pattern
for time can be see in [2]. Our notion of (refinement) pattern is the same
than the Action/Reaction pattern (see the chapter 3 of [1]). As related work,
we can also cite the works about automatic refinement with tools like Bart2.
There are some common elements between this tool and our work, the major
difference is that Bart transforms a B machine to a B machine (more close to
an implementation), where our augmented model is not a normal B machine.
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Composition, Renaming and Generic Instantiation in Event-B
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Abstract

Modelling large scale systems usually results in large and complex models that become hard to manage
and cumbersome. A possible solution is to apply some techniques that ease those difficulties. Examples
are the Composition and Generic Instantiation techniques. Composition is the process by which it is
possible to combine different sub-systems into a larger system. Independent modelled sub-components
can be used instead of creating a large complex model using one single component . The advantage
of this approach is to deal with the complexity of the sub-components individually (usually through
independent refinements) without thinking about the other sub-components. The proofs are also (in
general) simpler since they just refer to the individual properties of the sub-component. The sub-
components, after some possible sub-developments (refinements), can be reused by creating a larger
component through composition.

We use Event-B as a formal method to model our systems, which is based on the classical B, created
by J.R. Abrial. Event-B models contain variables whose values are assigned when events are enable
(first order logic predicate guards) and actions are executed. Properties of the models are expressed by
invariants and axioms. We propose a shared event composition, where synchronised events from dif-
ferent sub-components are merged. When all the guards from all the synchronised events are enabled,
parameters are merged and the actions of each event are executed in parallel. Event-B has the same
semantics structure and refinement definitions as Action Systems. There is a correspondence between
parallel composition in CSP and event based parallel composition for Action System. Extending that
same correspondence to event based parallel composition in Event-B, the failure-divergence defini-
tion in CSP can be applied to Event-B and as a consequence, the monotonicity property is shared.
Which means that the sub-components can be refined independently since the composition is still be
preserved.

The Generic Instantiation is another technique that deals with reusability of components: a template
or pattern is used to create more specific instances. The instances inherit properties from the pattern
and personalise it by renaming or replacing those properties. We propose the instantiation of Event-B
machines and we use contexts as parameterisation of instantiated machines. Renaming/refactoring
plugin is used for renaming and replacing the specific properties. If the proofs in the pattern are already
discharged, they do not need to be addressed in the instantiated machines. On the other hand, as
part of the parameterisation, the assumptions must be assured and satisfied by the instantiation. A
possible solution is to instantiate the axioms (assumptions) into theorems. We show an example where
the generic instantiation is applied.
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A demonstration of the prototype of the Composition plug-in will be provided when applied to a
simple example. Also a Renaming plug-in will be shown and described as a necessity when composing
sub-systems into a larger system.
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Employing formal methods like B [1] for complex systems specification is
steadily growing from year to year. They have shown their ability to produce such
systems for large industrial problems. With formal methods, an initial mathe-
matical model is refined in multiple steps, until the final refinement contains
enough detail for an implementation. This initial model is derived from the
user requirements (requirements analysis). As this formal development chain
matures, the major remaining weakness in the development chain is the gap be-
tween textual or semi-formal requirements and the initial formal specification. In
fact, the validation of this initial formal specification is very difficult due to the
inability for customers to understand formal models, to link them with initial
requirements. Consequently, the gap between the requirements phase and the
formal specification phase gets larger and larger and the reconciliation seems
more and more difficult.

