
TECHNICAL REPORT SERIES

No. CS-TR-1151 April, 2009

Different Perspectives for Reasoning about Problems and Faults

M. Mazzara.

Abstract

This paper provides a different view for understanding prob- lems and faults with the
goal of defining a method for the formal specification of systems. To accomplish this
task we need to pass through a non trivial number of steps, concepts and tools where
the first one, the most important, is the concept of method itself, since we realized
that computer science has a proliferation of languages but very few methods. This
work also proposes the idea of Layered Fault Tolerant Specification (LFTS) to make
the method extensible to fault tolerant systems. The principle is layering the
specification, for the sake of clarity, in (at least) two different levels, the first one for
the normal behavior and the others (if more than one) for the abnormal. The abnormal
behavior is described in terms of an Error Injector (EI) which represents a model of
the erroneous interference coming from the environment. This structure has been
inspired by the notion of idealized fault tolerant component but the combination of
LFTS and EI using rely guarantee reasoning to describe their interaction can be
considered one of the main contributions of this work. The progress toward this
method and this way to organize fault tolerant specifications has been made
experimenting on case studies presented in a dedicated section.

© 2009 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

MAZZARA, M.

Different Perspectives for Reasoning about Problems and Faults
[By] M. Mazzara.

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2009.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-1150)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-1150

Abstract

This paper provides a different view for understanding prob- lems and faults with the goal of defining a method
for the formal specification of systems. To accomplish this task we need to pass through a non trivial number of
steps, concepts and tools where the first one, the most important, is the concept of method itself, since we realized
that computer science has a proliferation of languages but very few methods. This work also proposes the idea of
Layered Fault Tolerant Specification (LFTS) to make the method extensible to fault tolerant systems. The
principle is layering the specification, for the sake of clarity, in (at least) two different levels, the first one for the
normal behavior and the others (if more than one) for the abnormal. The abnormal behavior is described in terms
of an Error Injector (EI) which represents a model of the erroneous interference coming from the environment.
This structure has been inspired by the notion of idealized fault tolerant component but the combination of LFTS
and EI using rely guarantee reasoning to describe their interaction can be considered one of the main contributions
of this work. The progress toward this method and this way to organize fault tolerant specifications has been made
experimenting on case studies presented in a dedicated section.

About the author

Manuel Mazzara achieved his Masters in 2002 and his Ph.D in 2006 at the University of Bologna. His thesis was
based on Formal Methods for Web Services Composition. During 2000 he was a Technical Assistant at Computer
Science Laboratories (Bologna, Italy). In 2003 he worked as Software Engineer at Microsoft (Redmond, USA). In
2004 and 2005 he worked as a free lance consultant and teacher in Italy. In 2006 he was an assistant professor at
the University of Bolzano (Italy) and in 2007 a researcher and project manager at the Technical University of
Vienna (Austria). Between 1995 and 2007 he worked also as a system administrator, receptionist, librarian
assistant and in security services. He is interested in literature, music, psychology, sport and traveling. Currently
he is a Research Associate at the Newcastle University (UK) working on the DEPLOY project.

Suggested keywords

METHODS,
LAYERED FAULT TOLERANT SPECIFICATION,
PROBLEM FRAMES,
RELY/GUARANTEE

COMPUTING
SCIENCE

Different Perspectives for Reasoning about Problems and Faults

M. Mazzara

TECHNICAL REPORT SERIES

No. CS-TR-1150 April, 2009

Different Perspectives

for Reasoning about

Problems and Faults

Manuel Mazzara

School of Computing Science, Newcastle university, UK
manuel.mazzara@newcastle.ac.uk

Abstract. This paper provides a different view for understanding prob-
lems and faults with the goal of defining a method for the formal spec-
ification of systems. To accomplish this task we need to pass through a
non trivial number of steps, concepts and tools where the first one, the
most important, is the concept of method itself, since we realized that
computer science has a proliferation of languages but very few methods.
This work also proposes the idea of Layered Fault Tolerant Specification
(LFTS) to make the method extensible to fault tolerant systems. The
principle is layering the specification, for the sake of clarity, in (at least)
two different levels, the first one for the normal behavior and the others
(if more than one) for the abnormal. The abnormal behavior is described
in terms of an Error Injector (EI) which represents a model of the er-
roneous interference coming from the environment. This structure has
been inspired by the notion of idealized fault tolerant component but
the combination of LFTS and EI using rely guarantee reasoning to de-
scribe their interaction can be considered one of the main contributions
of this work. The progress toward this method and this way to organize
fault tolerant specifications has been made experimenting on case studies
presented in a dedicated section.

1 Introduction

Dubium Sapientiae initium - Descartes

There is a long tradition of approaching Requirements Engineering (RE) by
means of formal or semi-formal techniques. Although ”fuzzy” human skills are
involved in the process of elicitation, analysis and specification - as in any other
human field - still methodology and formalisms can play an important role [22].
Anyway, the main RE problem has always been communication. A definition of
communication teaches us that [11]:

Human communication is a process during which source individuals ini-
tiate messages using conventionalized symbols, nonverbal signs, and con-
textual cues to express meanings by transmitting information in such a
way that the receiving party constructs similar or parallel understanding
or parties toward whom the messages are directed.

The first thing that we realized in building dependable software is that it is
necessary to build dependable communication between parties that use different
languages and vocabulary. In the above definition you can easily find the words
”similar or parallel understanding are constructed by the receiving parties”, but
for building dependable systems matching expectations (and specification) it
is not enough to build a similar or parallel understandings since we want a
more precise mapping between intentions and actions. Formal methods in system
specification look to be an approachable solution. We will come back to this later
when we discuss the motivations that led us to a method definition.

Object Oriented Design [8] and Component Computing [27] are just well
known examples of how some rigor and discipline can improve the final quality
of software artifacts besides the human communication factor. The success of
languages like Java or C# could be interpreted in this sense, as natural target
languages for this way of structuring thinking and design. It is also true - and
it is worth reminding it - that in many cases it has been the language and the
available tools on the market that forced designers to adopt object orientation
principles, for example, and not vice versa. This is the clear confirmation that
it is always a combination of conceptual and software tools together that create
the right environment for the success of a discipline.

Semi formal notations like UML [12] helped in creating a language that can
be understood by both specialists and non specialists, providing different views
of the system that can be negotiated between different stakeholders with dif-
ferent backgrounds. The power (and thus the limitation of UML) is the ab-
sence of a formal semantics (many attempts can be found in the literature
anyway) and the strong commitment on a way of reasoning and structuring
problems which is clearly the one disciplined by object orientation. Many other
formal/mathematical notation existed for a long time for specifying and ver-
ifying systems like process algebras (a short history by Jos Baeten in [5]) or
specification languages like Z (early description in [4]) and B [2]. The Vienna
Development Method (VDM) is maybe one of the first attempts to establish a
Formal Method for the development of computer systems [7]. All these notations
are very specific and can be understood only by specialists. The point about all
these formalisms is that they are indeed notations, formal or semi-formal. Behind
each of them there is a way of structuring thinking that does not offer complete
freedom and thus forces designers to adhere to some discipline. But still they
are not methods in the proper sense, they are indeed languages.

The goal of this paper is providing a different view for interpreting problems
and faults. The overall result will be the definition of a method for the speci-
fication of systems that do not run in isolation but in the real, physical world.
To accomplish this task we need to pass through a non trivial number of steps,
concepts and tools where the first one, the most important, is the concept of
method itself, since we realized that computer science has a proliferation of lan-
guages but very few methods. In the following we want to put more emphasis on
the difference between methods and languages and, as a consequence, between
formal methods and formal languages.

