
Viewpoints for Modeling Choreographies in Service-Oriented Architectures

Sebastian Wieczorek1, Andreas Roth1, Alin Stefanescu1, Vitaly Kozyura1,
Anis Charfi1, Frank Michael Kraft2, Ina Schieferdecker3

1 SAP Research,
Bleichstr. 8,

64283 Darmstadt, Germany
firstname.lastname@sap.com

2 SAP AG,
Dietmar-Hopp-Allee 16,

69190 Walldorf, Germany
frank.michael.kraft@sap.com

3 Fraunhofer FOKUS,
Kaiserin-Augusta-Allee 31,

10589 Berlin, Germany
ina.schieferdecker@fokus.fraunhofer.de

Abstract

Component integration plays a decisive role in
service-oriented architectures (SOAs). The technical
implementation must faithfully reflect business and
enterprise integration requirements. This implies a
good understanding of the globally observable
message choreography but also of how messages are
handled by the involved components and by the SOA
middleware. In this paper we present a solution to the
problem of keeping global and local viewpoints in
synchronization via a common message choreography
metamodel. As main contribution we shape various
interpretations of global choreographies, which were
left unspecified in state-of-the-art choreography
approaches. We have implemented a message
choreography modeling (MCM) environment
incorporating these contributions. MCM seamlessly
complements existing models at SAP. We show how
service integration experts, architects, and testers can
benefit from our approach that enables model-based
integration testing and model verification facilities.

1. Introduction

Enterprise Resource Planning (ERP) software [10]
integrates different organizational parts and functions
into one logical software system, with SAP being a
leading provider of ERP software. Service-oriented
architectures (SOA) are recently regarded as the next
evolutionary step to cope with the ever increasing
complexity of ERP systems.

SOA provides methods and frameworks to compose
single services in order to realize complex business
scenarios. Modeling and implementation of such
services based on technical specifications like XML,
SOAP, and WSDL is well-understood. The
challenging part of SOA implementations is the

integration of different services according to the
defined business processes. At the lower end, one
service is described as a set of operations and message
types, its functioning relying on a simple request-
response pattern. At the service integration level, more
complicated specifications are needed to capture not
only the message exchanges and their underlying
message types but also the dependencies between these
exchanged messages, i.e., both control-flow and data-
flow dependencies. Choreography languages like WS-
CDL [8], BPMN [1], or Let’s Dance [16] were
introduced to describe the interaction protocols
between a set of loosely coupled components
communicating over message channels from the
perspective of a global observer.

There are three different orthogonal viewpoints that
have to be considered to fully understand these service
interactions for a smooth integration. These are
described as follows:

Static vs. dynamic viewpoints. This differentiation
is a well understood aspect: static (or structural)
specifications of a service-oriented architecture
provide descriptions of the components involved in the
collaboration. Their interface definitions include
message types and the available communication
channels. The dynamic (or behavioral) specifications
describe the order in which the messages could or
should be exchanged. Dynamic specifications can be
written in dedicated choreography languages (like
WS-CDL [8]), orchestration languages (like BPEL
[2]) or general purpose ones (like BPMN [1] and UML
behavioral diagrams).

Message exchange viewpoints. Regarding the
message exchange, it is important to precisely specify
what kind of events is described in a behavioral
specification: the message send, receive, or
observation events. Usually this aspect is neglected in
the literature where most approaches implicitly

mailto:firstname.lastname@sap.com
mailto:frank.michael.kraft@sap.com
mailto:ina.schieferdecker@fokus.fraunhofer.de

assume a send semantics. However, such a semantics
does not reflect possible changes of the message order
when exchanging messages over unreliable channels,
while explicit information would support service
integration testing much better. Therefore we
investigate the different capabilities of message
exchange viewpoints in Section 4.

Global vs. local viewpoints. This aspect received a
lot of attention in literature. Service interactions can
be seen from a global perspective or from the local
perspectives of the involved components. The former
is usually described using choreographies, whereas the
latter using orchestrations. Keeping all these
perspectives consistent is a major challenge of
choreography modeling. In this paper we provide
some insights into the considerations of consistency
enforcement for these perspectives from an enterprise
architecture and development lifecycle point of view.
Our approach is discussed in Section 5 and Section 6.

The contributions of this paper are:
– An investigation of three different viewpoints for

the semantics of message exchange based on send,
observe, or receive interpretations and in which
contexts they are useful.

– A technical solution based on a common
metamodel that bridges the local and global
viewpoints of the choreography.