Our objective is to bridge this gap using the goal-based requirements engi-
neering method KAOS [4, 5] and the Event-B formal method [2] by including
the requirements analysis phase in the software development associated with
the formal methods. Contrary to other requirements methods such as i* [7],
KAOS is promising in that it can be extended with an extra step of formality
which can fill in the gap between requirements and the later phases of develop-
ment. The choice of Event-B is due to its similarity and complementarity with
KAOS. Firstly, Event-B is based on set mathematics with the ability to use
standard first-order predicate logic facilitating the integration with the KAOS
requirements model that is based on first-order temporal logic. Secondly, both
Event-B and KAOS have the notion of refinement (constructive approach). Fi-
nally, KAOS and Event-B (Contrary to the classical B) have the ability to model
both the system and its environment. For these various reasons, the proposed
approach, which is very briefly presented in [6], aims to prove the KAOS re-
quirements model and to establish formal links between this model and the
Event-B specification of a system. Since goals play an important role in require-
ments engineering process and provide a bridge linking stakeholder requests to
system specification [8], the proposed approach comes down to automatically
derive Event-B specifications from KAOS goal model rather than from KAOS
requirements model as a whole. Consequently, we show that it is possible to
express KAOS goal models with formal method like Event-B by staying at the
same abstraction level. However, it is not possible to verify that both models are
equivalent. In fact, the Event-B expression of the KAOS goal model allows us
to give it a precise semantics.
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To achieve our objective, we formalize (with Event-B) two basic KAOS pat-
terns that analysts use to generate a KAOS goal hierarchy: (i) OR refinement
which simply specifies alternative means to satisfy a goal; (ii) AND refinement
which means that the conjunction of the subgoals is a sufficient condition to
achieve the parent goal. Moreover, we present the Event-B formalization of some
KAOS refinement patterns such as the milestone refinement pattern [3] which
consists in identifying milestone states that must be reached to achieve the target
predicate. We think that these formal design patterns or proof-based design pat-
terns will be very useful and explores the fact that the Event-B method provides
a framework for developing generic models of systems.

The main contribution of our constructive approach, driven by goals, is that
it establishes a bridge between the non-formal and the formal worlds as narrow
and concise as possible. Moreover, this bridge balances the tradeoff between com-
plexity of rigid formality (Event-B) and expressiveness of semi-formal approaches
(KAOS). However, a number of future research steps are ongoing. Further work
will consist in applying the approach on a number of case studies in order to
support non-functional goals. This would address issues of conflict between these
goals, which does not exist between functional goals. At tool level, we plan to
develop a connector between KAOS toolset and the RODIN1 open platform.
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Title: A tool for specifying and validating software responsibility

Abstract: The objective of ANR project LISE (Liability Issues in Soft-
ware Engineering) is to precisely define software responsibility and to use
this definition as a basis for liability agreement. Presently, the LISE project
uses Event B notations as the basis to define the system responsibility model
(interface components, electronic evidences, parties and their liabilities) and
as a way to check software liability properties. At first we will present the
current state of our responsibilities model. Next we give a draft for a tool,
based on graphical representation and animation, that aims to help parties
to elaborate liability contracts.
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UML-B is a ’UML-like’ graphical front end for Event-B. It adds support for ob-
ject oriented modelling concepts while retaining the Event-B modelling concepts. In
the continuity of the work on UML-B, we strengthen its refinement concepts. Devel-
opment in Event-B is done through refinements of an abstract model. Since Event-B
is reflected in UML-B, the abstraction-refinement concepts must also be catered for in
UML-B. UML-B introduced the new concept of refinement, where model complexity
is managed by introducing more detailed versions of a machine. We extend this refine-
ment concept by introducing the notion of refined classes and refined state machines.
Together with these notions, several refinement techniques in UML-B are defined. The
UML-B drawing tool and Event-B translator are extended to support the refinement
concepts. A case study of an auto teller machine (ATM) is presented to demonstrate the
notion of refined classes and refined state machines.

The motivation for refined classes (and inherited attributes) come from performing
refinement in Event-B. The notion of refined classes in UML-B reflect the refinement
of variables in Event-B. A refined class is one that refines a more abstract class and an
inherited attribute is one that inherits an attribute of the abstract class. The motivation
for refined state machines (and refined states) come from combining the state machine
hierarchy in UML-B with refinement in Event-B. The essential concept is that state
machines are refined by elaborating an abstract state with nested sub-states. A refined
state machine is one that refines a more abstract state machine and a refined state is one
that refines a more abstract state.

