Formal Methods in Industry: The State of
Practice of Formal Methods in South America
and Far East

Aryldo G Russo Jr.

AeS Group & Research Institute of State of Sao Paulo (IPT),
agrj@aes.com.br

Abstract. The use of formal methods has constantly increased, al-
though with basically two constraints: their use has been concentrated
mostly in Europe, their Mother land and they have been used only by
big companies which are in charge to develop some kind of safety critical
applications, what, in a first look seems correct. The aim of this paper is
to present the usage stage of formal methods in other parts of the world,
mainly South America, and Far East. A personal comparison of some
formal method tools, namely: Atelier B[I], RODIN[2], and SCADE[3]is
also presented. The comparison methodology is based on three different
points of view: capability, I mean, how these tools can satisfy project
constraints, usability, basically, what’s the difficulty the user faces when
trying to use the tool, and adequacy to the current development pro-
cess. This work describes also real applications in industry, sometimes
not the formal method usage itself, but how the formal method culture
can drasticaly helps on the development process. Finally, some of the
gaps in industry wishes that could be fulfilled by some applications are
sorted.

1 Introduction

The primary objective of this paper is to present the curent State of Practice
of Formal Methods in coutries outside Europe, namely, Brazil and Korea. In
this sense, I would like to present it as the utilization of formal methods in
general, and, moreover, not only the application of one method or another, but
how the principles that guide the formal methods usage can help in the software
development process.

But, before talking directly about the subject of this paper, I'd like to give
some background information about the reason I started to work with Formal
Methods, and my involvement in academia. Then, I will present a general sce-
nario of how these methods are being used nowadays in the places I meintioned
before. In the remaining of this paper, I will present some industrial areas where
we can find already some use of formal methods.

Finally, T will present a comparison of three tools, namely, AtelierB[I],
RODIN|2] and SCADE[3]. This comparison is based on three aspects, tool capa-
bility, usability and adaptation to the current development process. I will show

also, some real application of these tools, and the work that was performed to
change the way that industry was used to think about software development,
even in safety critical areas.

At the end, I will present some gaps that, from my personal point of view,
can be fulfilled with some new or in development phase, plugins and language
extensions.

1.1 The AeS Group

The AeS Group has developed railway sub-systems since 1998. Among the sys-
tems developed by the group, the door system became one of the most important
in the railway market due mainly to the architecture used (modular, and with
distributed processing) and, since this kind of system deals with human lives,
the strong concern of the group with reliability and safety.

During the development process, four versions of the main controller (called
CGP) were created and, at each iteration, additional safety features were incor-
porated, using different techniques, such as hardware redundancy where different
sources are employed to activate an output (for example, some safety outputs
have to be activated both from a software command and from an external solici-
tation). Safety and reliability studies were performed, and all identified potential
weak points that these studies revealed were mitigated to prevent, or at least
minimize, the hazard effects. In the current version of the equipment, even ap-
plying all these hardware techniques, safety issues remained to be fulfilled, as
well as the software(firmware) correctness, robustness and failure avoidance.

From that time, and after facing several pitfalls, AeS Group is becoming
more and more known as a company that has the needed know-how to develop
safety critical application, and, nowadays, it’s been in charge of several train-
ing sections around the world teaching software development process for safety
critical application based on a formal method mind.

Due to the advances in technology, many safety functions that were handled
by hardware are now responsibility of the embedded software. This fact triggered
motivation to use formal methods in standards relevant to software safety [4].
Some standards can be followed to increase the safety level of an equipment. One
of them is the TEC 61508 [5]. This standard presents four levels of safety, the
so called Safety Integrity Level - SIL, and above level 2, a formal specification
is required or suggested to achieve a certain level of completeness, robustness,
and safety, that grows as the level grows. The goal of using formal methods is
to produce an unambiguous and consistent specification which is as complete,
error-free and without contradictions as possible, however simple to verify.

To address the group concern with safety, the AeS group decided to identify a
formal method that would best fit the current CGP SIL 3-level requirements and
railway industry standard practices and standards (as is the case of CENELEC
EN 50128[d]).