2 What is a method and why do we want one?

The idea of this section is defining a set of desiderata for the method we will
present later in this work. We reached these ideas partly in an attempt to under-
stand what a method basically is, and partly gaining experience and insights by
experimenting with case studies. The first step will be providing definitions and
examples for the notion of method and only then determining the desiderata.

2.1 What is a method: definitions and example

Firstly, we think it is important to distinguish between the words method and
methodology, very similar but slightly different and often misused. We just report
the Websters dictionary definitions:

”A method is a way, technique, or process of or for doing something”

It is worth noting that the definition of method depends on the one of process:

”a series of actions or operations conducing to an end”

The word methodology instead is defined as follows:

Methodology is intended as the analysis of the principles of methods
[...] employed by a discipline. It can be also intended as a particular
procedure or set of procedures.

Thus, the word can be used to intend ”a particular procedure” but the general
meaning is ”the analysis of the principles of methods”. From now on we will
use the word method to refer to a number of steps that need to be performed
to reach a particular outcome, which is exactly what we want. According to
these definitions when we refer to Process Algebras, for example, the words
methodology and method are not correct. Anyway, it is common practice to use
the word formal methods to intend formal languages in computer science. In this
paper we will use the word method to intend the final result of a methodological
study related to a specific context, in this case software systems specification.
To properly understand what a method is and what it is not we will explore an
illustrious example by Descartes, the ”Discourse on the Method” (1637) [25]. It
is the famous philosophical and mathematical treatise which is the source of the
quotation ”Je pense, donc je suis” (”I think, therefore I am”). For lack of space
here it is not possible to report all the relevant parts. We are only interested
in understanding how Descartes perceives a method and what is peculiar in it.
Here are his four points:

1. The first was to never accept anything as true which I could not accept as
obviously true; that is to say, to carefully avoid impulsiveness and preju-
dice, and to include nothing in my conclusions but whatever was so clearly
presented to my mind that I could have no reason to doubt it.

2. The second was to divide each of the problems I was examining in as many
parts as I could, as many as should be necessary to solve them.

3. The third, to develop my thoughts in order, beginning with the simplest and
easiest to understand matters, in order to reach by degrees, little by little,
to the most complex knowledge, assuming an orderliness among them which
did not at all naturally seem to follow one from the other.

4. And the last resolution was to make my enumerations so complete and my
reviews so general that I could be assured that I had not omitted anything.

It is easy to realize that a method proposes a partially ordered set of actions
that need to be performed and then discharged within a specific causal relation-
ship. The success of one action determines the following ones. Furthermore the
method has to be repeatable, possibly by non experts or specialists. In figure 1
we report a graphical synthesis of the Descartes method.

Fig. 1. The method of science

2.2 Why a method: the desiderata

The above definitions and the example are a starting point to understand better
what a method is and what it is not. At this point the differences between a for-
mal language an a formal method should be clearer. Now we have to ask ourselves
why we need a method. The ”why” is an interesting point, it is a meta question,
a question that allows us to reason about the method looking from outside the
method. The logic is what is done inside the system, in this case the formal steps

performed (in some order) to reach the desired end. i.e. the method itself. The
reasoning is what is done ”outside the system”, experimenting and seeing what
happens if we change the basic rules. Reasoning ”about the method” gives us a
way to find out the motivations leading to a method definition. What we believe
now is that the first step in building dependable software is building depend-
able communication between parties that have different languages/vocabulary.
According to the definition of communication, Formal Methods in system speci-
fication are tools to commit on dependability since they help us in clarifying our
vocabulary and providing a notation able to build a precise mapping between
intentions and actions in the different stakeholders’ minds. Thus a clear and
precise definition of a formal method (in the actual meaning of the word) seems
to be necessary at this stage. What we have understood from Descartes’ lesson
is that a method, and so the method we are going to propose, needs to satisfy
a number of properties. The first three are taken from Descartes’ method, while
the last three are grabbed from our experiments with case studies which we will
introduce later but we think it is worth to gather all the features together now.
Our understanding of the method of science has told us that:

– It has to consist of steps to acquire knowledge
– It has to be formally defined (”phases”, steps, workflow)
– It has to be repeatable (by non formal methods experts)

Then our practical experience has suggested that:

– It has to be scalable (non ”ad hoc” - it has to work outside specific case
studies)

– It needs abstractions (what and not how, we introduce the idea of plug-ins)
– It has to be extensible to fault tolerant behavior (we propose the idea of

LFTS for this)

After having understood where we want to go and why, it is good practice
to say now how we want to get there.

3 A Different Angle to See Problems

Our work in this paper focuses especially on [20] where the original idea of a
formal method for the specification of systems running in the physical world orig-
inated. That paper was full of interesting ideas but still was lacking of a method
in the sense we described so far. Few case studies have been analyzed according
to this philosophy in [9] but still a complete method has not been reached. For
this reason we think now that a more structured approach is urgent in this area.
Thus, the goal of the present work is to improve our understanding of those
ideas, trying to increment that contribution and to put it in an homogeneous
and uniform way describing a method featuring the properties we introduced
above with particular attention to fault tolerance. At the moment we have had
some progress in this direction but we still need more work toward a method

for the specification of fault tolerant systems. The basic idea behind [20] was
to specify a system not in isolation but considering the environment in which it
is going to run and deriving the final specification from a wider system where
assumptions have been understood and formalized as layers of rely conditions.
Here the difference between assumptions and requirements is crucial, especially
when considering the proper fault tolerance aspects. We could briefly summarize
this philosophy as follows:

– Not specifying the digital system in isolation
– Deriving the specification starting from a wider system in which physical

phenomena are measurable
– Assumptions about the physical components can be recorded as layers of

rely-conditions (starting with stronger assumptions and then weakening when
faults are considered)

Sometimes we have found it useful, in the presentation of these concepts, to
use the figure 2. This figure allows us to show how a computer system can be
seen from a different angle, as not consisting of functions performing tasks in
isolation but as relationships (interfaces/contracts) in a wider world including
both the machine and the physical (measurable) reality. As we will see later
this philosophy has been inspired by Michael Jackson’s approach to software
requirements analysis typically called Problem Frames approach [16]. The Silicon
Package is the software running on the hosting machine. It should be clear that
the machine itself can neither acquire information on the reality around nor
modify it. The machine can only operate trough sensors and actuators. To better
understand this point, we like to use a similar metaphor about humans where
it is easier to realize that our brain/mind system (our Silicon Package?) cannot
acquire information about the world but it can only do that through eyes, ears
and so on (our sensors). In the same way it cannot modify the world if not
through our arms, voice, etc (our actuators). So, as we start describing problems
in the real world in terms of what we perceive and what we do (and not about
our brain functioning) it makes sense to adopt a similar philosophy for computer
systems consisting of sensors and actuators. Around the Silicon Package you
can see a red circle representing the problem world and green small spheres
representing the assumptions that need to be made regarding it. The arrows
and their directions represent the fact that we want to derive the specification of
the silicon package starting from the wider system. The way in which we record
these assumptions is a topic for the following sections.