This work also introduces five refinement techniques which are, adding new at-
tributes and associations to a refined class, adding new classes in a refinement, elabo-
rating state, elaborating transition and moving a class event to a refined class or a new
class in a refinement.

A case study based on an auto teller machine (ATM) was undertaken to validate
the extension of UML-B with regards to the notion of refined classes and refined state
machines. The ATM case study also demonstrates the use of the above five refinement
techniques. There are seven machine levels for the ATM UML-B development. These
machines are linked by a refinement relationship. The state machine refinement in the
second, third and fourth refinements introduced additional levels in the state machine
nesting hierarchy. The approach of elaborating states with sub-states in refinement, as
illustrated by the ATM case study, supports an incremental refinement approach. The
hierarchical structure of nested state machines also supports modular reasoning by lo-
calising the invariants required for refinement proofs.



An EMF Framework for Event-B
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The Eclipse Modelling Framework (EMF) provides supporting infrastructure
for building tools and other applications based on a structured data model. The
EMF contains generative tools and runtime support for the implementation of
a model repository based on a meta-model of the domain. Also provided are
a set of adapter classes that enable viewing and command-based editing of the
model. Further support for other model manipulation tasks has been added
to the EMF. For example, support for model transformation, comparison and
merging is provided.

During its initial development, the Rodin platform did not utilise EMF tech-
nology because of fears about performance. This prevents integration with other
EMF based modelling tools. To completely re-base the Rodin platform on the
EMF retrospectively would require extensive re-work of the Rodin verification
tools which are tightly integrated with Rodin’s bespoke repository format. Our
solution is to provide an EMF based ’front-end’ to the Rodin platform and re-
tain the current repository and tool set. To do this we have implemented an
EMF based repository for Event-B models that overrides the default serialisa-
tion to persist models via the Rodin API. There were significant challenges to
provide a flexible EMF implementation. For example, some tools need to work
at the project level manipulating a collection of Event-B components (machines
and contexts) whereas others are scoped within a single component.

The Event-B meta-model defines the structure of Event-B projects. The
model is contained within the repository plugin, org.eventb.emf.core. It is struc-
tured into three packages for clarity. The core package contains a structure of
abstract meta-classes so that models can be treated generically as far as possi-
ble. The core package also contains mechanisms to handle extensions provided
by other plug-ins and a meta-class to model entire projects. There are two
sub-packages, contained with the core package, for machine and context.

The extensibility mechanism caters for extensions (i.e. new elements and/or
attributes) that have been defined for the Rodin database. The extension mech-
anism can also be used to store temporary volatile modelling data that will not
be persisted. The extensions will only be persisted if valid Rodin identifiers are
provided. Two mechanisms are provided, one for simple attributes (correspond-
ing to Rodin attribute extensions) and one for extension elements (corresponding
to Rodin element extensions).
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The persistence plug-in org.eventb.emf.persistence overrides EMF’s default
XMI serialisation so that models are persisted in the Rodin Database. The
serialisation uses the Rodin API so that it is decoupled from the actual seri-
alisation of the Rodin database. Our EMF Persistence API provides methods
to load and unload components, save changes, and register listeners to projects
and components. An extension point is provided for offering synchronisers for
new element kinds (extensions). Persistence takes a rewriting approach. That
is, it is more efficient to clear the contents of a model component (machine or
context) and regenerate it than to calculate what has been changed and only
save the changes.

Tools that will use the EMF framework for Event-B include:

Text editor Based on the EMF framework, a state-of-the-art text editor has
been created that provides an extensible set of features, such as (syntac-
tical and semantical) highlighting, code completion, quick navigation and
outline view.

