A Formal Semantics for the
WS-BPEL Recovery Framework
The mw-Calculus Way

Nicola Dragoni! and Manuel Mazzara?
! DTU Informatics, Technical University of Denmark, Denmark
ndra@imm.dtu.dk
2 School of Computing Science, Newcastle University, UK
manuel .mazzaraOnewcastle.ac.uk

Abstract. While current studies on Web services composition are mostly
focused — from the technical viewpoint — on standards and protocols,
this work investigates the adoption of formal methods for dependable
composition. The Web Services Business Process Execution Language
(WS-BPEL) — an OASIS standard widely adopted both in academic
and industrial environments — is considered as a touchstone for concrete
composition languages and an analysis of its ambiguous Recovery Frame-
work specification is offered. In order to show the use of formal methods,
a precise and unambiguous description of its (simplified) mechanisms is
provided by means of a conservative extension of the m-calculus. This
has to be intended as a well known case study providing methodological
arguments for the adoption of formal methods in software specification.
The aspect of verification is not the main topic of the paper but some
hints are given.

1 Introduction

Service Oriented Architectures and the related paradigm are modern attempts
to cope with old problems connected to Business-to-Business (B2B) and infor-
mation interchange. Many implementations of this paradigm are possible and
the so called Web services look to be the most prominent, mainly because the
underlying architecture is already there; it is simply the web which has been
extensively used in the last 15 years and where we can easily exploit HT'TP [21],
XML [5], SOAP [8] and WSDL [3]. The World Wide Web provides a basic plat-
form for the interconnection on a point-to-point basis of different companies and
customers but one of the B2B complications is the management of causal inter-
actions between different services and the way in which the messages between
them need to be handled (e.g., not always in a sequential way). This area of
investigation is called composition, i.e., the way to build complex services out of
simpler ones [4]. These days, the need for workflow technology is becoming quite
evident and the positive aspect is that we had investigated this technology for
decades and we also have excellent modeling tools providing verification features
that are grounded in the very active field of concurrency theory research.

1.1 BPEL and its Ambiguous Specification

Several organizations worked on composition proposals. The most important in
the past have been IBM’s WSFL [1] and Microsoft’s XLANG [2]. These two
have then converged into Web Services Business Process Execution Language
[18] (BPEL for short) which is presently an OASIS standard and, given its wide
adoption, it will be used as a touchstone for composition languages in this paper.
BPEL allows workflow-based composition of services. In the committee members’
words the aim is “enabling users to describe business process activities as Web
services and define how they can be connected to accomplish specific tasks”. The
problem with BPEL was that the earlier versions of the language were not very
clear, the specification was huge and many points confusing, especially in relation
to the Recovery Framework (RF) and the interactions between different mech-
anisms (fault handlers and compensation handlers). BPEL indeed represents a
business tradeoff where not necessarily all the single technical choices have been
made considering all the available options. Although in the final version of the
specification (which is lighter and cleaner) fault handling during compensation
has been simplified, we strongly believe that the sophisticated mechanism of
recovery still needs a clarification.

1.2 Contribution of the Paper

In this paper we aim at reducing this ambiguity providing an easily readable
formal semantics of the BPEL Recovery Framework (BPEL RF for short). This
goal requires at least two different contributions:

1. a formal semantics of the framework, focusing on its essential mechanisms
2. an easily readable specification of these mechanisms

<

We provide both contributions following a “m-calculus way”, that is using
the m-calculus as formal specification language. It is worth noting that here
the actual challenge is to provide not only a formal semantics for the BPEL
RF but also an easily readable specification. Indeed, other attempts might be
found in literature providing the first contribution only. For instance, in [12]
such encoding has been proposed by one of the authors. However, one of the
unsatisfactory aspects about that encoding is that it is hardly readable and
complex. The actual challenge here is to reduce such complexity while keeping
a formal and rigorous approach. As a result, in this paper we contribute with
a better understanding of how the BPEL RF works. Moreover, the case study
allows us to show the real power of the webmy, calculus (i.e., the m-calculus
based formal language exploited for the mentioned encoding) not only in terms
of simplicity of the resulting BPEL specification, but also sketching how webm,
can contribute to the implementation of real orchestration engines.

Finally, we would like to stress that different formal models might be chosen
for this goal. As discussed in the next section, our choice is primarily motivated
by the “foundational feature” of the m-calculus, namely mobility, i.e. the possi-
bility of transmitting channel names that will be, in turn, used by any receiving

process. It is worth noting that in the specific contribution of this paper this fea-
ture is not really exploited or totally necessary since the modeled mechanisms
requested us to pay more attention to process synchronization and concurrency
than to full mobility. Anyway, in the general case, we have the strong opinion
that mobility is an essential feature that composition languages should exhibit
[13]. This aspect will be better discussed in section 2.

Outline. The paper is organized as follows. Section 2 will discuss the rationale
behind our “m-calculus way” choice, briefly motivating why the m-calculus could
be considered a formal foundation for dependable Web services composition.
Section 3 will present webm,, discussing its syntax and semantics. Sections 4 and
5 will contribute with a clarification of the BPEL RF semantics. In particular,
Section 4 will show how it appears in the original (ambiguous) specification, and
Section 5 will propose the actual simplification and formal specification. Section
6 will add some conclusive remarks.