3.1 The method, its Steps and its Views

In this work we are structuring the method introduced in [20] according to the
properties described in the previous section. To do this behind that work we
recognize three macroscopic steps:

1. Define boundaries of the systems

Fig. 2. Silicon Package, Problem World and Assumptions

2. Expose and record assumptions

3. Derive the specification

Our idea is to not commit to a single language/notation - we want a formal
method, not a formal language - so we will define a general high level approach
following these guidelines and we will suggest reference tools to cope with these
steps. It is important noting that these are only reference tools that are suggested
to the designers because of a wider experience regarding them from our side. A
formal notation can be the final product of the method but it still needs to be
not confused with the method itself. In figure 3 these steps are presented and
it is showed how different tools could fit the method at different stages. We call
these notations the plug-ins since they can be plugged into the different steps.

Figure 3 is a generic representation of the method where we want to em-
phasize the different steps that were not clearly defined previously in [20]. The
reader will understand that this is still a simplification of the process. We use
the word ”steps” instead of ”phases” since we do not want to suggest a sort
of linear process which is not always applicable, in the average case (especially
when coping with fault tolerance as we will discuss later). We imagine, in the
general case, many iterations between the different steps. The idea of the method
is to ground the view of the silicon package in the external physical world. This
is the problem world where assumptions about the physical components outside
the computer itself have to be recorded. Only after this can we derive the spec-
ification for the software that will run inside the computer. This more precise
formalization of the method and the features the method has to exhibit is one of
the main contributions of this work. The reader is probably realizing that what

Fig. 3. Steps and Reference Tools

we are obtaining here is a method exploiting two different perspectives during
the three steps.

– a static view defining the boundaries of the system and representing the
relationships between phenomena and domains in it. Our reference tools
here are Problem Diagrams [16].

– a dynamic view representing the interactions between different processes in
the system and able to record the assumptions. Our mathematical refer-
ence tools here are rely/guarantee conditions [17, 19, 18] which regard the
execution of concurrently executing (and interfering) processes.

Furthermore we need an approach to consider faulty behaviors, this will be
described later in the related section. The idea behind having two different views
is that different people (or stakeholders) could be possibly interested only in
single aspects of the specification and be able to understand only one of the
possible projections. In this way you can approach it without a full understanding
of every single aspect.

3.2 Static View

Michael Jackson is well known for having pioneered, in the seventies (with Jean-
Dominique Warnier and Ken Orr) the technique for structuring programming
basing on correspondences between data stream structure and program struc-
ture [14]. Jackson’s ideas acquired then the acronym JSP (Jackson Structured
Programming). In his following contribution [15] Jackson extended the scope
to systems. Jackson System Development (JSD) already contained some of the
ideas that made object-oriented program design famous. Figure 4 shows Jack-
son’s main contribution to the field. In this section we describe our reference
tool for representing the relationships between phenomena and domains of the
system we want to specify using Problem Diagrams [16]. Context Diagrams and
Problem Diagrams are the graphical notations introduced by Michael Jackson

(in the time frame 1995/2001) in his Problem Frames (PF) approach to software
requirements analysis. This approach consists of a set of concepts for gathering
requirements and creating specifications of software systems. As previously ex-
plained in this work the new philosophy behind PF is that user requirements
are here seen as being about relationships in the operational context and not
about functions that the software system must perform. It is someway a change
of perspective with respect to other requirements analysis techniques.

Fig. 4. Jackson Methods

The entire PF software specification goal is modifying the world (the problem
environment) through the creation of a dedicated machine which will be then
put into operation in this world. The machine will then operate bringing the
desired effects. The overall philosophy is that the problem is located in the
world and the solution in the machine. The most important difference with
respect to other requirements methodologies is the emphasis on describing the
environment and not the machine or its interfaces. Consider, for example, the
Use Case approach [6]. Here what we do is specify the interface and the focus is
on the interaction user/machine. With PF we are pushing our attention beyond
the machine interface, we are looking into the real world. The problem is there
and it is worth to start there. The first two points of the ideas taken from
[20] (not specifying the digital system in isolation and deriving the specification
starting from a wider system in which physical phenomena are measurable) can
be indeed tracked back, with some further evolution, to [16]. We are using PF to
develop a method for specification of systems, i.e. a description of the machine
behavior. But, before doing that, we start understanding the problem.

Context Diagrams The modeling activity of a system should start using this
kind of diagram in the PF philosophy. By means of it we are able to identify
the boundaries of the system, where a system is intended as the machine to be
designed (software + hardware) and its domains with their connections (in terms
of shared phenomena). It is part of what we call a static view of the system.

Context Diagrams contain an explicit and graphical representation of:

– the machine to be built
– the problem domains that are relevant to the problem
– the interface (where the Machine and the application domain interact)

A domain here is considered to be a part of the world we are interested in
(phenomena, people, events). A domain interface is where domains communicate.
It does not represent data flow or messages but shared phenomena (existing in
both domains). Figure 5 shows a simple scenario. The lines represent domain
interfaces, i.e. where domains overlap and share phenomena.

Fig. 5. Contex Diagram

Problem Diagrams The basic tool for describing a problem is a Problem
Diagram which can be considered a refinement of a Context Diagrams. This
should be the 2nd step of the modeling process. A problem diagram shows the
requirements on the system, its domains, and their connections. It is still part
of a static view of the system but better represents the assumptions about the
system and its environment. They are basic tools to describe problems. To the
information contained in context diagrams they add:

– dotted oval for requirements
– dotted lines for requirements references

Figure 6 shows a scenario where the Silicon Package is in charge of monitoring
the patients conditions. We believe that the first step of the specification method

(define boundaries of the systems) can be accomplished by means of this tools.
Thus we use Problem Diagrams as a reference tool for our research but still, as
said, not constraining it to a specific notation or language.

Fig. 6. Problem Diagram

3.3 Dynamic View

Problem Diagrams taken from the PF approach are a notation that forces us to
think about the problem in the physical world instead of focusing immediately
on the solution. We believe that they represent an effective tool to define the
precise boundaries of the specification we are working on. Summarizing they
represent:

1. the machine
2. the problem domains
3. the domain interfaces
4. the requirements to bring about certain effects in the problem domains
5. references in the requirements to phenomena in the problem domains

Once the domains of the context we are working on, their phenomena and
the relative overlap have been understood, it will be necessary to focus on the
”border” between the Silicon Package and the real world. It is necessary to dis-
tinguish between assumptions and requirements and we need a tool to record
the assumptions. Our system will be composed of interacting parts and each
of these parts will interact with the world. The world itself has to be under-
stood in term of assumptions about normal/abnormal behavior and a model of
fault need to be considered. For all these reason we introduce the concept of
dynamic view which represents the interactions between processes in the sys-
tem and between the system and the world. To record our assumption (as we
will see layers of assumption for fault tolerance) we use a mathematical refer-
ence tool, i.e. rely/guarantee conditions [17, 19, 18] which regard the execution of
concurrently executing processes. R/G conditions are a powerful abstraction for
reasoning about interference originated in the Hoare logic idea of preconditions
and postcondition [13]. The purpose is providing a set of logical rules to reason

about the correctness programs. We will explain the idea through examples, for
more details please consider the literature in this regard. As the reader will re-
alize in this section, rely conditions can be used to record assumptions in the
overall context of the proposed method. But, as stated in [23], when they show
too much complication that might be a warning indicating a messy interface.