With this in mind, and taking into account restrictions such as, mainly, the
size of the company (only 15 employees) and the lack of deep knowledge of the
method itself, the AeS group decided, first, to study and use the B method[7]

and, second, to look for assistance from academia, which was obtained from
two Brazilian Universities (Universidade de Sao Paulo and Universidade do Rio
Grande do Norte).

Nowadays, AeS Group has also the support of DEPLOY project and some
universities like University of Southampton, and University of York. Of course,
AeS Group is also supported by companies like ClearSy and Esterel.

1.2 Research Institute of State of Sdo Paulo (IPT)

With the base of previously performed studies, but with some reluctance, 1
decided to finally initiate a ”formal” dedication in the Formal Methods field,
and have chosen the Technological Research Institute of State of Sdo Paulo
(IPT) as my starting point. During the last years, some articles were developed
at IPT but the relationship with other research and academic centers was the
main incentive to study the application of these methods in real world systems.

Meanwhile, T joined the Software Requirements Specification Laboratory
(SoftREL). The main goal of SoftREL is to create, deploy and disseminate a
research environment for post-graduate IPT students and other researchers,
helping them to develop academic research and artifacts related to software
requirements engineering. The laboratory intends to develop academic and in-
dustrial partnerships aiming at the development of engineering techniques and
tools required to deliver more reliable computer systems.

1.3 General scenario

In order to picture out the differences in formal method application outside
Europe, I will give you some information about the current software engineering
process that is being applied at this moment in the process of safety-related
application development.

Basicaly, the software development process presented in the IEC 61508[5] is
well known in South American companies, but as the time to market is, normaly,
extremaly short, those recomendations are put aside, and the craft process is
followed. This process is basically the reception of the primary specification,
the coding phase is made relying on the personal expertise, and the tests are
performed as few as possible. It’s already a good scenario to use formal methods
and try to better the process without changing the manual tasks.

Talking about Far East, those process are barely known. As presented in
[8], the adoption of the recomendations referenced in the software development
process are in it’s infancy phase, meaning that even the standard understanding
are not clear enough.

Taking the "V model” reference presented in figure [I] it’s possible to point

outE

— Companies in South America

! those points are based on author’s feelings

Specification «..:zaesaeasaaae 9 Validation

\

Architectural » Integration
Design

Detailed ...» Unit testing
Design

Coding/ fabrication
Fig. 1. V Model - Software Development Model

e They are aware of the whole process

e They usually rely on tests to guarantee the expected behavior

e The transition takes place directly from NL specification to the code
phases, some times, through an intermediate phase, based usually in
UML specifications

e there is no apparent traceability methodology

— Far East - South Korea

e The coding phase starts right after receiving the specification

e Quality is the main concern, but no defined process is used to ensure
that

e They rely on experienced professionals to reach the desired quality level

e (Clearly, there are only three phases: specification, coding and integration
tests

Based on this view, it’s crystal clear that is not possible to go directly to
the pure application of formal methods. First, it’s necessary to create a better
culture of software development process.

But, what happens if, while doing so (creating a culture) we could, in small
doses, integrate the formal thinking, and show the advantages in using those
methods to, in the far end, speed up the development process, and decrease
the costs of software development (or, if you think it’s easy to understand, to
minimize the so called "non quality costs”).

This is the current scenario.

2 Where formal methods (could be) are used

Many different industrial areas, where safety and reliability issues are highly
important characteristics, have been using, or at least have tried formal methods

in order to increase their confidence that those requirements are met. Those
industries are, mainly, Nuclear[d], Medical devices[10], Avionics, Aerospacial and
transportation [I1]. Some examples are the emergency contention measures in
nuclear power plants, health support devices in medical applications, automatic
pilot on avionics, positioning systems in aerospacial and signaling systems in
tranportation just to cite a few.

This means that there is plenty of space for the adoption of supporting tools
that could help either the development process (either system or software) in the
sense of automatizing some parts of it, and also, in some cases, for speeding up
those development tasks difficult to perform, while the developer uses his efforts
in other more conceptual phases.