2 The w-Calculus Way for Dependable Composition

The need for formal foundation has been discussed widely in the last years,
although many attempts to use formal methods in this setting have been spec-
ulative. Some communities, for example, criticized the process algebra options
[19] promoting the Petri nets choice. The question here is whether we need a
formal foundation and, if that is the case, which kind of formalism we need.
While sequential computation has well established foundations in the A-calculus
and Turing machines, when it comes to concurrency things are far from being
settled. The w-calculus ([16] and [17]) emerged during the Eighties as a theory
of mobile systems providing a conceptual framework for expressing them and
reasoning about their behavior. It introduces mobility generalizing the channel-
based communication of CCS by allowing channels to be passed as data through
rendezvous over other channels. In other words, it is a model for prescribing
(specification) and describing (analysis) concurrent systems consisting of agents
which mutually interact and in which the communication structure can dynam-
ically evolve during the execution of processes. Here, a communication topology
is intended as the linkage between processes which indicates who can communi-
cate with whom. Thus, changing the communication links means, for a process,
moving inside this abstract space of linked entities.

A symmetry between A-calculus and m-calculus could be suggested and the
option to build concurrent languages (and so workflow languages as well) on a
formal basis could actually make sense. It has indeed been investigated in many
works, even in the BPEL context. But, while formal methods are expected to
bring mathematical precision to the development of computer systems (provid-
ing precise notations for specification and verification), so far BPEL — despite
having been subject of a number of formalizations (for example [10], [7] and [22])
— has not yet been proved to be built on an exact and specific mathematical
model, including process algebras (this argument has been carefully developed

in [13]). Thus, we do not have any conceptual and software tools for analysis,
reasoning and software verification. If we are not able to provide this kind of
tools, any hype about mathematical rigor becomes pointless.

It is also worth noting that, although many papers use the term m-calculus
and process algebra interchangeably, there is a difference between them. Algebra
is a mathematical structure with a set of values and a set of operations on the
values. These operations enjoy algebraic properties such as commutativity, asso-
ciativity, idempotency, and distributivity. In a typical process algebra, processes
are values and parallel composition is defined to be a commutative and asso-
ciative operation on processes. The m-calculus is an algebra but it differs from
previous models for concurrency precisely for the fact that it includes a notion of
mobility, i.e. the possibility of transmitting channel names that will be, in turn,
used by receiving processes. This allows a sort of dynamic reconfiguration with
the possibility of creating (and deleting) processes through the alteration of the
process topology (although it can be argued that, even if the link to a process
disappears, the process itself disappears only from “an external point of view”).

The w-calculus looks interesting because of its treatment of component bind-
ings as first class objects, which enables this dynamic reconfiguration to be
expressed simply. So, the question now is: do we need this additional feature of
the m-calculus or should we restrict our choice to models, like CCS, without this
notion of mobility? Why all this hype over the m-calculus and such a rare focus
on its crucial characteristic? We have the strong opinion that mobility is an es-
sential feature that composition languages should exhibit. Indeed, while in some
scenarios services can be selected already at design-time, in others some services
might only be selected at runtime and this selection has then to be propagated
to different parties. This phenomenon is called link passing mobility and it is
properly approached in [6].

It is worth noting that in the specific contribution of this paper this feature is
not really exploited or totally necessary since the modeled mechanisms requested
we pay more attention to process synchronization and concurrency than to full
mobility. This aspect has been instead essential in the full formalization of BPEL.
In [13] it has been shown how it plays an important role in the encoding of
interactions of the kind request-response. Indeed, in that case the invoker must
send a channel name to be used then to return the response. This is a typical
case of the so called output capability of the m-calculus, i.e. a received name is
used as the subject of outputs only. The full input capability of the w-calculus
— i.e. when a received name is used also as the subjects of inputs — has been
not exploited in the BPEL encoding (and neither it is in this work). Indeed in
[13] a specific well-formedness constraint imposes that “received names cannot be
used as subjects of inputs or of replicated inputs”. Thus, at the present moment
we remain agnostic regarding the need of the m-calculus input capability in the
description of BPEL mechanism. We realize that this admission could be an
argument for discussing again the choice of the original model.

2.1 Ouwur Approach

WS-standards for dependability only concerns SOAP when employed as an XML
messaging protocol (e.g. OASIS WS-Reliability and WS-Security), i.e., at the
message level. However, things are more complicated than this since loosely cou-
pled components like Web services, being autonomous in their decisions, may
refuse requests or suspend their functionality without notice, thus making their
behavior unreliable to other activities. Henceforth, most of the web languages
also include the notion of loosely coupled transaction — called web transaction
[11] in the following — as a unit of work involving loosely coupled activities that
may last long periods of time. These transactions, being orthogonal to admin-
istrative domains, have the typical atomicity and isolation properties relaxed,
and instead of assuming a perfect roll-back in case of failure, support the ex-
plicit programming of compensation activities. Web transactions usually contain
the description of three processes: body, failure handler, and compensation. The
failure handler is responsible for reacting to events that occur during the execu-
tion of the body; when these events occur, the body is blocked and the failure
handler is activated. The compensation, on the contrary, is installed when the
body commits; it remains available for outer transactions to require some undo
of previously performed actions. BPEL also uses this approach.