Preconditions and Postcondition To understand the power of the R/G
reasoning it is necessary to realize how preconditions and postconditions can
help in specifying a software program when interference does not play its role.
What we have to describe (by means of logical formulas) when following this
approach is:

1. the input domain and the output range of the program
2. the precondition, i.e. the predicate that we expect to be true at the beginning

of the execution
3. the postcondition, i.e. the predicate that will be true at the end of the exe-

cution provided that the precondition holds

Preconditions and postconditions represent a sort of contracts between par-
ties: provided that you (the environment, the user, another system) can ensure
the validity of a certain condition, the implementation will surely modify the
state in such a way that another known condition holds. There is no probability
here, it is just logic: if this holds that will hold. And the input-output relation
is regulated by a predicate that any implementation has to satisfy.

We show the example of a very simple program, the specification of which in
the natural language may be:

Find the smallest element in a set of natural numbers

This very simple natural language sentence tells us that the smallest element
has to be found in a set of natural numbers. So the output of our program has
necessarily to be a natural number. The input domain and the output range of
the program are then easy to describe:

I/O : P(N) → N

Now, you expect your input to be a set of natural numbers, but to be able
to compute the min such a set has to be non empty since the min is not defined
for empty sets. So the preconditions that has to hold will be:

P (S) : S 6= ∅

Provided that the input is a set of natural numbers and it is not empty,
the implementation will be able to compute the min element which is the one
satisfying the following:

Q(S, r) : r ∈ S ∧ (∀e ∈ S)(r ≤ e)

Given this set of rules, the input-output relation is given by the following
predicate that needs to be satisfied by any implementation f :

∀S ∈ P(N)(P (S) ⇒ f(S) ∈ N ∧ Q(S, f(S)))

Interference The example just showed summarizes the power (and the lim-
itations) of these kinds of abstractions. To better understand the limitations
consider figure 7 where interference trough global state is depicted. The two
processes alternate their execution and access to the state. The global state can
consist of shared variables or can be a queue of messages if message passing is
the paradigm adopted (at the end the two paradigms are equivalent). This figure
shows exactly the situations described in [19], quoting precisely that work:

As soon as the possibility of other programs (processes) running in par-
allel is admitted, there is a danger of ”interference.” Of more interest are
the places where it is required to permit parallel processes to cooperate
by changing and referencing the same variables. It is then necessary to
show that the interference assumptions of the parallel processes coexist.

Another quote from [10] says:

The essence of concurrency is interference: shared-variable programs
must be designed so as to tolerate state changes; communication-based
concurrency shifts the interference to that from messages. One possible
way of specifying interference is to use rely/guarantee-conditions.

In the case in which we consider interfering processes we need to accept
that the environment can alter the global state but the idea behind R/G is
that we impose these changes to be constrained. Any state change made by
the environment (other concurrent processes with respect to the one we are
considering) can be assumed to satisfy a condition called R (rely) and the process
under analysis can change its state only in such a way that observations by other
processes will consist of pairs of states satisfying a condition G (guarantee).
Thus, the process relying on the fact that a given condition holds can guarantee
another specific condition. An example is needed.

Greatest Common Divisor Consider the two following simple pieces of code,
the cooperation of which calculates the Greatest Common Divisor:

P1:

while(a<>b){

if(a > b)

a := a-b;

}

Fig. 7. Interference trough global state

P2:

while(a<>b){

if(b > a)

b := b-a;

}

P1 is in charge of decrementing a and P2 of decrementing b. When a = b will
evaluate to true it means that one is the Greatest Common Divisor for a and b.
The specification of the interactions is as follows:

R1 : (a = a) ∧ (a ≥ b ⇒ b = b) ∧ (GCD(a, b) = GCD(a, b))
G1 : (b = b) ∧ (a ≤ b ⇒ a = a) ∧ (GCD(a, b) = GCD(a, b))
R2 = G1

G2 = R1

Here the values a and b are used instead of a and b when we want to distinguish
between the values before the execution and the values after. P1 relies on the
fact that P2 is not changing the value of a and a ≥ b means no decrements for b
have been performed. Furthermore the GCD did not change. Specular situation
is for the guarantee condition. Obviously, what is a guarantee for P1 becomes
a rely for P2 and vice versa. Figure 8 is a graphical representation of the GCD
example showing that P1 is only reading b but updating a, the opposite for P2.

3.4 Need for Extension (of Jackson’s Diagrams)?

The objective of a PF analysis is the decomposition of a problem into a set of
subproblems, where each of these matches a problem frame. A problem frame
is a problem pattern, i.e the description of a simple and generic problem for

Fig. 8. GCD example

which the solution is already known. There are four main patterns plus some
variations:

– required behavior (the behavior of a part of the physical world has to be
controlled)

– commanded behavior (the behavior of a part of the physical world has to be
controlled in accordance with commands issued by an operator)

– information display (a part of the physical world states and behavior is
continuously needed)

– simple workpieces (a tool is needed for a user to create/edit a class of text
or graphic objects so that they can be copied, printed...)

Our perception is that, when describing the behavior of interfering processes
- especially when faults are considered as a special case of interference (see next
section) - the diagrams and the patterns provided are not powerful enough. We
need further refinement steps filling the gap between the static and the dynamic
view to complete the specification process. Now we briefly describe these ideas
that needs further work and can be considered an open issue.

Interface Diagram In a 3rd step of the modeling process, we want to repre-
sent an external, static view of the system. We need a further refinement of the
Problem Diagram able to identify the operations of the system and its domains,
and the input/output data of these operations (with their types). The relation-
ship of these with the requirements identified in the Problem Diagram has to be
represented at this stage.

Process Diagram In a 4th step of the modeling process, the whole system
is represented as a sequential process and each of its domains as a sequential
process. Concurrency within the system or within its domains is modeled by
representing these as two or more subcomponents plus their rely and guarantee
conditions. This is an external, dynamic view of the system and its domains.

4 A Different Angle to See Faults

Testing can never guarantee that software is correct. Nevertheless, for specific
software features - especially the ones involving human actions and interactions
- rigorous testing still remains the best choice to build the desired software. We
know very little about human behavior, there are few works trying to catego-
rize, for example, human errors in such a way that we can design system that
can prevent bad consequences [26] but this goes far beyond the scope of this
work. Here we want to focus on the goal of deploying highly reliable software in
terms of aspects that can be quantified (measured), for example the functional
input/output relation (or input/output plus interference, as we have seen). In
this case formal methods and languages could provide some support. The pre-
vious sections discussed how to derive a specification of a system looking at the
physical world in which it is going to run. No mention has been made of fault
tolerance and abnormal situations which deviate from the basic specification.
The first thing the reader will realize is that the method we defined does not
cope with these issues but it does not prevent fault tolerance from playing a role.
The three steps simply represent what you have to follow to specify a system
and they do not depend on what you are actually specifying. This allows us to
introduce more considerations and to apply the idea to a wider class of systems.
Usually in the formal specification of sequential programs widening the precon-
dition leads to make a system more robust. The same can be done weakening
rely conditions. For example, if eliminating a precondition the system can still
satisfy the requirements this means we are in presence of a more robust system.
Here we will follow this approach presenting the notion of Layered Fault Tolerant
Specification (LFTS) and examining the idea of fault as interference [10], i.e. a
different angle to perceive system faults. Quoting [10]:

The essence of this section is to argue that faults can be viewed as inter-
ference in the same way that concurrent processes bring about changes
beyond the control of the process whose specification and design are
being considered.