– An exemplification of the above concepts on a
new domain-specific language from SAP,
Message Choreography Models (MCM). This
language is based on the requirements we defined
in previous work [13] (i.e., graphical state-based
representation, explicit concurrency, detailed
message types, local viewpoints, determinism, a
distinction between global and local constraints).
This was necessary because we observed that state
of the art choreography languages do not consider
all these requirements simultaneously.

– A short description of how the introduced
methods are motivated by the model-based testing
and verification requirements.

The remainder of this paper is structured as
follows. Section 2 introduces a running example used
throughout the paper to illustrate our approach.
Section 3 presents the MCM language. Section 4
investigates message exchange viewpoints. In Section
5, a solution for global and local viewpoints is
proposed, while Section 6 focuses on considerations
when using the approach in the development process.
Section 7 reports on related work. Section 8 concludes
the paper and gives future work directions.

2. A Buyer-Seller Example at SAP

This section introduces a running example from the
enterprise world, describing a simplified
communication between a buyer and a seller. In the
next sections we will refer to it in order to explain the
different viewpoints and how we address them.

For better understandability we first sketch SAP’s
architecture and modeling framework. SAP’s
approach to SOA [15] can be exemplified by the SAP
solution “Business ByDesign”1, which was fully
developed following SOA principles and model-driven
methodologies [7]. The approach uses metamodels for
describing the SOA artifacts, a governance process
and a modeling tool environment [7]. The main
architectural building blocks in the metamodel are
business objects (BO) and process components (PC).
The BOs provide the core business logic, several
related BOs are grouped into PCs. The BOs provide
their functionality via core services, which are bundled
at the PC level into composed services. Process
Component Interaction Models (PCIM) describe the
message types exchanged between the PCs and their
associated (composed) service interfaces for exactly
two communicating PCs. Integration Scenario models
provide a bird-eye view of all PCs participating in
business scenarios and how they are connected.

Figure 1. PCIM for the buyer-seller example

A simplified PCIM, provided in Figure 1, has two
PCs: Purchase Order Processing and Sales Order
Processing. The buyer controls the Purchase Order
component while the Sales Order component is
associated with the seller. Each PC contains one BO:
the Purchase Order and Sales Order, respectively.
The information exchange is realized by the service
interfaces Ordering Out and Ordering In using three
message types for request, cancellation and
confirmation. A PCIM provides only a static
viewpoint of the service interaction, and so an extra

1 http://www.sap.com/solutions/sme/businessbydesign

http://www.sap.com/solutions/sme/businessbydesign

model is needed to describe the dynamic viewpoint,
the message choreography between two instances of
the BOs.

 : message from Buyer to Seller
 : message from Seller to Buyer

Figure 2. A simple buyer-seller choreography

A choreography model (in the MCM language
described in Section 3) for this PCIM is shown in
Figure 2. The buyer requests a certain product using a
request message (Purchase Order Request).
Consequently, either the seller accepts the order by
sending the response message (Sales Order
Confirmation) or the buyer stops the transaction by
sending a cancel message (Purchase Order
Cancellation).

The rounded rectangles represent the current state
of the choreography while the envelopes stand for the
messages being exchanged. The arrows on the
envelopes define the sender of the message: left-to-
right for the buyer and right-to-left for the seller. The
circle in the center marks the valid target states of the
conversation. The precise semantics of the models is
given in next section.

As pointed out in [13], in our context it is
beneficial to restrict choreographies to exactly two
partners. This is also consistent with the existing
PCIMs of SAP architecture (see Figure 1) where
exactly two communication partners are involved. An
extension of MCM to more than two partners is
feasible and is subject of future work.

Even though the presented protocol description is
precise enough for a high-level business view of the
process, some semantical subtleties have to be
considered. For example it remains unclear whether
this description specifies a subset of the intended
behavior, which may allow additional transitions (e.g.
observing a new request message in the state

committed), or a maximal allowed behavior, such that
conformant implementations are allowed to leave out
some functionality like not sending a response after a
cancel? Moreover, the semantics of message sending
and receiving has to be clearly defined based on the
specific channel assumptions (see Sect. 3.3).

3. Message Choreography Models
(MCM)

The Message Choreography Modeling language
MCM developed at SAP Research is described in this
section. It will serve to illustrate the different
viewpoints motivated before. MCM is a domain-
specific language which smoothly integrates into a set
of other proprietary modeling languages adapted to the
architectural settings at SAP [7]. It adheres to specific
requirements for test case generation and verification
which are not fulfilled by existing choreography
languages [13]. We implemented an Eclipse-based
editor for MCM (all figures in this paper are
screenshots) and plug-ins for verification and model-
based testing. The editor is integrated with SAP
tooling and allows for importing existing SAP models
like PCIMs or BOs.