Our approach to recovery is instead described in [13], where it has been
shown that different mechanisms for error handling are not necessary and the
BPEL semantics has been presented in terms of webm,,, which is based on the
idea of event notification as the unique error handling mechanism. This result
allows us to extend any semantic considerations about webm,, to BPEL. webm
(originally in [14]) has been introduced to investigate how process algebras can
be used as a foundation in this context. It is a simple and conservative extension
of the m-calculus where the original algebra is augmented with an operator for
asynchronous events raising and catching in order to enable the programming
of widely accepted error handling techniques (such as long running transactions
and compensations) with reasonable simplicity. We addressed the problem of
composing services starting directly from the w-calculus and considering this
proposal as a foundational model for composition simply to verify statements
regarding any mathematical foundations of composition languages and not to
say that the m-calculus is more suitable than other models (such as Petri nets)
for these purposes. The calculus is presented in detail in section 3 while in section
4 and 5 it is showed how it can be useful to clarify the BPEL RF semantics.

3 The Composition Calculus

In this section we present a proposal to cope with the issues presented in section
2. Although webm,, is ambitious, for sure we do not pretend to solve all the
problems and to give the ultimate answer to all the questions. Giving all the
details about the language and its theory is beyond the scope of this paper
which is giving a brief account about how webm,, can be considered in the

overall scenario of formal methods for dependable Web services. You can find all
the relevant details in some previous work, especially in [12], [13] and [15].

3.1 Syntax
The syntax of webm,, processes relies on countable sets of names, ranged over
by x,y, z,u,---. Tuples of names are written u. We intend ¢ € I with I a finite
non-empty set of indexes.
P =
0 (nil)

| Zu (output)

| > icrwi(u;). Py (alternative composition)

| (x)P (restriction)

| P|P (parallel composition)

| lz(w).P (guarded replication)

[{P; P), (workunit)

A process can be the inert process 0, an output T u sent on a name x that car-
ries a tuple of names u, an alternative composition consisting of input guarded

processes that consumes a message T; w; and behaves like Pz{wZ/ ﬁi}7 a restric-
tion (z) P that behaves as P except that inputs and messages on x are prohibited,
a parallel composition of processes, a replicated input !z(w).P that consumes a
message Tw and behaves like P{@/ﬂ} |!z(u).P, or a workunit (P ; Q), that
behaves as the body P until an abort Z is received and then behaves as the event
handler Q.

Names z in outputs, inputs, and replicated inputs are called subjects of
outputs, inputs, and replicated inputs, respectively. It is worth to notice that
the syntax of webm,, processes simply augments the asynchronous w-calculus
with workunit process. The input z(u).P, restriction (z)P and replicated input
lz(w).P are binders of names u, = and u respectively. The scope of these binders
is the process P. We use the standard notions of a-equivalence, free and bound
names of processes, noted fu(P), bn(P) respectively.

3.2 Semantics

We give the semantics for the language in two steps, following the approach of
Milner [17], separating the laws that govern the static relations between processes
from the laws that rule their interactions. The first step is defining a static
structural congruence relation over syntactic processes. A structural congruence
relation for processes equates all agents we do not want to distinguish. It is
introduced as a small collection of axioms that allow minor manipulation on the
processes’ structure. This relation is intended to express some intrinsic meanings
of the operators, for example the fact that parallel is commutative. The second
step is defining the way in which processes evolve dynamically by means of an
operational semantics. This way we simplify the statement of the semantics just
closing with respect to =, i.e., closing under process order manipulation induced
by structural congruence.

Definition 1. The structural congruence = is the least congruence satisfying
the Abelian Monoid laws for parallel and summation (associativity, commuta-
tivity and 0 as identity) closed with respect to a-renaming and the following
azrioms:

1. Scope laws:

(w)0 = 0» (u) ()P = (v)(u) P,
Plw)@= (u)(P|Q), ifu¢n(P)
()P Q) =(UP; Q),, if 2z ¢{x}UM(Q)

2. Workunit laws:

(0;Q), =
{P; Q) IR; R),=(P; Q),[(R; R'),

3. Floating law:
(za|P; Q), =zul{P; Q),

The scope laws are standard while novelties regard workunit and floating
laws. The law (0 ; Q), = 0 defines committed workunit, namely workunit with
0 as body. These ones, being committed, are equivalent to 0 and, therefore, can-
not fail anymore. The law ((P; Q),|R; R'), = (P ; Q),[{R; R'), moves
workunit outside parents, thus flattening the nesting. Notwithstanding this flat-
tening, parent workunits may still affect the children ones by means of names.
The law (Zu| P ; Q), =Zu| (P ; Q), floats messages outside workunit bound-
aries. By this law, messages are particles that independently move towards their
inputs. The intended semantics is the following: if a process emits a message,
this message traverses the surrounding workunit boundaries until it reaches the
corresponding input. In case an outer workunit fails, recoveries for this message
may be detailed inside the handler processes.