Unfortunately, even if the referenced industrial areas are something that ex-
ists all around the world, the application of formal methods is not the true reality
in American and Far East companies that work on those fields. It’s something
not easy to explain, as, in theory, the standards that should be followed by all
those companies are the same, as it’s the case of IEC 61508[5](related to gen-
eral functional safety, it means, not field specific), DO-178b[12] for avionics and
EN50128[0] for railways. All of these standards highly recommend the use of
formal methods either in the specification phase or in the design phase in order
to achieve high levels of the so called Safety Integrity Levels|[T3].

In order to change this scenario, the distance between mathematical notation
and the normal procedures used so far has to be shortened, and for that some
highly desired characteristics should be included in the current tools in order to
reflect the activities that are normally performed in those industries.

Fortunately, it might not be so difficult as, at least, the development model
that has been adopted in those industries (V mode is not different from the
model used in a formal model development.

The focus of this paper will be in railway field, as it is my area of application.
Taking this in consideration, as can be seen in several different works, like [T1]
and [I4], the B formal method is the most used one in this field. Recently, the
(fromely lustre) Esterel[I5] formal method began to be used as well, and the
support tool for this method, SCADE[3] was certified as capable to produce
safety code up to SIL4.

In spite of the field of application, formal methods, and it’s related tools, can
help in the development process replacing the human interaction of the phases
(see figure(l]): Detailed design, coding and unit testing, by an automated process,
and by doing that, can help to speed up the development process and better the
”quality” of the final product.

2.1 Formal methods and tools

for the sake of good understanding I present this brief sections about the formal
methods meintioned before.

B method The B method for software development [7] is based on the B Ab-
stract Machine Notation (AMN) and the use of formally proved refinements up

to a specification sufficiently concrete that programming code can automatically
be generated from it. Its mathematical basis consists of first-order logic, inte-
ger arithmetic and set theory. Industrial tools for the development of B based
projects have been available for a while now.

A B specification is structured in modules which are labeled according to
their abstraction level: MACHINE, REFINEMENT or IMPLEMENTATION,
from the most abstract to the most concrete. The model of the CGP is at the
machine level. In the B method, machines are to be proved consistent with
respect to some specified properties (particularly, the invariant of each machine).

One of the main parts of a B module is the state space definition, which
appears in the VARIABLES and INVARIANT clauses. The former enumerates
the state components, and the latter defines restrictions on the possible values
they can take. Essentially, if V' denotes the state variables of a machine, the
invariant is a predicate on V. Let us denote INV such invariant predicate. All
verifications carried out throughout the development process have the intention
of checking that no invalid state will ever be reached as long as the operations
of the machine are used as specified.

For the specification of the initialisation as well as the operations, B offers a
set of so-called substitutions. The semantics of the substitutions is defined by the
substitution calculus, a set of rules stating how the different substitution forms
rewrite to formulas in first-order logic. Let S denote a substitution, E an expres-
sion, then [S]E denotes the result of applying S to E. The basic substitution,
denoted v := E(V'), where E is an expression on variables V| states that, when
the operation completes, the value of variable v is E(V'), where the values of the
variables appearing in this expression are taken when the operation initiates.

Esterel

3 Tool comparison

In order to verify how the current tools can be modified to reflect the industrial
needs, I prepared a brief comparison of some existent tools. I have restricted
this comparison to some tools that I know better and that have been used in
my application field, that is, railways application. Those tools are, Atelier B,
RODIN and SCADE.

3.1 Methodology

The ”Oracle” T used to determine the classification of each tool in each category
was my personal feeling since a more detailed research was not performed so far,
but even so, in the last 3 years I could collect some comments from people I have
been training, so I hope it may be helpful.

It’s also prudent to state the maturity differences among these tools. While
SCADE and AtelierB have been in the market for a long time, RODIN is about
to be released in its first oficial version (version 1.0) what means that the first two

have already received many feedbacks from its industrial users helping them to
change the directions when to users were not satisfied (it was the AtelierB case,
where after a lot of complains about the user interface, change completely its
GUI), while the last one had no time yet to receive or to implement completely
these feedbacks.