 MCM consists of the following three types of
models:
– global choreography models specifying a high-

level view on the exchanged messages,
– local partner models describing separately the

behavior of each of the involved parties, and
– channel models stipulating characteristics of the

communication channel on which messages are
exchanged between the partners.

After defining these models, we will discuss their
relationships and different viewpoints based on them.

3.1 Global Choreography Model

Syntax. Following the original idea of
choreography models as a supra-component view on
message exchange our global choreography models
(GCM) provide a high level view on service
interaction. One does not describe single “sending” or
“receiving” messages events, but takes the position of
a virtual observer between the components. This
observer monitors the exchanged messages and is
agnostic of the activities inside the involved
components.

The GCM corresponds to a labeled transition
system (LTS) where the transitions are labeled by
interactions, i.e. events of observing a message on the

channel. The states are global states of the
communication specifying whether a certain message
exchange could be observed at that stage. To simplify
the presentation, the global state space for now just
consists of a finite set of named states with one
distinguished initial state. Note that in our
implementation we have a more sophisticated state
space (similar to an extended concurrent finite state
machine) described in Sect. 3.5.

Interactions consist of four ingredients:
– A message type identified by a unique name.
– The sender and the receiver of the interaction.
– An effect on the global state, i.e. the subsequent

global state which is activated when the
interaction takes place.

– A guard condition restricting when the interaction
is enabled. For now, we assume that the condition
only defines in which state the interaction can
take place. In Sect. 3.5 more detailed guard
conditions are presented.

Target states are global states that describe when
the modeled choreography can be terminated, i.e.
when it is legal that no further interaction takes place.
In some real life scenarios it cannot be decided
whether a service conversation reached an end state,
especially if one of the participants is able to restart
the conversation. Our target states therefore differ
from end states of existing choreography languages,
where termination means that no further interaction
can take place, but they are similar to the classical
notion of accepting/final states from finite automata
theory.

A GCM for a set of message types consists of a set
of partners designated as senders or receivers of these
message types, a set of states, some of which are
marked as initial or as target states, and a set of
interactions. Figure 2 gives an example of a GCM.
The dark boxes represent the states; the one with a
dashed border is initial. Interactions are depicted as
envelopes associated with an arrow between states and
labeled with the message type of the interaction and
the direction of message exchange. The target of the
arrow associated with an interaction represents the
effects of the interaction. For instance, Request has the
effect of reaching the state Queried. The source of the
arrow indicates that the state represents the guard of
the interaction. The target states are connected to the
filled circle (e.g. the target states in Figure 2 are
Committed, Cancelled and Undefined).

Semantics. Given a GCM G, we denote by LTS(G)
the labeled transition system of G. The traces of G,
denoted by Traces(G), is the set of sequences (i1,…,in)

of interactions for which there exists a sequence
(s0,…,sn) of states such that s0 is initial, for all
k=1,..,n, sk-1 satisfies the guard of ik and sk is the effect
of ik , and sn is a target state. In Sect. 4, we define
more precisely the relation between the atomic
interactions of G and their corresponding sending and
receiving events.

3.2 Local Partner Model

A local partner model (LPM) focuses on a single
component involved in a choreography, describing
which messages may be sent and received by that
communication partner. Very similar to GCMs, the
main elements of an LPM are a set of send events, and
a set of receive events as well as a set of named local
states with a distinguished initial state. Local target
states are a subset of the local states. Similar to the
interaction in GCM a send event (respectively a
receive event) consists of the message type, the
receiving partner (respectively the sending partner),
effect and guard defined on the local state space.

Figure 3 gives an example of two LPMs, one for
the buyer and one for the seller. The send and receive
events are distinguished graphically by upwards and
downwards pointing arrows, respectively.

 Send Receive

Figure 3. Example of LPMs for Buyer and Seller

3.3 Channel Model

Given a set of message types MT, a channel model
is a total function r from a sequence of messages (of
MT) to a sequence of messages (of MT). Given MT’ a
subset of MT and s a message sequence, MT’(s)
denotes the projection of s to sequences of the
messages of message types MT’. Let MT’ be
canonically extended on the channel model. The
channel model r is then based on assignments of

disjoint subsets MT’ of MT to channel reliability
guarantees2 which enforce that MT’(r) satisfies certain
properties. Reliability guarantees such as those from
WS-RM standard [14] can be modeled:
– exactly once in order (EOIO) where MT’(r) is the

identity function on message sequences and
– exactly once (EO) where MT’(r) is a permutation

on a message sequence.
Weaker guarantees, where message loss,

modification, or duplication can occur are treated at a
lower level in the technology stack, so we do not
consider them in MCM. In practice, EO is preferred
over EOIO, since it is less costly to enforce.