Here we are introducing the idea of Layered Fault Tolerant Specification
(LFTS) combining it with the approach quoted above making use of rely/guarantee
reasoning. The principle is layering the specification, for the sake of clarity, in (at
least) two different levels, the first one for the normal behavior and the others
(if more than one) for the abnormal. This approach originated from the notion
of idealized fault tolerant component [21] but the combination of LFTS and
rely guarantee reasoning can be considered one of the main contributions of this
work.

4.1 Fault Model

First, when specifying concurrent (interfering) processes, we need to define which
kind of abnormal situations we are considering. We basically need to define a

Fault Model, i.e.what can go wrong and what cannot. Our specification will
then take into account that the software will run in an environment when spe-
cific things can behave in an ”abnormal” way. There are three main abnormal
situations in which we can incur, they can be considered in both the shared
variables and message passing paradigm:

– Deleting state update: lost messages
– Duplicating state update: duplicated messages
– Additional state update (malicious): fake messages created

The first one means that a message (or the update of a shared variable) has
been lost, i.e. its effect will not be taken into account as if it never happened. The
second one regards a situation in which a message has been intentionally sent
once (or a variable update has been done once) but the actual result is that it
has been sent (or performed) twice because of a faulty interference. The last case
is the malicious one, i.e. it has to be done intentionally (by a human, it cannot
happen only because of hardware, middleware or software malfunctioning). In
this case a fake message (or update) is created from scratch containing unwanted
information.

Our model of fault is represented by a so called Error Injector (EI). The
way in which we use the word here is different with respect to other literature
where Fault Injector or similar are discussed. Here we only mean a model of the
erroneous behavior of the environment. This behavior will be limited depending
on the number of abnormal cases we intend to consider and the EI will always
play its role respecting the RG rules we will provide. In the example we will
show in the following we are only considering the first of the three cases, i.e the
Fault Injector is only operating through lost messages.

A contribution of this work is the organization of the specification in terms
of layers of Rely/Guarantee conditions. In order to do this we introduce the idea
of EI as a model of the environment and we need to describe how the EI will
behave and how we can limit it. Here a process will rely on a specific faulty
behavior and, given that, will guarantee the ability to handle these situations.
More in detail:

– Rely: the Error Injector (environment) interferes with the process (changing
the global state) respecting his G (superset of the programs R) for example,
only lost messages can be handled (next example)

– Guarantee: The process provided this kind of (restricted) interference is able
to handle exceptional/abnormal (low frequency) situations

All the possibilities of faults in the system are described in these terms and
the specification is organized according to the LFTS principle we are going to
describe.

4.2 LFTS: how to organize a clear specification

The main motto for LFTS is: ”Do not put all in the normal mode”. From the
expressiveness point of view, a monolithic specification can include all the as-
pects, faulty and non faulty of a system in the same way as it is not necessary

to organize a program in functions, procedures or classes. The matter here is
pragmatics, we believe that following the LFTS principles a specification can be
more understandable for all the stakeholders involved.

The specification has to be separated in (at least) two layers, one for the
Normal Mode and one (or more) for the Abnormal Mode. More specifically:

– Normal mode: an operation usually runs in normal mode respecting his in-
terface with the world determined by P/Q

– Fault interference: in low frequency cases the abnormal mode is activated
(exception handler, forward recovery)

Figure 9 shows the organization of a process (dashed rectangles) in a main
part and a recovery handler part where both interact through the global state
with other processes and the Error Injector (represented by a devil here).

Fig. 9. Error Injector

It is worth noting the limitations of this way of operating. Self error detection
and self recovery cannot be addressed by this model since EI is a representation of
the environment external to the process itself. So faulty behavior due to internal
malfunctioning is not what we want to represent here.

4.3 Example of Specification of Interference

For a better understanding of how we can exploit this idea of treating faults as
extraordinary interference with a low frequency but still manageable with the
same tools used for normal behavior we introduce a very simple example. First
we consider an even simpler example without interference, then we introduce
interference to investigate the differences and how we cope with it.

Increments without Interference Let us consider the following piece of code:

C(n):

n’ := n;

while (n’>0){

n’ := n-1;

count ++

}

return count;

C is a very simple program which decrements its input while reaching zero.
While decrementing the input it increments a counter with the effect that, at
the end, the counter will obviously reach the original value of the input. The
specification of C in terms of Pre and Post conditions is given as follows:

I/O : N → N

The input (n) and the output (count) are natural numbers. The precondition
that has to hold is:

P (count) : count = 0

since we expect the counter to be zero at the beginning. Provided that the
input is a natural number and the counter is zero, the execution will satisfy the
following:

Q(n, count) : count = n ∧ n = 0

Without any interference, the specification of C only requires that the input-
output relation satisfy the predicate:

∀a ∈ N(P (a) ⇒ C(a) ∈ N ∧ Q(a,C(a)))

Increments with Faulty Interference Let us consider the same piece of code:

C(n):

n’:= n;

while (n’>0){

n’ := n’-1;

count ++

}

return count;

but running in an environment where the following EI is also running:

EI(n’):

if (n’>0){

n’ := n’+1;

}

The role of this EI here is to model the deletion of state updates as in the
first of the three cases discussed above. The specification of C as expressed so
far is too simple to be able to manage this kind of situations. Even if we are not
handling malicious updates, the basic formulation we provided so far needs to
be properly incremented because without any changes the desired implication
cannot be satisfied:

∀a ∈ N(P (a) 6⇒ C(a) ∈ N ∧ Q(a,C(a)))

What we have to do is restructure the implementation and to pass from pre
and post conditions to rely/guarantee in the specification. Let us consider the
following modification:

C(n):

n’:= n;

while (n’>0){

if n’+ count = n then {

n’ := n’-1;

count ++

} else {

n’ := n-count-1

}

}

return count;

As the reader will understand what we have done is simply add a recovery
handler and a recovery mode based on the evaluation of the condition n+count =
n which is able to flag the presence of an unwanted interference (a deletion of an
increment). The recovery block is able to cope with abnormal situations provided
that faults are restricted in behavior (and that it is known in advance). Thus,
provided that a restricted interference happens the program is still able to satisfy
the post condition (and the specification). The normal mode here is the simple
code:

n’ := n’-1;

count ++

while the recovery handler is

n’ := n-count-1

and, as represented in figure 9, C is running in an environment which is shared
with EI. The specification we want in this case is different from the previous one
and it is expressed, in terms of R/G conditions, as follows:

RC : (n = n) ∧ (count = count) ∧ (n′ > n′)
GC : n′ = n − count − 1
RI = true

GI = n′ > n′

It is worth noting that there is no rely condition (to be precise there is one
always true) for the Error Injector, indeed it would not be reasonable to expect
that the processes we are specifying would behave in a way so as to satisfy the
needs of a fault model. Instead, EI is guaranteeing that it will only increment
n′ - it is the case of having only state update deletion (an increment deletes a
decrement) as pointed out previously. Decided the EI behavior limitation (and
thus decided the fault model) we can design our specification. From the EI spec-
ification C can rely on the fact that n and count will be never modified while
n’ will be only modified in a specific way (incremented). Now, with the addition
of a layer in the program and in the specification we are still able to guarantee
an (extended) desired behavior by means of the GC condition which says that
n’ will always be consistent with the value of count preserving the invariant
n′ = n − count − 1, i.e. the summation of n’ and count will always be equal to
n− 1. This will ensure that the postcondition count = n∧n = 0 will hold at the
end like in the case without interference. This simple example shows how the
LFTS principles can provide a clear specification (with respect to a monolithic
one) ensuring, at the same time, that a desired postcondition holds.