The dynamic behavior of processes is defined by the reduction relation where
we use the shortcut:

(P; Q)= (2){P; Q), where z ¢ fn(P) U fn(Q)

Definition 2. The reduction relation — is the least relation satisfying the fol-
lowing axioms and rules, and closed with respect to =, (x)-, - |-, and { _; Q) ,:

(com)

70| ieswili@) P — P{Pa)

(REP)

70| lz(@).P — P{ﬂ/a} | le(@).P
(FAIL)

T | 4 Hie] ZsesmiS(@)~PiS| HjeJ!xj(Jj)-Pj ; sz - QQ ; 0)
where OV I #£0,S#0

Rules (com) and (REP) are standard in process calculi and models input-
output interaction and lazy replication. Rule (rair) models workunit failures:
when a unit abort (a message on a unit name) is emitted, the corresponding

body is terminated and the handler activated. On the contrary, aborts are not
possible if the transaction is already terminated (namely every thread in the body
has completed its own work), for this reason we close the workunit restricting
its name.

Interested readers may find all the definitions and proofs with an extensive ex-
planation for the extensional semantics, the notions of barb, process contexts and
barbed bisimulation in [13]. Definitions for Labelled Semantics, asynchronous
bisimulation, labelled bisimilarity and the proof that it is a congruence are also
present. Finally, results relating barbed bisimulation and asynchronous labeled
bisimulation as well as many examples are discussed. A core BPEL is encoded
in web7mo, and a few properties connected to this encoding are proved for it.

4 A Case Study: the BPEL RF

One of the unsatisfactory things about the encoding of the BPEL RF we pre-
sented in [12] is that it was hardly readable for humans. The goal was to capture
in that encoding all the hidden details of the BPEL semantics and working out
the full theory also for verification purpose. But surely we lost something in
readability since the target for that encoding were not humans but machines.
Many people who approached our work justified their problems in understanding
the encoding claiming that was exactly the proof of the BPEL recovery frame-
work complexity. This is definitely true but, in order to be really useful, that
work needs to be understandable also to non-specialists (and humans in gen-
eral). With the goal of better understanding how the BPEL RF works, in this
section we analyze a case study where webm,, shows its power. We will firstly
report the description of the mechanisms following the original BPEL specifica-
tion, then we will consider a simplification of the actual mechanisms giving a
simplified semantics and a simplified explanation. In this way some details will
be lost but we will improve readability. The first simplification is considering
only the case in which a single handler exists for each of the three different type
(fault, compensation and event). Furthermore, we do not consider interdepen-
dencies between the mechanisms: default handlers with automatic compensation
of inner scope. This study is an integration of what done before in [12] and [15].
The semantics provided is not the one implemented by the engines supporting
BPEL, we have already given a formalization for the Oracle BPEL Manager in
[13]. While in [12] you can find a complete description, here we want to focus
only on the essence of the single mechanisms to understand at which stage of
the execution they play their role and in which way.

4.1 Details from the BPEL Specification

Instead of assuming a perfect roll-back in case of failure, BPEL supports in
its RF the notion of the so-called loosely coupled transactions and the explicit
programming of compensation activities. This kind of transactions lasts long
periods (atomicity needs to be relaxed wrt ACIDity), crosses administrative

domains (isolation needs to be relaxed) and possibly fails because of services
unavailability etc... They usually contain the description of three processes:

— body
— fault handler
— compensation handler

BPEL also adds the possibility to have a third kind of handler called the event
handler. The whole set of activities is included in a construct called scope in-
troduced as follows in the specification:

“A scope provides the context which influences the ezecution behavior of
its enclosed activities. This behavioral context includes variables, partner
links, message exchanges, correlation sets, event handlers, fault handlers,
a compensation handler, and a termination handler [...]

Each scope has a required primary activity that defines its normal be-
havior. The primary activity can be a complex structured activity, with
many nested activities to arbitrary depth. All other syntactic constructs
of a scope activity are optional, and some of them have default se-
mantics. The context provided by a scope is shared by all its nested
activities.”

In the following we report the way in which the concepts of the Recovery
Framework and the need for it are motivated in [18].