3.4 Composed System

A composed system consists of a set of LPMs and a
channel model over some common set of message
types. Its state space is defined by the notion of
composed state, consisting of
– a local state of each LPM and
– a sequence of messages of the system’s message

types currently sent but not yet received (that
means they are on the channel).

Given a composed system L, its labeled transition
system denoted by LTS(L) is defined on the composed
states and the transitions labeled by send and receive
events of the LPMs. The transitions are described in
steps 2-4 below. The behavior of L, denoted by
Traces(L), is defined by the sequences (e1,…,en) of
send or receive events ek (k=1,..,n) of the LPMs

2 In the context of SAP applications, it is common to assign
reliability guarantees per message type for the
communication between two components.

involved in the composed system which satisfy the
following property. There is a sequence (s0,…,sn) of
composed states such that for all ei (i=1,..,n), its
message type mt, and its partner p, the following
holds:
1. In s0 the channel is empty and all LPMs are in their

initial local states (i.e. composed initial state).
2. The state of p in si-1 satisfies the guard condition of

ei and the state of p in si equals the effect of ei and
si-1 equals si in all other partners’ states.

3. If ei is a send event, then in si the channel sequence
equals the channel sequence of si-1 prepended with a
new message of mt.

4. Let r be the reliability guarantee assigned to the
subset MT of message types with mt in MT. Let
further be ch the sequence of messages on the
channel in si-1. If ei is a receive event, then with
r(ch)=(m1,…,mk):
– mk is of type mt and
– the channel sequence of si equals r(ch)

without its last element mk.
5. In sn all reached local states are target states and the

channel is empty (i.e. composed target state).
For example, the global trace (Request, Response) and
its associated state sequence (Start, Queried,
Commited) correlates to the composed trace (Send
Request, Receive Request, Send Response, Receive
Response) and its associated composed state sequence:

({Buyer.Start, Seller.Start, Channel = ()},
{ Buyer. Queried, Seller.Start, Channel = (Request)},
{ Buyer. Queried, Seller. Queried, Channel = ()},
{ Buyer. Queried, Seller.Commited, Channel =
(Response)},
{ Buyer.Commited, Seller.Commited, Channel = ()}).

Figure 4. All possible traces of the composed system in Figure 3

For the composed system for the LPMs in Figure 3
and an EO channel assumption, the resulting traces
are depicted in Figure 4. For an EOIO channel, the
dashed path is excluded because the request message
cannot overtake the cancellation message.

3.5 Advanced Features of MCM

The modeling concepts introduced until now cover
a large part of the choreographies we have to deal
within industrial practice. However, MCM has a
couple of advanced features sketch below, which were
required by the use cases that we investigated.
Sometimes in practice, the available pre-defined
message types are not expressive enough. For
instance, an interaction with a confirmation message
type may either express an acceptance (i.e., positive
confirmation) or a rejection (i.e., negative
confirmation) and thus the communication might
continue in different ways, depending on this
information. Therefore it is necessary to take into
account the contents of the exchanged messages as
additional guards of interactions. Otherwise, non-
determinism would impede generation of integration
tests. In MCM, we have added a message constraint
language consisting of first-order expressions over
data type properties. For example, we refer to contents
of an exchanged message msg by:
msg[PurchaseOrder.AcceptanceStatusCode]=="accepted"
expressing that the contents of the message by
navigating through PurchaseOrder and
AcceptanceStatusCode has a certain value that enables
the interaction.

Moreover interaction guards may refer to messages
exchanged in other (previous) interactions or to a

global counter of messages. Therefore we introduced
additional variables having an assigned data type.
These variables can be declared globally, assigned to
in interactions, and referred to in guards.

A further improvement comes with considering the
global state to be assembled of a number of parallel
sub state machines. Partitioning the global state in this
way allows explicit concurrency modeling which can
concisely reflect the inherent asynchronous nature of
choreographies.

4. Message Exchange Viewpoints

Given a fixed set of partners and message types, we
assume to have a GCM G and composed system L over
the given set of partners. In Sections 3.1 and 3.4 we
associated G and L with their labeled transition
systems LTS(G) and LTS(L) as well as their traces
Traces(G) and Traces(L). Note that while LTS(G) has
a finite number of states, LTS(L) may have an infinite
number of states if there are no restrictions on the
channel size.