5 How did we get to these ideas?

So far we have used many small toy examples to show our ideas and the principles
we were presenting. Actually, we have got some progress toward a method and
a way to organize specifications not only by means of these examples (that have
been developed later for dissemination purposes) but experimenting on more
complex case studies. In this section, we will show how they brought us to a
better definition of the method and to the idea of LFTS.

5.1 The Transportation Example

Here we consider a case study taken from [3], the train system, where the goal
was showing the power of modeling and formal reasoning by means of Event-B
examples. We chose this scenario since we believe it is particularly realistic (it
has been developed after some work with real train systems) and still manageable
(with a limited set of initial requirements: 39). This case study taught us how
to distinguish between assumptions and requirements and helped us in finding a
better structure for the method initially presented in [20]. We will show here how
this example can be approached with the three steps method. The first thing
to do is deciding the bounds of specification (step 1). We will show how the
boundaries can be broadened to include the external world. In the second step
we will discuss how to separate assumptions and requirements, how to expose
and record assumptions and how different sets of requirements and assumptions
will imply a different specification and then implementation. In the third step
we will assume the existence of an already designed network infrastructure (with

sensors etc...) to show a specific example of implementation. At the end we will
show how to make use of rely conditions for this specific implementation.

Requirements Taxonomy The Train System requirements are organized as
follows:

– Environment: concerned with the structure of the track networks and its
components

– Functional: dealing with the main functions of the system
– Safety: ensuring that non classical accidents could happen
– Movement: ensure that a large number of trains may cross the network at

the same time
– Train: define the implicit assumptions about the behavior of trains
– Failure: define the various failures against which the system is able to react

without incidents

What it is important to realize here is the way in which the interference
over a global state is considered using the approach showed in the small GCD
example. In the following, the specification will be showed, after a discussion
about the way in which it has been obtained, and the interaction between the
different operations will be constrained in a similar way but in a system with
potentially higher level of concurrency.

Step 1: defining the boundaries of the system This example is about how
to clarify the requirements in the real world before trying to specify the soft-
ware which sits within the system. This process naturally identifies assumptions
about the physical components which can be recorded as rely-conditions. One
of the main principles of this approach is not specifying a system in isolation
but starting moving the system boundaries outwards (what is called ”pushing
out the boundaries of the system” in [20]). What is the wider system in which
physical phenomena are measurable? What is the actual general purpose of the
Train System? It is allowing trains to move safely from a place X to a place
Y. How does this help us in identifying system requirements? We can recognize
that the FUN-1 requirement of the system specification [3] expresses basically
this need:

The goal of the train system is to
safely control trains moving on a track network

If we move the boundary outwards further we can say that the purpose
of the system is allowing people to reach their destination safely. Considering
this we could split FUN-1 in two properties (without referring to any specific
implementation yet):

1. Safety property (nothing bad can happen)
2. Liveness property (something good has to happen)

We can express these two properties more in detail as follows:

Safety: Trains will never collide

Liveness: Trains will move from their origin to their destination

Req FUN-1 is general enough to allow this separation, anyway we are inter-
ested in modeling only the safety property delegating liveness to a scheduler or,
theoretically to a manual management performed by operators/engineers. For
the sake of simplicity, the specification will start with this requirement only. All
the other requirements presented in [3] refer to concepts like blocks, routes and
signals that can describe either a set of assumptions about the environment or
a specific implementation of FUN-1. We will say more about this later.

Step 2: exposing and recording assumptions Now it is crucial to discrimi-
nate between requirements for the system and assumptions about the real world.
In this example it was important to ask if we are in charge of designing the whole
railway/track with sensors, signals, etc or not. If not, many requirements in the
ENV group (and the given block structure) can be considered as assumptions
taken from the already existing environment. Otherwise, all these can be seen
as requirements but referring to a specific implementation and should not be
introduced now but only later, in the last step. For example, the requirement
ENV-13:

A signal can be red or green. Trains
are supposed to stop at red signals

is an example of mixing requirements and assumptions in the same state-
ment. So determining the assumption (and being able to separate them from
requirements) is the main goal of this step. In this example we suppose to be
the designer of the whole track and we want trains to move from city X to city
Y. There are many possible implementations for the presented requirements, we
will look into the details of only one (which is the one given in [3]). Before look-
ing at that it is easy to understand that the simplest possible implementation is
the one requiring that no train can cross the network. This is an implementation
where the Safety property is preserved (but Liveness is not). Although we are
interested mainly in this property here, a better thing to do would be allowing
only one train on the track between X and Y. This means basically that the rail
connecting two cities will be reserved for a single train. Obviously this imple-
mentation respects both the safety and liveness requirements described above.
But it is also easy to realize that it is simply unfeasible because of the very low
efficiency, very low exploitation of the available resources and because of the
expensiveness (time and money).

A more reasonable implementation is actually the one that in [3] is simply
used for the modeling purposes. The scope here is different from what has been
done there, for this reason we did not assume this implementation as given

but we wanted to go through the entire discussion. The point was learning the
lesson about determining wider boundaries including the external environment
and distinguishing between requirements and assumptions. So we analyzed the
entire process carefully. Now we are ready to present this implementation. Figure
10 represents an example of the infrastructure. It is made of:

1. Blocks: a track is made of a number of fixed blocks as showed in figure 10.
2. Routes: blocks are always structured in a number of statically pre-defined

routes. Each route represents a possible path that a train may follow. Routes
define the various ways a train can cross the network. A route is composed
of a number of adjacent blocks forming an ordered sequence. For example a
route in figure 11 is LABDKJN.

3. Points: a track contains these special components. A point may have two
positions: directed or diverted. These components are attached to a given
block. And a block contains at most one special component. In figure 10,
B and D, for example, they both contain points. In figure 11, point B is
directed while point D is diverted.

4. Signals: each route is protected by a signal (Red/Green). It is situated just
before the first block of each route and it must be clearly visible by train
drivers. When a signal is red the corresponding route cannot be used by an
incoming train.

Fig. 10. The network infrastructure

The idea is to have each block of a reserved route freed as soon as the train
does not occupy it anymore. It is not scope of this work to describe entirely the
case study but only to describe the insights we have gained in the process of
working toward a method. The reader who can find it hard to abstract over few
details should refer to [3] for the detailed description of this scenario. In the next
section we will focus on the reserving routes system, i.e. the process of reserving

Fig. 11. Example of a route

a route on a train request, freeing it and letting the train occupy block by block
freeing each block when passed.

We have also decided to abstract over concepts like time or distances. In a
real system these two concepts would play a significant role in making the trip
safe. Here we have decided for an infrastructure composed by blocks and we will
never have two trains in the same block to avoid collisions. In a real system, for
example, usually this can happen for trains heading to the same direction: in this
case it will be the driver’s responsibility to stop the train properly to avoid the
collision. So, actually, the constraint of not having two trains in the same block
would only apply in the case they are moving in opposite directions. Here we are
simplifying this aspect but we are not relaxing the safety requirement anyway,
since the block constraint we are proposing is strong enough to guarantee that
there will be no train collision. We will see the infrastructure as a set of routes
from which you cannot really infer which one is adjacent to the other. This is
because we are focusing on safety purposes. We indeed do not cope with liveness,
we assume that these kind of problems are managed by a scheduler which is
another system already running. A graph structure would be probably more
adequate in case we want to focus on the scheduler having Liveness coming into
play. This abstraction simplifies our work without being in contradiction with
the original philosophy of grounding the system in the physical world. We have
only decided that the border between the system and the real world here will
consist of the sensors and actuators necessary to make such an infrastructure
working.