Compensation Handler

“Business processes are often of long duration. They can manipulate
business data in back-end databases and line-of-business applications.
Error handling in this environment is both difficult and business critical.
The use of ACID transactions is usually limited to local updates because
of trust issues and because locks and isolation cannot be maintained for
the long periods during which fault conditions and technical and business
errors can occur in a business process instance. As a result, the overall
business transaction can fail or be cancelled after many ACID transac-
tions have been committed. The partial work done must be undone as
best as possible. Error handling in BPEL processes therefore leverages
the concept of compensation, that is, application-specific activities that
attempt to reverse the effects of a previous activity that was carried out
as part of a larger unit of work that is being abandoned. There is a his-
tory of work in this area regarding the use of Sagas and open nested
transactions. BPEL provides a variant of such a compensation mecha-
nism by providing the ability for flexible control of the reversal. BPEL
achieves this by providing the ability to define fault handling and com-
pensation in an application-specific manner, in support of Long-Running
Transactions (LRT’s) [...] BPEL allows scopes to delineate that part of
the behavior that is meant to be reversible in an application-defined way

by specifying a compensation handler. Scopes with compensation and
fault handlers can be nested without constraint to arbitrary depth.][...]
A compensation handler can be invoked by using the compensateScope
or compensate (together referred to as the “compensation activities”). A
compensation handler for a scope MUST be made available for invocation
only when the scope completes successfully. Any attempt to compensate a
scope, for which the compensation handler either has not been installed
or has been installed and executed, MUST be treated as executing an
empty activity. [...]”

Fault Handler

“Fault handling in a business process can be thought of as a mode switch
from the normal processing in a scope. Fault handling in BPEL is de-
signed to be treated as “reverse work” in that its aim is to undo the
partial and unsuccessful work of a scope in which a fault has occurred.
The completion of the activity of a fault handler, even when it does not
rethrow the handled fault, is not considered successful completion of the
attached scope. Compensation is not enabled for a scope that has had an
associated fault handler invoked.

Explicit fault handlers, if used, attached to a scope provide a way to
define a set of custom fault-handling activities, defined by catch and
catchAll constructs. Each catch construct is defined to intercept a specific
kind of fault, defined by a fault QName. An optional variable can be
provided to hold the data associated with the fault. If the fault name is
missing, then the catch will intercept all faults with the same type of fault
data. The fault variable is specified using the faultVariable attribute in a
catch fault handler. The variable is deemed to be implicitly declared by
virtue of being used as the value of this attribute and is local to the fault
handler. It is not visible or usable outside the fault handler in which it is
declared. A catchAll clause can be added to catch any fault not caught
by a more specific fault handler.”

Event Handler

“Each scope, including the process scope, can have a set of event han-
dlers. These event handlers can run concurrently and are invoked when
the corresponding event occurs [...] There are two types of events. First,
events can be inbound messages that correspond to a WSDL operation.
Second, events can be alarms, that go off after user-set times.”

5 Formal Semantics of a (Simplified) BPEL RF

The plain text description of these mechanisms taken from the specification
should give an idea of the complexity of this framework. The main difficulty we

10

have found at the beginning of this investigation was to really clarify the basic
difference between failure and compensation handlers, since many words have
been spent on this but the true essence of these mechanisms has never been
given in a concise and simple way. In the past we also promoted a complete
explanation of the mechanisms focusing on inessential minor details. Here we
want to give the basic idea explaining that failure and compensation handlers
differ mainly because they play their role at different stages of computation:
failure handler is responsible for reacting to signals that occur during the normal
execution of the body; when these occur, the body is interrupted and the failure
handler is activated. On the contrary, compensation handler is installed only
when the body successfully terminates. It remains available if another activity
requires some undo of the committed activity. In some sense failures regard
“living” (not terminated) processes while compensation is only for “successfully
terminated process”. The key point regarding event handlers is instead bound to
the sentence reported above: they are invoked concurrently to the body of a scope
that meanwhile continues running. This is very different from what happens for
failures that interrupt the main execution and compensations which run only
after the completion of the relative body.

The difficulty of the encoding we gave in [12] stands in the not trivial interac-
tions between the different mechanisms and it is due to the sophisticated implicit
mechanism of recovery activated when designer-defined fault or compensation
handlers are absent. Indeed, in this case BPEL provides backward compensation
of nested activities on a causal dependency basis relying on two rules:

— control dependency: links and sequence define causality
— peer-scope dependency: the basic control dependency causality is reflected
over peer scopes

These two rules resemble some kind of structural inductive definition as it is
usually done in process algebra. It is exactly our goal to skip these details here
and to clarify the semantics.

5.1 Syntax

Let (A; H)s be a scope named s where A is the main activity (body) and H a
handler. Both A and H have to be intended as BPEL activities coming from a
subset of the ones defined in [12]. Practically, that work was limited to basic
activities, structured activities and error handling. The idea now is to represent
a simplified BPEL scope called s having a single handler H, so we are providing a
semantics for the error handling mechanisms alternative to the previous one. For
the sake of simplicity, we start considering a single handler at a time. Afterward
we will consider the full scope construct. In the following subsection the formal
semantics derived from webm,, will be presented, here we just define the syntax
giving an informal explanation.

Definition 3 (Compensation Handler). We define the compensation han-
dler as follows:
(4; COMP s — C)4

11

If s is invoked after the successful termination of A, then run the allocated com-
pensation C.

Definition 4 (Fault Handler). We define the fault handler as follows:
(4; FAULT f — F),

If f is invoked in A, then abort immediately the body A and run F.

Definition 5 (Event Handler). We define the event handler as follows:
(4; EVENT ¢ — E),

If e is invoked in A then run E in parallel while the body A continues running still
listening for another event e.