Note that the GCM G and the composed system L
have different alphabets. Therefore we need to map
the alphabet of interactions used by G to their
corresponding send and receive events in L, in order to
define a consistency relation between them. How this
is done is determined by the three possible viewpoints.
We explain them in detail using our example.

For simplicity, we fix the consistency relation
between G and L to trace inclusion and assume G to be
an over-approximation of L, that is the set Traces(L) is
included in the set Traces(G). Other variants for the
consistency relation between G and L may be
considered (see Section 0). Further let MT(m) denote

(a) (b) (c)
Figure 5. Global choreography models reflecting the three message exchange viewpoints

the message type of an interaction as well as of a send
or a receive event m.
Send viewpoint. A GCM G is a send-viewpoint of a
composed system L if for each trace (e1,…en) of L there
exists a trace (i1,…,ik) of G such that if (s1,…sk) is the
projection of (e1,…en) to send events, then
(MT(i1),…,MT(ik))= (MT(s1),…MT(sk)).

The GCM in Figure 5(a) is a send-viewpoint of the
composed system depicted in Figure 3 with one EO
channel for all messages. The projection of Traces(L)
into send events is the set:

send request send cancel
send request send response
send request send cancel send response
send request send response send cancel
This corresponds to the traces of the considered

GCM. Note that taking into account or omitting the
additional dashed “EO trace” does not affect the
resulting traces above. Thus the send viewpoint does
not reflect message racing explicitly. Its choreography
model is equal to the one describing ordered messages
in Figure 2.
Receive viewpoint. A GCM G is a receive-viewpoint
of L if for each trace (e1,…en) of L there exists a trace
(i1,…,ik) of G such that if (r1,…rk) is the projection of
(e1,…en) to the receive events, then
(MT(i1),…,MT(ik))= (MT(r1),…MT(rk)).

The GCM in Figure 5(b) is a receive-viewpoint of
the composed system from Figure 3 with an EO
channel, because the projection of the traces from
Figure 4 to receive events results in

receive request receive cancel
receive request receive response
receive request receive cancel receive response
receive request receive response receive cancel
receive cancel receive request
This corresponds to the traces of the global model

in Figure 5(b). If we consider an EOIO channel for all
messages the dashed path is omitted and thus the last
of the above receive-projected traces is excluded.
Hence all the models in Figure 5 are receive-
viewpoints of the composed system with EOIO.

The receive-viewpoint thus reflects the possible loss
of message order on the channel in defining all
possible sequences of receive events. In our example
the buyer’s cancel message can possibly overtake the
request message, but if received in that order the seller
will not send any response.
Observe viewpoint. We can consider an even weaker
viewpoint of GCMs. Assume that we extend the traces
of a composed system with an observe event, similarly

to send- and receive-events. It can occur at any
position between the send- and the receive-event of a
particular message. E.g., if (send_m1, send_m2,
receive_m1, receive_m2) is a composed system trace
then

{(send_m1, observe_m1, send_m2, observe_m2,
receive_m2, receive_m1),
 (send_m1, send_m2, observe_m1, observe_m2,
receive_m2, receive_m1),
 (send_m1, send_m2, observe_m2, observe_m1,
receive_m2, receive_m1),
 (send_m1, send_m2, observe_m2, receive_m2,
observe_m1, receive_m1)}

is an observe-extended trace.
Similar to previous definitions, a GCM G is an

observe-viewpoint of a composed system L if for each
observe-extended trace (e1,…en) of L there exists a
global trace (i1,…,ik) such that if (o1,…ok) is the
projection of (e1,…en) to the observe events, then
(MT(i1),…,MT(ik))= (MT(o1),…MT(ok)).

In our example, observe cancel observe request
 observe response is an additional (observe) trace of

the composed system with EO channel. The global
model of Figure 5(c) is thus an observe-viewpoint of
the composed system in Figure 3, but those in Figure
5(a) and Figure 5(b) are not.

The presence of the additional trace is due to the
fact that there might be a point of observation where
the messages cancel and request from the buyer
switch their order but switch back to the original order
before reaching the seller. In this case the seller might
respond to the request message before receiving the
cancel.