Compare/Merge Editor In several situations conflicts between different ver-
sions of an Event-B model can occur. A compare and merge editor for
Event-B models will help users to solve these conflicts. This editor will be
based on the EMF Compare sub-project. It will compare the two conflict-
ing versions and present the differences to the user. A compare and merge
editor is essential for team-based development where it can be linked to a
version control system such as SVN or CVS.

Structure Editor EMF provides support to generate structured (e.g. tree,
list, table based) editors for models. An adapted version of these editors
will allow users to edit machine and context elements within a structure
using menu-guided selections.

Project Diagram Editor A diagrammatic editor will be produced that shows
the structure of an Event-B project in terms of its machines and contexts
with their refines, sees and extends relationships. The project diagram
editor will allow machines and contexts to be created/deleted and their
relationships changed. A feature to create a ’starting point’ refinement of
a machine, will be included.

UML-B will be re-implemented as an extension to the Event-B meta-model.
The UML-B meta-classes will extend and add to the meta-classes of Event-
B. This will provide greater integration between the EMF based Event-B
editors and the UML-B diagrammatic editors.

Feature Composition Tool An editor for composing two machines based on
feature selection has been developed by Southampton. The tool (which
is already based on EMF) will be re-implemented to utilise the Event-B
EMF framework.

2



Using CSP Refusal Specifications to Ensure
Event-B Refinement Models

James Sharp
Department of Computing,

University of Surrey,
Guildford,

United Kingdom,
GU2 7XH

j.h.sharp@surrey.ac.uk

June 16, 2009

Abstract

We are interested in determining whether Event-B models can map to
CSP models and whether the refinements of Event-B models also corre-
spond to CSP refinement. Currently we have mapped the Machine Press
controller to CSP and demonstrated that the different levels of refinement
can be checked using FDR. Also by using a mapping from Linear Tempo-
ral Logic to CSP, we are also able to verify the system invariants. Whilst
we have looked at a simple example we need to expand this by looking at
more complex Event-B models, i.e., ones which include variables that are
not always used within the guards of events. Event-B refinement often re-
quires the strengthening of guards as a result of including new invariants.
Thus, another area of interest is using CSP counter examples to give some
indication of which guards need to be strengthened in the corresponding
Event-B model. In order to support this work automatically generating
the CSP from the Event-B would be beneficial as would developing an
accompanying Eclipse plug-in.

Background

Determining the correct guards in an Event-B refinement to ensure that a model
preserves its invariants is not always straight forward. Stepping through a proof
assists in the discovery of missing guards. Even though there many proof obli-
gations are automatically discharged, there may be outstanding proofs which
maybe non-trivial.
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CSP models from Event-B models

We propose to create a mapping of abstract and refinement layers in an Event-
B system to CSP, and use CSP tools to verify the Event-B models. We have
already started to explore the mappings between Event-B models and CSP
models using the Event-B mechanical press example. We are able to show that
the refinements in Event-B can be mapped to CSP and shown to be refinements
in the Stable Failures model. We are also able to convert the system invariants
in the Event-B models using a mapping from LTL to CSP specifications. Then
we can then discharge these CSP specifications as Refusal refinements of the
CSP models in FDR. Failure to discharge the specifications highlights events
which require additional guards in the Event-B model.

An Event-B to CSP Eclipse plug-in

Whilst we have been converting Event-B to CSP so that we can use alternative
tools, this process has been repetitive and prone to mistakes. We believe that a
tool to provide automated CSP scripts generated from Event-B systems would
be beneficial. To this end the addition of an Eclipse plug-in to the RODIN
platform would be a natural progression of an automated CSP generator. The
automated tool should be able to perform:

- The conversion from Event-B to CSP (and if required B)

- Automatically generate, from the Event-B invariants, the Refusal Specifi-
cations needed for detecting missing guards.

- Return the event which violates a specific invariant, and suggest any ad-
ditional guards that may be required.
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