The comparison methodology was based on three aspects, as follows:

— capability: in this case I try to verify how these tools can satisfy project
constraints

— usability: basically, what’s the difficulty the user faces when trying to use
the tool

— adequacy to the current development process : 1 mean, how the tool can
better fit in the process without causing too many changes in the way it was
performed so far

To make a classification of these aspects I used a simple ranking method, as
follows:

— 1 Very dificult
— 2 Medium
— 3 easy

The results are presented in table

3.2 Chart comparison

Aspect |capability|usability |adaptation|Results
AtelierB 2 1 2 5
RODIN 2 2 1 5
SCADE 2 3 3 8

Table 1. Comparsion table

To justify those results it’s possible say that:

— AtelierB

e the capability to solve the project constraints is not so bad, but you do
need to know a lot of the formal language and constructs to be able to
have easy proof obligations.

e Although, the version 4 of AtelierB supplies a real better usability, all
comments I have so far are based on the previous version where the lack
of a good User Interface makes its usage painful.

e Since it allows to go from the specification to the code it can be consid-
ered as a good tool for that purpose, but as the interactions during the
middle phases (refinements) are some times, painful, it can not receive
the higher grade.

— RODIN

e As it’s not so different from AtelierB, similar results could be seen, I
mean, the capability to solve the project constraints is not so bad, but
you do need to know a lot of the formal language and constructs to be
able to have easy proof obligations.

e the way that RODIN was constructed helps a lot a non experienced per-
son, as you just need to fill down some fields to have a basic specification,
but a lack of text editor that could help more experienced person and
speed up the specification process lowers its classification

e As, at the moment of the evaluation, there were no possibilities of decom-
position, and the ability to help only in the system specification phase,
turn it in a difficult tool to be used in the current process.

— SCADE

e Even based on a different concept, where formal methods are behind the
scene, it has a great capability to deal with project constraints, but you
still need some formal background to construct correct models.

e As it was built from the very beginning to be an industrial tool, its
usability is its strongest point, with a good interface and a lot of fancy
features that captivate the user. A lot of things can be done based on
templates and patters, what helps a lot as well

e Besides the capability to go from the specification to the code, it has also
some other complementary tools that help you in important auxiliary
tasks in the project like, requirement management, traceability, etc..

4 Experiences

Basically, my experiences in formal methods are both as a practitioner and as
a researcher. In the last 3 years I've been trying to introduce formal methods
in the projects I have worked on, and I can say that even if they can not fulfill
all industrial needs they can help a lot to better model the development process
and the resultant product (or software).

I can summarize 3 different projects that I've been working on recently and
what I could achieve so far:

4.1 Signaling system

European companies whom develop signaling systems for railway applications
are known as one of few that use formal methods during the development process.
It also true that even doing that, their branches around the world do not follow
the same concept. During 2008, using B method and the associate tool, AtelierB,
I participated in a revalidation process o a signaling system.

As, for this kind of system, there are always a start point, I mean, the new
project is, normaly, based on the previous one, the task was to implement new
functions and after that revalidate all the system (it’s required by the stan-
dard, IEC 61508, for systems classified as SIL4, at the moment you change any
function, the whole system has to be revalidated).

As the system was previously developed in B, this kind of task became a
trivial one. (not only by using B method but also because the related tools, Ate-
lierB in this case, are powerful enough to keep track of the changes and reprove
only what is realy needed). Basically, the changes were applied in the abstract
model, and after that were reflected in the refinements an implementatio. New
prof obligations were genereated and the affected older ones were reapplied.

The result of the complete process were that after the deployment of the
system no failures where detected. The associated costs in this development
were less than in a traditional process as there were no needs of maintenance
changes and the necessary time dedicated to testing was really short. But again,
this job was performed in a company that has been using formal methods for a
long time.