Discussion. Existing approaches in the literature
(see Sect. 7) do not disambiguate between different
viewpoints, thus leaving room for interpretation.
When applicable, the approaches implicitly assume a
send-viewpoint. We found however that a send-
viewpoint (though applicable) is probably misleading
as it does not reflect the possibility of message order
changes. The same holds for an observe-viewpoint as
it describes message sequences, that the two
participating partners will not observe locally. In
contrast, the receive-viewpoint exhibits exactly those
orders of receive events that are possibly observed by
the partners. This is important for test generation
which is supposed to uncover also message racing
problems. Moreover, if we considered using the GCM
for monitoring purposes like runtime testing, then the
observe-viewpoint would have to be chosen, as it
reflects possible message racing between the
components and an observer too.

Note that if one considers EOIO for all messages,
the three viewpoints are equivalent. However, already
when there are two EOIO channels for messages in
the same direction the equivalence does not hold
anymore.

5. Global vs. Local Viewpoints

In this section we focus on the issue that
choreographies can be considered from the perspective
of a global observer and from that of the individual
partner components. From a practitioner’s perspective
both have their right to exist: While the first is a most
concise description of the service interaction, the latter
is closer to the component implementation and is a
more suitable starting point to verify the components.

MCM offers models for both perspectives: GCM
and LPMs. Below we present how these two
viewpoints are kept in synchronization.

In the literature, two competing approaches exist
for this task: a generative approach where the local
views are generated from the global ones, or a
checking approach where global and local models are
created separately and then verified whether they are
consistent with each other. While the first ensures that
global and local views are always consistent, it makes
changes to the local models considerably more
difficult, since these would be overridden by re-
generation from the global model. The latter approach
allows for such “asymmetric” changes, but requires
manual effort to update the global view when changes
to the local models are made.

We suggest a third course of action which attempts
to combine these approaches, by having a single
metamodel for both GCM and LPM. Thus, for each
choreography, GCM as well as the two LPMs for each
involved partner are views on one common instance of
that metamodel. For each partner, an LPM view is
obtained from a GCM as follows. An interaction in the
GCM is interpreted as a send or as a receive event in
the LPM of the considered partner (depending on
whether that partner sends or receives the associated
message according to the PCIM). A state in the GCM
is represented by a corresponding state in the LPM,
and constraints and effects are accordingly transferred.

Following this approach, the addition of a send-
event to one of the LPMs automatically leads to the
addition of an interaction in GCM and to the addition
of a receive-event to the other partner’s LPM.

Note that, semantically, the GCM states and the
corresponding LPM states are different: The former
denotes a globally observed state (based on the chosen

message exchange viewpoint), while the latter denotes
the latest information that the components have about
the global state. These states are in general not equal,
because of the latency of message transmission.

By this technique, we obtain the most general
LPMs which realize a choreography given by a GCM.
In order to allow for asymmetric resolution strategies,
the LPMs can be augmented with additional guards.
As discussed in [13], the added guards can only
restrict that messages are sent. These additional
constraints are however only visible in the particular
LPM, but not in GCM nor in the LPM of the other
partner.

Our approach thus ensures a “syntactical”
consistency of global and local viewpoint during the
whole modeling lifecycle, but allows for (restricted)
changes to only one of the involved components. Still
it is possible at this stage that the GCM G and
composed system L of LPMs are inconsistent.
 Consistency between the local and global views.
There are various types of consistencies between G
and L. One may consider the simulation relation
between LTS(G) and LTS(L) or trace inclusion of
Traces(G) and Traces(L). Moreover, one can check if
G is an over-approximation, under-approximation or
equivalent to L. In the literature, for instance, the
local enforceability from [4] corresponds in our
setting to G as over-approximation of L based on
simulation, while the realizability from [4]
corresponds in our setting to the bisimulation between
G and L. A send viewpoint is assumed there. While
our framework covers these cases, we further address
consistency relations based on under-approximations
and a receive viewpoint. For instance, a receive
viewpoint solves the shortcoming mentioned in [3]
where the authors conclude that weak bi-simulation
does not support reordering of messages. The message
exchange viewpoints that we introduced can also be
used to sharpen verification based approaches taking
asynchronous messaging into account, see for example
[6].

Our MCM tool provides checks which prove
consistency, based on translating the choreography to
Event-B and checking the obtained formal model with
Rodin platform tools [9].

6. MCM in the Development Process

In this section we explain the development
activities that involve the use of MCM models.