Step 3: deriving the formal specification Now we define the basic machin-
ery for the formal specification. We need four finite sets for the purpose:

– T, a finite set of trains (t a variable ranging over it)
– B, a finite set of blocks (b a variable ranging over it)

– R, a finite set of routes (r a variable ranging over it)
– P, a finite set of points (p a variable ranging over it)

The safety requirement will be modeled as a total function mapping blocks to
trains: B → T (train). This is how we impose to have a single train on a block.
To avoid collisions by trains we also need a way to associate trains to routes,
once the train has reserved a specific route. We use the function: T → R (route).
A route is then composed by blocks, at least one: R → B+ (blocks) and in a
route a block has a next element: B → B (next). Blocks can be free or occupied :
B → {free, occupied} (status) and are associated to points: B → P (point) that
can be oriented in two different ways: P → {directed, diverted} (direction).
Routes can be available or reserved: R → {available, reserved} (availability)
and each route is associated with a predefined points orientation: R → (P →
{directed, diverted}) (orientation). We rely on the fact that the sensors with
which a block is equipped can always detect the presence of a train (for B → T).
We assume that if we want to reserve a point, it will be promptly positioned.
We do not model these ”low level” aspects here (for T → R). We rely also on the
fact that each route has a first block: R → B (first), a last block: R → B(last),
and they are different: first(R) 6= last(R).

The mathematical machinery defined so far can be considered part of the
global state on which the five operations we are going to define operate: they are
related to the process of route reservation and freeing plus the entrance, proceed-
ing and exit of a train to and from a route. These are the operations concerned
with the specification of our safety requirement. Liveness is not discussed, we
only move a train from one end of a route to the other without investigation
about the way in which the routes are previously organized. For each operation
the notation below indicates the data needed and what we expect from that data
plus the way in which the global state will be modified.

Operation RouteReserving (t : T, r : R)
Rely availability(r) = available

∀ b ∈ blocks(r) (status(b) = free)
Guarantee availability(r) := reserved

∀ b ∈ blocks(r) (status(b) := occupied)
route(t) := r

∀ p ∈ P (direction(p) := orientation(r)(p))

Given a train and a route, this operation guarantees three mappings to be prop-
erly updated, provided that the given route is available and the related blocks
are free. The three mappings are first the one between points and directions,
second the one between trains and routes (as a record of the overall track sta-
tus) and last the association between blocks and their occupancy status. These
represent the part of the global state of interest for this operation.

Operation RouteFreeing (t : T)
Rely ∀b ∈ blocks(route(t)) (status(b) = free)
Guarantee availability(route(t)) := available

route(t) := null

Given a train the related route is identified. The effect on the state is a mod-
ification of the mapping where the train is associated to the null route and,
provided that all the blocks in the route are free, the route itself can be freed.
This operation has a simpler definition with respect to the reservation because
the blocks are freed by the ExitRoute while the points direction does not need
to be modified when freeing a route.

Operation EnterRoute (t : T)
Rely availability(route(t)) = reserved

∧ status(first(route(t))) = free

Guarantee status(first(route(t))) := occupied

This operation corresponds to a train entering the first block of a route. The first
block must be unoccupied before the operation and it will be occupied afterward.
It can be accessed only by trains that have already reserved a route.

Operation MovingOnRoute (t : T, b : B)
Rely availability(route(t)) = reserved

∧ b ∈ blocks(route(t))
∧ status(next(b)) = free

Guarantee status(b) := free

status(next(b)) := occupied

This operation corresponds to the occupancy of a block which is different from
the first block of a reserved route. It can be accessed only by trains that have
already reserved a route. The current block has to belong to the route and the
next one can be occupied only when it is free. The occupation of the next block
implies that the current one becomes free.

Operation ExitRoute (t : T, b : B)
Rely availability(route(t)) = reserved

∧ b ∈ blocks(route(t))
∧ next(b) = ∅

Guarantee ∀b ∈ blocks(route(t)) status(b) := free

This operation corresponds to the train exit out of the route. It can be accessed
only by trains that have already reserved a route and it is responsible to free all
the blocks in that route.

LFTS for the Train System Here we consider the Train System in a less
ideal world than the one analyzed before. In this world, the EI plays its role,
for the sake of simplicity, changing the global state only according to the ”lost
messages” condition. The global state of the system needs to be modified for
the EI to implement its changes. Now, in the network, sensors and actuators
can actually fail and some state update could be not performed. Thus, let us
modify the availability function in such a way as to include a third option:
R → {available, reserved,maintenance!} (availability). The RouteReserving
operation can be extended as follows:

Operation RouteReserving (t : T, r : R)
Rely availability(r) = available

∀ b ∈ blocks(r) (status(b) = free)
Rely ≈ availability(r) = available

Guarantee availability(r) := reserved

∀ b ∈ blocks(r) (status(b) := occupied)
route(t) := r

∀ p ∈ P (direction(p) := orientation(r)(p))
Guarantee ≈ availability(r) := maintenance!

∀ b ∈ blocks(r) (status(b) := occupied)
route(t) := null

This specification includes the case in which, although the requested route is
available, not all the related blocks have been freed (for example in one block a
sensor stopped working). This is a warning situation and the route needs to be
put under observation, the train will be assigned to a null route and, for safety
reasons, all the blocks in that route will be occupied. An additional layer of R/G
has been added for this purpose and it has been indicated by ≈.

The ”make-it robust” process The process of adding further layers to the
specification considering situations that are abnormal (in the sense that they
happen less frequently) is called ”make-it robust” process and it will be fully
developed and formalized as future work. It is out of the scope of this work to
explain in detail the formalism behind it, this work represents just an intro-
duction to the method with an explanation of the need for it and its potential
application to dependable systems. Anyway, the idea we are working on is to
modify the global state, passing from what we call the Ideal World (the initial
layer) to what we call the Real World (the further layers, it will never be ”real”
anyway) according to specific formal rules that have to be applied. In this way
we restrict the creative act behind the addition of new layers but we make it
possible to automatize the consistency check between different layers. Looking
at the Polya’s analysis of ancient Greeks problem solving [24], he divides mathe-
matical problems into two classes: ”problems to prove” and ”problems to find”.
We have been inspired by this analysis when working on this process. The idea
is simply applied: the creative act of identifying the next layer is a ”problem to
find” and it needs human intervention and invention. This is the hard part of
the work. This process is formally guided by a number of rules explaining how
the global state, its mappings, the relative domains and ranges and the R/G
conditions have to be modified giving a significant spectrum of possibilities, but
not infinite freedom. The easy part of the work will be then performed automat-
ically and it will be the ”prove” part, the consistency check which represent the
automatic correctness analysis.

5.2 The Automotive Example

Now we consider an automotive case study to show the power of the LFTS
principle. We will use here a general definition of Cruise control without revealing

any confidential information specific of a particular version. For us here a Cruise
control (CrCt) is a system that automatically controls the rate of motion of a
motor vehicle, the driver sets the speed and the system will take over the throttle
of the car to maintain the same speed. In some designs the cruise control has
its separate ”on/off” switch and controls are easily within the driver’s reach
(buttons on the wheel generally). Most designs have buttons for ”set”, ”resume”,
tip up/down”. Figure 12 shows a state machine for a simple version of the Cruise
Control interface (where there is no tip up and tip down). In the basic version
the driver must bring the car up to speed manually and use a button to set the
cruise control. At that point, the current speed becomes the desired speed. Most
systems do not allow the use below a certain speed discouraging city use. The car
will maintain the desired speed but tapping the brake or clutch pedal disables
(standby) the system. The idea is that if this does not happen the vehicle would
otherwise accelerate against braking to maintain the speed. Some versions can
include a memory feature to resume the set speed after braking. The throttle
can instead be used to accelerate but once released the car will then slow down
reaching the previously set speed.