4.2 Door system

In order to verify the consistency of a door system specification, we used RODIN
as a proof of concept, and it was possible to show the benefits of this approach
to the final customer. This job was developed based on a small portion of the
natural language specification, but we could verify at least 3 contradictions or
inconsistencies on it. The objective was to help them to rewrite the specification
based on the result of the verification of the formal model.

The natural language specification is more than 100 pages long, and the
needed information is spread out over all this specification. As an example of one
contradiction we found, take this two statements that were in the specification:

— The train is not allowed to move while the at least one door is open;
— If the emergency buttom is pressed, the respective door must open when the
train speed is bellow 6 km/h.

With this simple example is easy to see a contradiction, moreover by the way
it’s presented here. But those statements were spread out in the specification,
so the direct comparation like here were not so clear.

We can see that there is a situation where the door’s behavior is in contradic-
tion as the door should not open until the train is completely stopped, but also
is demanded that bellow 6 km/h, in a emergency situation it should be open.

the machine in figure represents this specification, and the PO in figure
[2] represent the contradiction.

MACHINE Open_contradiction
VARIABLES
train_stoped boolean. when the train is stoped it’s value is TRUE
train low_speed boolean. when the train speed is below 6km/h it value
is TRUE
door_authorization boolean. when the train is allowed to open doors
it’s value is TRUE
emergency_buttom boolean. if the buttom is pressed, it’s value is TRUE

open_comand boolean. if true, command the opening
train_speed NAT. real speed
INVARIANTS
inv1 : train_stoped € BOOL
inv2 : door_authorization € BOOL
inv3: train_low_speed € BOOL
invd : emergency_buttom € BOOL
inv5 : train_stoped = TRUFE = door_authorization = TRUE
inv6 : train_stoped = FALSE = door_authorization = FALSE
inv7 : train_stoped = TRUE = train_low_speed = TRUE
inv9 : open_comand € BOOL
inv10 : train_speed € N
invi1l : door_authorization = FALSE = open_comand = FALSE
EVENTS
Initialisation
begin
actl: door_authorization := TRUE
act2: train_stoped := TRUE
act3: train_low_speed := TRUE
act4d : emergency_buttom := FALSE
act5 : open_comand := FALSE
act6 : train_speed := 0
end
Event EMERGENCY_OPEN =
when
grdl : train_low_speed = TRUE
grd3: emergency_buttom = TRUE

then
actl : open_comand := TRUE
end
Event LOW_SPEED_MONITOR =
when
grdl : train_speed < 6
then
actl: train_low_speed := TRUFE
end
Event ZERO_SPEED_MONITOR =
when
grdl : train_speed = 0
then

actl: train_stoped := TRUFE
act2: train_low_speed := TRUFE
act3: door_authorization := TRUE
end
Event AUTHORIZARION_RELEASE =
when

10

grdl : train_speed > 0

then
actl : door_authorization := FALSE
act2: train_stoped := FALSE
act3: open_comand := FALSE

end
Event LOW_SPEED_RELEASE =
when
grdl : train_speed > 6
then

actl : train_low_speed := FALSE
act2: train_stoped := FALSE
act3: door_authorization := FALSE
act4 : open_comand := FALSE

end
END

It’s clear that to discharge this PO, figure [2] is not a question of correct the
model, but the natural language specification must be changed to avoid this kind
of ambiguities or contradicitions.

ﬁ@ Proof Information &3

EMERGENCY_OPEN/inv11l/INV

« Event in Open contradiction
EMERGENCY OPEN :
WHEN
grdl: train low speed = TRUE
grd3: emergency buttom = TRUE
THEN
actl: open comand = TRUE
END
e Inwvariant in Open contradiction
invll: door authorization = FALSE = open comand = FALSE

Fig. 2. PO to be discharged

In this case three different approaches or options were proposed, as follows:

1. The train is not allowed to move while the at least one door is open, unless
m a emergency situation;

11

2. The train is not allowed to move over 6 km/h while the at least one door is
open;

3. If the emergency buttom is pressed, the respective door must open when the
train stops

The first option was choosen by the custumer, and the specification and
model was changed to reflect this new constraint.