Initial modeling. The aim of building the GCM is
to create a description that fits all the user

requirements and at the same time does not violate
basic desirable properties like deadlock-freedom and
local enforceability [4]. Usually for complex
interactions between services such descriptions have to
be created by stepwise refinement. Therefore we start
with the definition of an initial GCM that might not
be complete and usually considers synchronous
communication for simplicity. From the GCM, the
editor automatically derives the LPMs (see previous
section). In the next step, these LPMs are manually
supplemented with local send-after-receive
constraints. Finally, the channel reliability is defined
for each message type (see Sect. 3.3).

Verification and MCM refinement checks. After the
initial model is built, it can be used for verification.
Our implementation uses the general purpose formal
modeling language Event-B and the tool Rodin [9].
One of the central concepts of Event-B is refinement,
which covers both trace inclusion and simulation.
Therefore it can be used for checking all the
consistency relations from Sect. 0. In addition to the
consistency relations, we also verify properties like
absence of inconsumable messages and deadlocks.
Usually enhancements of the GCM and restrictions of
the LPMs and channel models both are carried out in
one refinement step. After each refinement, the
verification will be applied again until all user
requirements are modeled and the checks do not
uncover issues any more.

Test generation. Because the created models are too
abstract to generate code automatically, the
implementation has to be carried out manually. For
the consecutive integration testing however the
granularity of MCM is fine enough so that model-
based testing techniques can be applied [11]. On one
side choreography models can be used to generate test
suites that satisfy chosen coverage criteria. On the
other side the models can serve as a test oracle. Both
methods are combined in our implementation, so that
the generated test cases contain information about the
expected system response that is compared against the
occurring output. The generated abstract test suites are
transformed into concrete test suites by adding test
data and further into executable test scripts by
providing system specific information.

7. Related Work

As mentioned in Section 1, the differentiation
between static and behavioral viewpoints when
describing service compositions is common knowledge
in literature. For static descriptions, WSDL has

become widely accepted. For dynamic descriptions,
several choreography modeling languages have
emerged in the last few years. Some of the most
prominent languages are WS-CDL [8], BPMN [1],
BPEL4Chor [2], and Let’s Dance [16]. They vary in
several regards such as abstraction level, formal
grounding, target users, etc.

WS-CDL is a choreography language that targets
the implementation level and builds on WSDL. Its
lack of a graphical syntax decreases its usability for
modelers. It also misses the explicit notion of
termination, which is an important ingredient for test
generation. Termination can only be modeled by
having no further possibility to send any message and
hence the target states Committed and Cancelled in
Figure 2 cannot be modeled in WS-CDL without
leading to non-determinism. WS-CDL further assumes
a global send viewpoint and hence does not reflect
message racing directly.

BPMN 1.1 is a language to describe process
modeling not targeting choreography modeling. The
recent draft for BPMN 2.0 [1] explicitly includes
choreography modeling that should be understandable
by business users and technical developers alike. In its
current state BPMN 2.0 has a too restrictive notion of
termination. Even though (unlike WS-CDL) end states
are defined explicitly, they do not contain outgoing
transitions and thus lead to the same problems
described above. Further it abstracts from channel
information and does not define message exchange
viewpoints. Moreover BPMN 2.0 has a large number
of (non-trivial) modeling artifacts that makes the
modeling process complex and the learning curve
steep.

BPEL4Chor and Let’s Dance focus on high-level
service interaction modeling in early design phases
and target business analysts. Although the core of
these languages is formal, guards and conditions can
only be defined in natural language, which makes
them inappropriate for verification or automatic
testing approaches. Like WS-CDL they do not have
explicit notion of termination. Due to the assumed
send viewpoint they are not able to visualize message
racing. Additionally, Let’s Dance does not support the
modeling of partner views.

We concluded that the semantics of all these
languages would have to be refined (e.g. viewpoints,
termination, determinism enforcement, channel
restrictions) to suit our purpose. Moreover, the
implementation of a supporting tool infrastructure
would be necessary. Therefore it seemed more
appropriate to define a domain specific language like

MCM that fully fits the intended use and eliminates
the arising semantic uncertainties of unspecified
viewpoints.

A common metamodel that covers the global and
local viewpoints has also been introduced in [5]. The
global choreography model even depicts events that
occur between send and receive and hence implicitly
assumes an observe viewpoint. However the modeling
of different channels is not a focus of this work and
hence the message exchange viewpoints cannot be
applied directly.

8. Conclusions

In this paper we presented a choreography
modeling language called MCM that fulfills the
requirements SOA poses on choreography modeling in
an ERP software development context [13], e.g. a
detailed channel model, connected global and partner
models, a well-defined viewpoint for the global model
and the availability of termination symbols. Current
approaches are not designed to tackle all of these
concerns simultaneously. Currently our approach is
evaluated at selected SAP development groups, so far
with very positive feedback. This was due to the tight
integration of MCM with existing SAP metamodels.