5.2 Semantics

The formal semantics of the three mechanisms is defined here in terms of webm.
These constructs are encoded in webm,, which has a formal semantics, as a
consequence the semantic of the constructs themselves is given. The continuation
passing style technique is used like in [12]. Briefly, [A], means that the encoding
of the BPEL activity A completes with a message sent over the channel y. More
details can be found also in [13]. In that work the function [A]) ApprL —
Process has been used to map BPEL activities into webms, processes flagging
out y to signal termination.

5.3 Compensation Handler

Definition 6 (Compensation Handler). The semantics of the single Com-
pensation Handler scope is defined in terms of webmws, as follows:

(4; comP s — ©)s = (y)(y")({[AD, 5 50.[CT,),)

The reader will realize that there are two new names y and y’ defined at the
outer level. This means that all the interactions related to this name are local
to this process, i.e., interferences from the outside are not allowed (they are
restricted names). Then you have a workunit containing the main process and
the compensation handler. Both these processes are, in turn, contained by the
double brackets, which means that their encodings need to be put here. As you
can see the compensation is blocked until a message on s (the name of the
scope) is received and C' will be available only after the successful termination
of A signaled on the local channel y. This expresses exactly the fact that the
compensation is available only after the successful termination of the body as
required in the BPEL specification. The reason for which C' is activated after the
termination of A stands in the webm, rule (raiL) which activates the workunit
handler s().[C,, when the signal y (the workunit name) is received. This name
is precisely sent by A when it terminates (because of the continuation passing
style encoding).

12

5.4 Fault Handler

Definition 7 (Fault Handler). The semantics of the single Fault Handler
scope is defined in terms of webms, as follows:

(4; FAULT | — F)s = ()W) UTAD, 5 [F],),)

The fault handler has a semantic very close to the webm,, workunit. For this
reason the encoding here is basically an isomorphism. The handler is triggered
when receiving the signal f which interrupts the normal execution of the body.
Since the activation of the fault handler is internal to the scope itself the scope
name is not relevant in the right hand side.

5.5 Event Handler

Definition 8 (Event Handler). The semantics of the single Fvent Handler
scope is defined in terms of webms, as follows:

(4 EVENT ¢ — E)s = (e)(y)(y'){[A], ; 0D, |'e().[ET,,)

The event handler is interesting. The main point here is that the body execution
is not interrupted when e is received. Consider indeed that FE is outside the
workunit and it is triggered only by e. The handler, receiving e and activating
E, will run in parallel with A without interrupting it. It is worth noting also that
the presence of the replication allows e to be received many times during the
execution of A, each time running a new handler. The event handler will stay
active without any risk of being stopped by other scopes since all the names
inside the handler are local to E (bound names) due to the way in which BPEL
activities are encoded by the function [A],.

5.6 BPEL Scope

Now that we have understood each mechanism let us put all together. We define
a scope construct including all the three handlers. Again, we consider single
handlers of each type with no interactions, no default handler and no automatic
compensation of inner scopes.

Definition 9 (Full Scope Construct). The semantics of the full scope con-
struct is defined in terms of webms as follows:

def

(A; FAULT f — F,EVENT ¢ — E;COMP s — C); =
@))"UTAL, 5 TF],),
[eO-IED, [{(@)z() 5 s0)- HIC]]]ymDy)

It is worth noting that here the name s is a free global name (undefined)
available to all the scopes which possibly run in parallel. The technical problem
is that, in this way, the encoding is not compositional. Actually, this problem

13

is easily fixed when the encoding is extended to the complete set of BPEL con-
structs, including the top level process where all the scopes are defined since
there you can restrict all the names of the inner scopes. This has been done
previously in [12]. The purpose of this work is just to explain in a clearer way
the differences between the mechanisms of the recovery framework without pre-
senting again the whole encoding. A synergy between this result and what we
have done in [12] is left as future work.

5.7 Example

Let us now show an example of how this mechanism works in practice. To do
this we will run a process description on the “reduction semantics machine”
of webm,. This example serves as a clarification for all the concepts presented
in this paper, especially for those readers who are not very familiar with the
mathematical tools exploited in our investigation. Let us consider the following
process where, for simplicity, the body and the handlers are already presented
in terms of webm:

((2)(f | 2().0); FAULT f — warning;EVENT e — 0;COMP ¢ — 0);

Looking at the previous encoding it results in the following full webm,, process:

@ WW)W)W"){(2)(F120.0)17 5 warning |y'),
[e0-y" [{(@)z() 5 sO0-y"" D)

where warning is some global channel handling the actual warning (for example
displaying a message on the screen). This is a specific instance of the Full Scope
Construct as defined above where event and compensation handlers are empty
while the fault handler sends an empty message on the warning channel. The
process z().0 expresses the fact that we want the process to fail without allo-
cating the compensation handler and it has to be the standard encoding when
raising a failure signal to indicate that there is no successful termination. Now,
applying the (Fair) rules we have:

<

~

(@)W @) Y") ") ((warning |y ; 0)

[e()-y” [{(2)2() 5 s0-y"),)

which will lead to a warning on the appropriate channel without activating the
compensation (which would need a message on y) since the scope did not suc-
cessfully complete. The event handler never activates in this scenario.