We use the CrCt to show how the idea of LFTS can be applied in (semi)realistic
systems (simplifications of real system for the sake of experimenting with new
ideas but still not mere toy examples). Let us consider the following piece of
CrCt code :

while (target <> current){

delta := smooth(target, current);

result := set_eng(delta);

}

Fig. 12. Simplified State Machine (no tip up/down)

The car speed in acquired in smooth(target, current) and then a delta
is calculated for the car to have a smooth acceleration (smoothness has to be

determined by experience). The specification of this code in term of P,Q,R,G
is the following (it is expressed in natural language since we are not giving a
mathematical model of the car):

– P: target has to be in a given range
– Q: delta is zero and the driver has been comfortable with the acceleration
– R: the engine is adjusted (smoothly) according to delta
– G: the absolute value of delta is decreasing

Now, one of the usual requirements of a CrCt is to be switched off if an error
in engine speed acquisition is detected. This is not taken into account in this
specification, when the rely does not hold the engine is not adjusted according to
delta. In case the speed acquisition goes wrong the guarantee will not hold and
the absolute value of delta will not be decreased. Indeed, following the LFTS
principle we should organize it in two layers: a normal mode and an abnormal
one (speed acquisition goes wrong):

while (target <> current){

delta := smooth(target, current);

result := set_eng(delta);

if result <> OK then

switch_off

}

Now we can add a weaker layer of conditions for the abnormal case being still
able to guarantee something. If speed acquisition goes wrong we do not want to
force the engine following the delta since it would imply asking for more power
when, for example, the car speed is actually decreasing (maybe an accident is
happening or it is just out of fuel). Switching the engine off we avoid an expensive
engine damage.

6 Conclusive Remarks

In this paper we provided a different view for interpreting problems and faults
and we worked toward an improvement of the ideas presented in [20]. Our goal
was to start an investigation leading to a method for the formal specification of
systems that do not run in isolation but in the real, physical world. To accomplish
the goal we passed trough a non trivial number of steps including the discussion
of the concept of method itself (computer science has a proliferation of languages
but very few methods). Then we presented how we intend to proceed to represent
the static and the dynamic view of the problem. A section is dedicated to faults
and the following to case studies. We should summarize our method as follows:

1. Define the boundaries of the system/specification (e.g. by the PF approach)
- do not specify the universe!

2. Expose and record the assumptions (e.g using RG conditions)
3. Agree 1 and 2 with customer
4. Make it more robust (weakening assumptions)

6.1 Contributions

The main contributions of this work can be considered:

1. An understanding of what a method is and an analysis of the desiderata
2. A formalization of the method in [20] and of the features it has to exhibit
3. Problems described in term of Static View and Dynamic View
4. EI as a model of faults (and consequent introduction of fault tolerant be-

havior)
5. The organization of the specification in terms of layers of RG conditions

(LFTS)
6. The experimentation on practical case studies

6.2 Open Issues

This work is not exhaustive and many aspects need more investigation. Espe-
cially the possibility of having Jackson’s diagrams extensions working as a bridge
between the static and the dynamic view in the way we described them. Thus
an open issue is:

Combining static and dynamic views in a coherent and readable notation

Jackson’ diagrams extensions are only one of the possible solutions. Another
point we just sketched but that needs more work is about the the plug-ins:

Permitting the practical use of different tools/notation

More investigation regarding the case studies is also needed.

Acknowledgments This work has made been possible by the useful conversa-
tions with Cliff Jones, Michael Jackson, Ian Hayes, Ani Bhattacharyya, Alexan-
der Romanovsky, John Fitzgerald, Jeremy Bryans, Fernando Dotti, Alexei Il-
iasov, Ilya Lopatkin and Rainer Gmehlich and it has been funded by the EU
FP7 DEPLOY Project (Industrial deployment of system engineering methods
providing high dependability and productivity) [1]. I also have to thank a num-
ber of DEPLOY people that provided me with great feedback during the project
meetings.

References

1. Deploy: Industrial deployment of system engineering methods providing high de-
pendability and productivity. http://www.deploy-project.eu/.

2. J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, New York, NY, USA, 1996.

3. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. To be
published in 2009.

4. J.-R. Abrial, S.A. Schuman, and B. Meyer. A Specification Language. Cambridge
University Press, New York, NY, USA, 1980.

5. J. C. M. Baeten. A brief history of process algebra. Theor. Comput. Sci., 335(2-
3):131–146, 2005.

6. K. Bittner. Use Case Modeling. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

7. D. Bjorner and C.B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of Lecture Notes in Computer Science. Springer, 1978.

8. G. Booch. Object-Oriented Analysis and Design with Applications (3rd Edition).
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

9. J.W. Coleman and C.B. Jones. Examples of how to determine the specifications
of control systems. In A. Romanovsky M. Butler, C. Jones and E. Troubitsyna,
editors, Proceedings of the Workshop on Rigorous Engineering of Fault-Tolerant
Systems (REFT 2005), 2005.

10. P. Collette and C.B. Jones. Enhancing the tractability of rely/guarantee speci-
fications in the development of interfering operations. In Proof, Language, and
Interaction, pages 277–308, 2000.

11. M.L. DeFleur, P. Kearney, and T.G. Plax. Mastering communication in contem-
porary america. 1993.

12. M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage, Third Edition. Addison-Wesley Professional, 2003.

13. C. A. R. Hoare. An axiomatic basis for computer programming. Communication
of the ACM, 26(1):53–56, 1983.

14. M. Jackson. Principles of Program Design. Academic Press, Inc., Orlando, FL,
USA, 1975.

15. M. Jackson. System Development. Prentice-Hall, 1983.
16. M. Jackson. Problem frames: analyzing and structuring software development prob-

lems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.
17. C.B. Jones. Development Methods for Computer Programs including a Notion

of Interference. PhD thesis, Programming Research Group,University of Oxford,
1981.

18. C.B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
pages 321–332, 1983.

19. C.B. Jones. Tentative steps toward a development method for interfering programs.
ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

20. C.B Jones, I.J Hayes, and M.A. Jackson. Deriving specifications for systems that
are connected to the physical world. In Formal Methods and Hybrid Real-Time
Systems, pages 364–390, 2007.

21. P.A. Lee and T. Anderson. Fault Tolerance: Principles and Practice. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1990.

22. Mannion M. and Keepence B. Smart requirements. SIGSOFT Softw. Eng. Notes,
1995.

23. G.D. Plotkin, C. Stirling, and M. Tofte, editors. Proof, Language, and Interaction,
Essays in Honour of Robin Milner. The MIT Press, 2000.

24. G. Polya. How to Solve It. Princeton University Press, 1971.
25. L.J. Lafleur (trans.) R. Descartes. Discourse on Method and Meditations. New

York: The Liberal Arts Press, 1960.
26. J. Reason. Human Error. Cambridge University Press, 1990.
27. C. Szyperski. Component Software: Beyond Object-Oriented Programming.

Addison-Wesley Professional, 1997.