We introduced a variety of options for interpreting
global choreography models and for defining
consistency with local models, which have not
explicitly been addressed in literature. Especially the
three message exchange viewpoints based on the send,
receive, and observe events help to sharpen the
semantics of choreographies considerably. We found
different use cases for the three different viewpoints:
the send viewpoint is suitable for service design, the
receive viewpoint for testing service integration, and
the observe viewpoint for service monitoring.

While this paper mainly focused on the MCM and
different choreography viewpoints, upcoming papers
will give more details about the testing [11] and
verification methods that we developed.

Acknowledgments. This work was partially supported
by the EC-funded projects MODELPLEX, Deploy,
and VIDE (grants no. 034081, 214158, and 033606).

9. References

[1] Business Process Modeling Notation (BPMN)
Specification 2.0, Submitted Draft Proposal V0.9. Online at:
http://www.omg.org/cgi-bin/doc?bmi/08-11-01

[2] Decker, G., Kopp, O., Leymann, F., Weske M.:
BPEL4Chor: Extending BPEL for Modeling
Choreographies. In: International Conference on Web
Services Oriented Computing (ICWS’07), pp. 296–303.
IEEE Computer Society (2007)
[3] Decker, G., Weske, M.: Behavioral Consistency for
B2B Process Integration. In: Proc. of CAiSE’07. LNCS, vol.
4495, pp. 81–95. Springer (2007)
[4] Decker, G., Weske, M.: Local Enforceability in
Interaction Petri Nets. In: Proc. of BPM’07, LNCS, vol.
4714, pp. 305–319. Springer (2007)
[5] Dijkman, R., Dumas: Service-Oriented Design: A
Multi-Viewpoint Approach. In: Int. J. Cooperative Inf. Syst.
13(4), pp. 337–368. World Scientific (2004)
[6] Kazhamiakin, R., Pistore, M.: Choreography
Conformance Analysis: Asynchronous Communications and
Information Alignment. In: Proc. of WS-FM'09, LNCS, vol.
4184, pp. 227-241. Springer (2006)
[7] Kätker, S., Patig, S.: Model-driven Development of
Service-oriented Business Application Systems. In: Business
Services: Konzepte, Technologien, Anwendungen, 9.
Internationale Tagung Wirtschaftsinformatik. Band 1, pp.
171-180. Österreichische Computer Gesellschaft (2009)
[8] Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.:
Web Services Choreography Description Language Version
1.0. W3C Candidate Recomm., Technical report (2005)
[9] Métayer, C., Abrial, J.R., Voisin, L.: Event-B
Language, Online at: http://rodin.cs.ncl.ac.uk
[10] O’Leary, D.E.: Enterprise Resource Planning Systems
- Systems, Life Cycle, Electronic Commerce And Risks.
Cambridge University Press (2000)
[11] Stefanescu, A., Wieczorek, S., Kirshin, A.:
MBT4Chor: A Model-based Testing Approach for Service
Choreographies. In: Proc. of ECMDA’09, LNCS, vol. 5562,
pp. 313–324. Springer (2009)
[12] van der Aalst, W.M.P., Weske, M.: The P2P Approach
to Interorganizational Workflows. In: Proc. of CAiSE’01.
LNCS, vol. 2068, pp. 140–156. Springer (2001)
[13] Wieczorek, S., Roth, A., Stefanescu, A., Charfi, A.:
Precise Steps for Choreography Modeling for SOA
Validation and Verification. In: International Symposium on
Service-Oriented Software Engineering (SOSE'08). IEEE
Computer Society (2008)
[14] Web Services Reliable Messaging (WS-Reliable-
Messaging), Vers. 1.1. OASIS Consortiom. Online at:
http://docs.oasis-open.org/ws-rx /wsrm/v1.1/wsrm.pdf
[15] Woods, D., Mattern, T.: Enterprise SOA – Designing
IT for Business Innovation. O'Reilly (2006)
[16] Zaha, J. M., Barros, A., Dumas, M., ter Hofstede, A.:
Let’s Dance: A Language for Service Behavior Modeling. In:
Proc. of CoopIS’06, LNCS, vol. 4275, pp. 145–162.
Springer (2006)

http://www.omg.org/cgi-bin/doc?bmi/08-11-01
http://rodin.cs.ncl.ac.uk/
http://docs.oasis-open.org/ws-rx