Based on this simple example, it was easy to present the formal method
benefits where the imposibility to introduce ambiguities and contradictions was
stated.

The objective now is to try to represent the complete specification of one
train sub-system (probably the door system) in Event-B[16], and reformulate
the natural language specification in a better representation. At least, pointing
out the itens that needs to be revised to create a more consistent specification.

4.3 Platform screen doors

Platform Screen Doors, aka PSD, is a door system that is installed in the plat-
form stations to avoid people to fall down to the track. The safety related issues
are even higher than train door system as, people get used with it, and a dager-
ous situation can lead to severe accidents|[IT]. For example, if the train departure
with doors in PSD open, the train can easly hit someone.

This kind of system is been installed in Metro Sao Paulo, Brazil, and a
company from Korea was hired to develop and install the system. The same
standards must be applied in order to guarantee that the desired safety level (in
this case SIL 3[I7]) will be met.

Besides the safety constraints (that by itself its a huge problem) there is no
room to rework as the whole system needs to be in operation at the end of 2009.
As the first phases of the 7V model”, take a lot of time, while in a formal process,
it will be no time, after all, for a huge amount of tests.

As support standard, the TEC 62279[18] can be used to guide on the
necessecity of documentation that should be generated to prove that the needed
care was taken during the development process. The documentation that needs
to be generated is as follow:

System Requirements Specification
System Safety Requirements Specification
System Architecture Description
System Safety Plan

Sw Configuration Management Plan
Sw Verification Plan

Sw Integration Test Plan

Sw/Hw Integration Test Plan

Sw Requirements Specification

Sw Requirements Verification Report
Sw Architecture Specification

_.
PO O 0N otE W

—_

12

12. Sw Design Specification

13. Sw Arch. and Design Verification Report
14. Sw Module Design Specification

15. Sw Module Test Specification

16. Sw Module Verification Report

17. Sw Source Code Verification Report

18. Sw Module Test Report

19. Sw Integration Test Report

20. Sw/Hw Integration Test Report

21. Sw Validation Report

Moreover, it’s requested that from the detailed specification to the unit tests
a formal method should be used, as said also in section

Another problem that was faced is the lack of knowledge about formal meth-
ods and development process by the team in charge of the project. As meintioned
before, the culture of a structured process is not planted, at leaast in my expe-
rience, in Korea.

Based on all of these considerations, SCADE tool was selected to help on
these tasks. As meintioned in section [3] SCADE seems to be the best choice for
non-fromal method people.

From the list presented before, it’s possible to say that the itens from 10 to 19
can be performed, or automaticaly or is supported by the tool. All the formalism
is performed behinf the scenes, so the user can feel confortable in develop what
is realy needed from his point of view.

Even with this simplistic view, it was possible to verify that the formalism,
and moreover, the capability to model checking and theorem proving, helped to
better the quality and consistence of the generated documentation and to verify
missing points and inconsistences.

As an example, let’s take two functions that should be modeled, based on
the first requirement specification of one of the PSD system equipments.

The equipment is called, PCM, and it is in charge of control the door open
and close functions while in manual mode, what means, while PCM is enabled.

The two extractions from the Software Requirement Specification are as fol-
lows:

— open command If PCM is enabled, and the OPEN buttom is pressed longer
than 1 second, the OPEN command has to be generated.

— close command If PCM is enabled, and the CLOSE buttom is pressed longer
than 1 second, the CLOSE command has to be generated.

Using SCADE, it was modeled like figure

One more time, it’s easy to realize that there are a lot of missing information
and contradictions. For example, it’s not possible to say if it’s correct or not,
based only in the specification, to generate an close command while the open
command is present, and vice versa. There are no information that could be
used to determine when the command (doesn’t matter open or close) should be
turned off. One can figure out a lot of different needs, this is not the objective.

13

P Ch_Enabled
PCM_Enable o <Open: --
; Local_open_comm
H a
- H
P Ch_Disabled

not PCW_Enable "

C?)er_b\mom Filter ana_open_commar\d

Cloze_Comand H

True : :
1> outputz | | 2
H H -
| | _{> Local_close_command

: {77 : : Fiter
! Close_buttom J

Fig. 3. SCADE model

The main objective here was to present that a simple way to formalize the
development process, whether or not, with heavy formal methods, helps a lot to
find these kind of problems.