<

<

5.8 Is It Really Simpler?

The intention of this work is to demonstrate, in real life scenarios, the added
value of formal methods. We believe that what has been introduced so far can
been really useful in the clarification of the BPEL RF semantic. Just to stress

14

better this point, let us recall only the complete Event Handler compilation
presented in [12]:

EH(Se,yen) = (¥)({ex | ® € he(Se)})
eneh()-(qn(x,a,A)ese Va(a) st s Yen)i,
| H(m,ﬂ,AI)GSE ! ex(ﬂ)-HIAm]]]w

7|

while the new one is:

(A;EVENT e — E), = (e)()(y)({[A], ; 0D, |'e().[ET,,)

For the proper background please refer to [13] where you can find a detailed ex-
planation of the encodings and all the theory. Here the idea is just to give a flavor
of how this work contributes (in terms of simplification) to the improvement of
the BPEL specification.

5.9 Design of BPEL Orchestration Engines

Although this paper has to be intended as investigating a well known case study
and providing methodological arguments for the adoption of formal methods in
software specification, the aspect of verification is not alien to our work and here
we intend to give some hints in this regard. The most common formalization
of behavioral equivalence is through barbed congruence, which guarantees that
equated processes are indistinguishable by external observers, even when put in
arbitrary contexts. For instance, equivalent Web services remain indistinguish-
able also when composed to form complex business transactions. The barbed
congruence in this scenario has been presented in [15]. Here, as a further con-
tribution, we want to show that, despite its simplicity, there are many ways in
which BPEL can benefit from this work exploiting this idea of behavioral equiv-
alence. For example, our proposal can contribute to the implementation of real
orchestration engines. The application example comes from one of the theorems
proved in [13]:

{'2(w)-PQ; 0], ~a (W)({!2(u).P;), [{(QI (w)w(u) ; T),)

where the symbol =, has to be intended as barbed congruence, i.e. the process
on its left and the one on its right exhibit the same behavior. It is worth noting
that the process (w)w(u) is necessary to prevent v from disappearing in the case
the workunit on the right would terminate succesfully. This theorem suggests a
transformation where it is always possible to separate the body and the recovery
logics of the workunit expressing, for example, the event handler behavior. This
is possible not only when the recovery logic is a simple output (as in this case)
but in all the other cases, on the basis of another theorem showed in the same
work:

(P Q) =0 (@)UP; 2), [{2"().Q; 0O))
Now we have the design option to compile the mechanism in an alternative way

allowing a logical separation of code which can lead to an actual physical sepa-
ration. For example, different workunits could be loaded on different machines.

15

Although BPEL typically allows a centralized control and a local compilation,
this result gives us further insights in the direction of distribution. Consider, for
example, the case in which different scopes can share instances of the same han-
dler loaded on a specific dedicated machine. This result can also be interpreted
in a choreographic perspective.

6 Summary, related works and criticisms

The goal of this paper was showing how a variant of the m-calculus can be of
some use in the context of dependable Web services composition. The specific
case study presented aimed at reducing the ambiguity of the BPEL RF provid-
ing a (simplified) formal semantics opposed to the complete one already given in
[12]. This is what we have called the “m-calculus way”, i.e., using the 7-calculus
as formal specification language. As we have already underlined, several different
formal notations might have been chosen for this purpose. Our choice depended
on the “foundational feature” of mobility. It has been noted that in the specific
contribution the mobility feature has not been fully exploited since the modeled
mechanisms required us to pay more attention to process synchronization and
concurrency than to full mobility. Anyway, we have realized that, in the general
case, mobility is an essential feature of composition languages and this point is
discussed more in detail in [13].

Although before this work [15] and [12] have been earlier attempts at defin-
ing a formal semantics for WS-BPEL and unifying and simplifying its recovery
mechanisms, those papers are far from being complete and from providing the ul-
timate BPEL formal semantics. Many other works have been presented recently
that significantly improved what has been done there. For example, Blite [10] is
a “lightweight BPEL” with formal semantics taking into account also dynamic
aspects (e.g. dynamic compensations) that have not been directly part of our
investigation. Another relevant work adding dynamic compensation features is
[20]. In this paper the interested reader can find a comparison between differ-
ent compensation mechanisms presented in the recent literature. The criticism
in this work is that in webm,, completed transactions cannot be compensated.
This is of course true but, as shown in this paper, this aspect can be easily
modeled (look for example at the encoding of the BPEL compensation han-
dler). The basic idea behind webm,, is indeed to provide a unifying theory for
Web services composition as discussed in [15] where different mechanisms can
be easily mapped without being directly supported. A good analysis of fault,
compensation and termination (FCT) in WS-BPEL is also discussed in [7]. Here
the BPEL approach to FCT with related formal semantics is given, thus cover-
ing termination handler that has not been part of our work. Furthermore, the
authors in [22] recognize that in [12] the lack of support for control links has
to be seen as a major drawback. And this is a criticism that we do not hide
and we find relevant. The same paper proposes an alternative formalization of
WS-BPEL 2.0 based on the 7-calculus and then compares different approaches