It’s an ongoing project, and I hope to present some strong evidences to sup-
port these assumptions.

4.4 comnsiderations

Some other points I'd like to point out. Despite all odds, and as pointed in [19],
it was not necessary to have someone with strong knowledge in mathematics,
altough the basic concepts were needed. Moreover, it was not necessary a big
team in none of the described projects in order to sucefully cary on the project.
In the second project I cited before, just one person did all the work.

In all of these projects, the most dificult task, and the one that took more
time was the requirement elicitation and analysis. Even if it not direct related
to formal methods, as it has to be carried on does matter the process you adopt,
the goal to build a formal model helps during the classification and elaboration
of each requirement forcing them to be complete and non ambiguous.

At the end, the time (and money) that is spent in the earlier phases of the
development process is greater than in a normal development, but the time (and
much money) that is spent in tests and rework are definitely less. In the case of
the second example (Door system), even using the formal methodology only as
a support tool, the resulting test cases were much more effective, and the period
of tests was shortened by 2 months (from 6 months to 4 months).

Based on these experiences, and others, I summarize in section [5| some fea-
tures that I think could be included in RODIN platform.

14

5 Gaps or needs

In this section it is summarized some of expectations about the future of sup-
porting tools and point out some characteristics that is presumed as necessary.
Most of them are being prepared, but even though some key points for each one
might be pointed out.

— Requirements - It’s a fact that requirement problems are responsible for more
than 40% of the total problems in a project [4f With this in mind, this is the
most important feature that should be integrated in RODIN platform. From
my point of view there are some characteristics that might be useful:

44.1%
Specification

14.7%
Design &
implementation !

20.6%
Changes after
commissioning

5.9%
Installation &
commissioning

14.7%
Operation &
maintenance

Figure 2: Primary cause, by phase, of control system failures

Fig. 4. Requirement problems from [17]

e It would be great if we could develop a "natural language dictionary”,
that would be used to rewrite the specification in a way it could be better
understood.

e Based on this redefined specification it would be good if we could directly
”convert” this specification in our abstract model, avoiding with that the
insertion of human errors

e It would also be good if we could create a tool that, based on the formal
model, could write back a natural language specification. This is crucial
when we model our model manually and after all we need to present it
to the customer for its approval.

e to help traceability, it would be good to develop, more than a simple
”natural language dictionary”, a methodology to annotate the require-
ment file, and with that we would be capable to verify the coverage of
this requirement.

15

— Traceability - Even if it’s related also to requirements, I think RODIN plat-
form might have also capability to:

e to be able to track forwards, I mean, if we change something in the
abstract model, it would be good if RODIN platform could point out
the possible refinements that should be verified in order to meet the
changes.

e in the same way, it should be able to track backwards, and point where
we should verify if we made some changes (intentional or not) in our
refinement machines.

e more crucial, it would be good if with RODIN platform we could be able
to track back and forward all the requirements and any changes could be
highlighted. Moreover, with this ability, we would be able also to verify
if all requirements were fulfilled or not.

— intermadiate languages - This is something that’s already been done by
UMLB plugin, but I think that one interesting feature is missing. Besides
the ability to create state machines, for example, the ability to execute these
models would be gratefully appreciated. With that, we would be able to
verify if our assumptions are correct, with no need to go inside the proof
obligations.

— test case generation - This, in my opinion, is one of the biggest gaps in

industry right now. All generated tests are based on specialist feelings, and
usually, what is tested is not exactly what should be. As a result, after a long
time testing the system, at the moment it’s put in operation some failure
happens, and the test generation phase has to begin again in order to address
that specific failure. This routine happens several times until the product can
be finally released.
I have strong feelings that the Proof Obligations are the basic source to
generate test cases that are necessary and sufficient. If those proofs are nec-
essary and sufficient to validate the specification, why not use those proofs
to generate the test case scenarios?