16

(including the one in [12]) from the complexity point of view for verification
purposes. The authors found out that their approach presents a smaller number
of states deriving from the neglect of internal activity states. Indeed, while the
encoding in [12] requires every activity to signal (at least) its termination (due
to the continuation passing style technique used), in [22] the activity lifecycle is
not modeled. Apart from the criticisms presented in the recent literature (the
list included here is not exhaustive anyway), other interesting questions have
been asked regarding this approach to the BPEL RF, for example if we intend
to capture fault tolerance behavior depending on external factors, for example
timeout. This topic indeed has not been central to our investigation. Other au-
thors worked on these aspects, in particular [9] discusses timed transactions.

Although we know that much needs to be done yet, we are confident that
the issues we have identified are worth investigating. We have to admit that
sometimes we have doubts regarding what we are doing and the solution we
are adopting, so we usually look for some reassurance in the famous words of
Descartes: “Dubium Sapientiae initium”, i.e. “Doubt is the origin of wisdom”.

Acknowledgments. The paper has been improved during the useful conver-
sations with Cliff Jones, Alexander Romanovsky and Ani Bhattacharyya. For
some of the ideas discussed here we also have to thank Cosimo Laneve, Roberto
Lucchi, Claudio Guidi and Gianluigi Zavattaro. This work has been partially
funded by the EU FP7 DEPLOY Project (Industrial deployment of system en-
gineering methods providing high dependability and productivity). More details
at http://www.deploy-project.eu/.

References

1. Web services flow language (wsfl 1.0). www.ebpml.org/wsfl.htm.

2. Xlang: Web services for business process design.
http://www.ebpml.org/xlang.htm.

3. R. Chinnici, J.J. Moreau, A. Ryman, and S. Weerawarana. Web ser-
vices description language (wsdl 1.1), W3C Recommendation 26 June 2007.
http://wuw.w3.org/TR/wsd120/.

4. P. Chris. Web services orchestration and choreography. Computer, 36(10):46-52,
2003.

5. World Wide Web Consortium. Extensible markup language (xml) 1.0. W3C Rec-
ommendation: http://www.w3.org/XML/.

6. G. Decker, F. Leymann, and M. Weske. Bpeldchor: Extending bpel for modeling
choreographies. In Proceedings International Conference on Web Services (ICWS),
2007.

7. Christian Eisentraut and David Spieler. Fault, compensation and termination in
ws-bpel 2.0 — a comparative analysis. pages 107-126, 2009.

8. M. Gudgin, M. Hadley, N. Mendelsohn, J.J Moreau, H.F. Nielsen, A. Karmarkar,
and Y. Lafon. Simple object access protocol (soap) 1.1, W3C Recommendation 27
April 2007. http://www.w3.org/TR/soapl2-partl/.

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Cosimo Laneve and Gianluigi Zavattaro. Foundations of web transactions. pages
282-298. Springer, 2005.

A. Lapadula, R. Pugliese, and F. Tiezzi. A formal account of WS-BPEL. In Proc.
10th international conference on Coordination Models and Languages (COORDI-
NATION’08), volume 5052 of Lecture Notes in Computer Science, pages 199-215.
Springer, 2008.

M. Little. Web services transactions: Past, present and future.
www. jboss.org/jbosstm/resources/presentations/XML2003. pdf.

R. Lucchi and M. Mazzara. A pi-calculus based semantics for ws-bpel. Journal of
Logic and Algebraic Programming, 70(1):96-118, 2007.

M. Mazzara. Towards Abstractions for Web Services Composition. PhD thesis,
2006.

M. Mazzara and S. Govoni. A case study of web services orchestration. In COOR-
DINATION, pages 1-16, 2005.

M. Mazzara and I. Lanese. Towards a unifying theory for web services composition.
In WS-FM, pages 257-272, 2006.

R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1999.

Robin Milner. Functions as processes. Mathematical Structures in Computer Sci-
ence, 2(2):119-141, 1992.

OASIS Web Services Business Process Execution Language (WSBPEL)

TC. Web services business process execution language version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html.
W.M.P. van der Aalst. Pi calculus versus Petri nets: Let wus

eat humble pie rather than further inflate the Pi hype, 2004.
http://is.tm.tue.nl/research/patterns/download/pi-hype.pdf.

Catia Vaz, Carla Ferreira, and Anténio Ravara. Dynamic recovering of long running
transactions. pages 201-215, 2009.

W3C. Http - hypertext transfer protocol. www.w3.org/protocols.

Matthias Weidlich, Gero Decker, and Mathias Weske. Efficient analysis of bpel 2.0
processes using pi-calculus. In APSCC ’07: Proceedings of the The 2nd IEEE Asia-
Pacific Service Computing Conference, pages 266—274, Washington, DC, USA,
2007. IEEE Computer Society.

18