6 Conclusion

As it’s more a positional paper than a research paper itself, I will present my per-
sonal conclusions to you. The application of formal methods in industry is grow-
ing, however most of the times as a result of some projects involving academia
and industry, like DEPLOY project.

It’s clear that outside Europe, formal methods usage is still incipient, and
more effort in showing the benefits of that use is needed. In order to facilitate this
approach we need tools that do not scare the customer in a first sight, otherwise
the fear not to perform a good job will be always greater than the possibility of
creating better products.

If these barriers could be broken, I think that the use of formal methods
would spread out really fast.

If the introduction of the features I mentioned before could be a reality, it
would be a great step for this project.

16

If the managers are open mind, and admit waiting a bit more in the begining
of the development to see real results, (light or heavy) formal methods applica-
tion could be a lot cost-effective and can, at the end, decrese the costs of the
whole project by decreasing the costs in test and maintenance phases.

7 Aknowledgements

I’d like to thank to all univiersities and companies cited in this paper for their
support providing me recomendations and tools.

Finally I’d like to thank to Mr. Hrvoje Belani, who devoted his time to review
this paper and mostly for his comments which help me to include substantial
points in this work.

References

1. ClearSy: Atelierb [I]

2. Butler, M., Hallerstede, S.: The rodin formal modelling tool. deploy-
eprints.ecs.soton.ac.uk

3. Esterel: Getting started with scade. (Sep 2007) 1-148

4. Bowen, J.P., Stavridou, V.: The industrial take-up of formal methods in safety-
critical and other areas: A perspective. In: FME ’93: Industrial-Strength Formal
Methods, First International Symposium of Formal Methods Europe. Volume 670
of Lecture Notes in Computer Science., Odense, Denmark, Springer (1993) 183-195

5. Commission, LE.: IEC 61508 - Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. International
Electrotechnical Commission Standards (1998)

6. CENELEC: Software for Railways Control and Protection Systems. EN 50128.
(1995)

7. Abrial, J.: The b book: Assigning programs to meanings. books.google.com (Jan
1996)

8. Hwang, J., Jo, H., Jeong, R.: Analysis of safety properties for vital system commu-
nication protocol. Electrical Machines and Systems, 2007. ICEMS. International
Conference on (2007) 1767-1771

9. Abrial, J.: Formal methods: Theory becoming practice. Journal of Universal
Computer Science (Jan 2007)

10. Jetley, R., Iyer, S., Jones, P.: A formal methods approach to medical device review.
COMPUTER (Jan 2006)

11. Lecomte, T., Servat, T., Pouzancre, G.: Formal methods in safety-critical railway
systems. Proc. Brazilian Symposium on Formal Methods: SMBF (Jan 2007)

12. RTCA, I.: DO-178B, Software Considerations in Airborne Systems and Equipment
Certification. (1992)

13. Squair, M.: Issues in the application of software safety standards. Proceedings of
the 10th Australian workshop on Safety critical systems and software-Volume 55
(2006) 13-26

14. Bernardeschi, C., Fantechi, A., Gnesi, S., Larosa, S.: A formal verification envi-
ronment for railway signaling system design. Formal Methods in System Design
(Jan 1998)

17

15.

16.
17.

18.

19.

Boussinot, F., Simone, R.D., ENSMP-CMA, V.: The esterel language. Proceedings
of the IEEE (Jan 1991)

Metayer, C., Voisin, L.: The event-b mathematical language

Bell, R.: Introduction to iec 61508. Proceedings of the 10th Australian workshop
on Safety ... (Jan 2006)

Commission, I.LE.: TEC 62279 Railway Applications Communications, Signalling
and Processing Systems Software for Railway Control and Protection Systems.
International Electrotechnical Commission Standards (2002)

Bowen, J., Hinchey, M.: Ten commandments of formal methods ten years later.
COMPUTER (Jan 2006)

18

	Formal Methods in Industry: The State of Practice of Formal Methods in South America and Far East
	Aryldo G Russo Jr.

