
Project DEPLOY
Grant Agreement 214158

“Industrial deployment of
advanced system engineering methods

for high productivity and dependability”

First Deploy Technical Workshop
Aix-en-Provence, France, October 21-23, 2009

http://www.deploy-project.eu

Preface

The second DEPLOY annual plenary meeting was held from 21st to 23rd
of October in Aix-en-Provence, France. The main difference with respect
to the first meeting has been a significant amount of time dedicated to
technical presentations of papers. We invited all the academic and in-
dustrial partners to submit papers about the work they were carrying on
inside the DEPLOY project. The accepted submissions have been then
organized in five different sessions, each regarding a DEPLOY relevant
topic, plus one for short papers. The structure of this document reflects
exactly the structure of the workshop, each of the parts represents a work-
shop session:

1. Event-B and Extensions
2. Code Generation
3. Event-B Metrics and Tools
4. Model Checking
5. Business Information Systems
6. Short Papers

The objective of bringing together both academic and industrial part-
ners to discuss open problems and technical solutions has been success-
fully reached in a sincerely amicable, open and productive atmosphere.
I have seen all the speakers being comfortable during their talks and the
audience always attentive and supportive. The offline discussions have
been very productive as well. The location was simply fantastic, inspir-
ing and beneficial for everybody’s health.

I would like to genuinely thank all the DTW organization for review-
ing and helping and I also want to say a warm "thank you" to all the
people who participated in the workshop and made it possible. There is
no paper that can be great without the curiosity and the genuine enthusi-
asm of its readers.

January 2010 Manuel Mazzara
Organizing Committee Member

DTW’09

Organization

Organizing Committee and Editors

Michael Jastram Heinrich-Heine University Düsseldorf, Germany
Linas Laibinis Åbo Akademi University, Finland
Felix Lösch Robert Bosch GmbH, Germany
Manuel Mazzara University of Newcastle, UK

Contributors

Z. Andrews
J. Bryans
J. Bendisposto
M. Butler
R. De Landtsheer
N. Dragoni
F. L. Dotti
A. Edmunds
J. S. Fitzgerald

A. Iliasov
V. Kozyura
L. Laibinis
M. Leuschel
M. Mazzara
A. Michot
C. Pascal
M. Pląska
C. Ponsard

A. Romanovsky
A. Roth
K. Sere
R. Silva
C. Snook
A. Tarasyuk
E. Troubitsyna

Reviewers

Z. Andrews
B. Arief
A. Bhattacharyya
P. Boström
J. Bryans
J. Coleman

F. Degerl
R. De Landtsheer
R. Gmehlich
S. Hallerstede
S. Hoang
A. Iliasov

K. Pierce
M. Plaska
S. Riddle
S. Saadaoui
M. Schmalz
A. Tarasyuk

Proofreaders

Z. Andrews
N. Dragoni

M. Jastram
M. Mazzara

M. Mazzucco
C. Succi

Table of Contents

I Event-B and Extensions
Towards a Stochastic Event-B for Designing Dependable Systems 3

Z. Andrews
1 Introduction . 3
2 Related Work . 4
3 Case Study Overview . 6
4 Stochastic Event-B . 8

4.1 Event-B overview . 8
4.2 Stochastic extensions . 10
4.3 Emergency brake models and analysis 11
4.4 Experiences with stochastic Event-B 14

5 Further Work . 15
6 Conclusions . 16

On Event-B and Control Flow . 19
A. Iliasov

1 Introduction . 19
2 Flow Model . 19
3 Semantics . 21

3.1 Event-B Trace Semantics . 21
3.2 Flow/Machine Consistency . 22
3.3 Proof Obligations . 25
3.4 Example . 26
3.5 Collecting Additional Hypothesis . 27
3.6 Flow Refinement . 27
3.7 Reasoning about Flows . 28

4 Conclusions . 28

Structuring Specifications with Modes . 31
A. Iliasov, F. L. Dotti, A. Romanovsky

1 Introduction . 31
2 Operation Modes . 32
3 Mode Refinement . 33
4 Modes for Fault Tolerant Systems . 35

5 Operation Modes for Event-B . 36
6 Cruise Control Case Study . 39
7 Related Work . 42
8 Conclusions . 42

II Code Generation
A Code Generation Example for Event-B: A Shared Channel
with Concurrent Read/Writers . 47

A. Edmunds and M. Butler
1 Introduction . 47
2 The Abstract Event-B Development . 48
3 Refinement with Packetized Data . 50
4 A Brief Introduction to OCB . 54
5 The Implementation-level Specification . 56
6 The OCB Refinement . 59
7 The Java Implementation . 61
8 Related Work . 61
9 Conclusion . 62
10 The Channel Specification . 64
11 The Process Java Code . 65
12 The Channel Java Code . 66

III Event-B Metrics and Tools
Towards Event-B Metric Support in RODIN 71

C. Ponsard, R. De Landtsheer and A. Michot
1 Introduction . 71
2 Requirements . 73
3 Survey of Model Metrics . 74

3.1 Object-Oriented Designs . 74
3.2 Formal Methods Metrics . 74

4 Survey of Model Measurement Tools . 75
5 Design of a Metric Plug-in . 75

5.1 Evolvable Tool . 75
5.2 Computing Product Metrics . 76
5.3 Computing Process Metrics . 76

5

6 Implementation . 77
7 Future Work . 78

Towards Event-B Specification Metrics . 81
M. (Pląska) Olszewska and K. Sere

1 Introduction . 81
2 Metrics for Event-B specification . 83
3 Experimental setup and preliminary results 85
4 Conclusions and future work directions . 86

IV Model Checking

Proof Assisted Model Checking for B . 91
J. Bendisposto and M. Leuschel

1 Introduction . 91
2 Event-B and Rodin . 92
3 Consistency checking and ProB . 94
4 Proof-Supported Consistency Checking . 94
5 Verification . 98
6 Experimental results . 101

6.1 Measurement . 102
6.2 Mondex . 102
6.3 Siemens Deploy Mini Pilot . 103
6.4 Scheduler . 103
6.5 Earley Parser . 104
6.6 SAP Deploy Mini Pilot . 104
6.7 SSF Deploy Mini Pilot . 104
6.8 Cooperative Crosslayer Congestion Control CXCC 105
6.9 Constructed Example . 105

7 Proof-Assisted Consistency Checking for Classical-B 105
8 Conclusion and Future Work . 107

Integrating Reliability Assessment into Formal Development
by Refinement . 111

A. Tarasyuk, E. Troubitsyna and L. Laibinis
1 Introduction . 111
2 Modelling and Refinement in Event-B . 113
3 Example of Refinement in Event-B . 115

6

4 From Event-B Modelling to Probabilistic Model Checking 120
5 Reliability Assessment via Probabilistic Model Checking 125
6 Conclusion . 127

V Business Information Systems

A Formal Semantics for the WS-BPEL Recovery Framework . . . 133
N. Dragoni and M. Mazzara

1 Introduction . 133
1.1 BPEL and its Ambiguous Specification 134
1.2 Contribution of the Paper . 134

2 The π-Calculus Way to Dependable Composition 136
2.1 Our Approach . 138

3 The Composition Calculus . 139
3.1 Syntax . 139
3.2 Semantics . 140

4 A Case Study: the BPEL RF . 142
4.1 Details from the BPEL Specification 143

Compensation Handler . 143
Fault Handler . 144
Event Handler . 145

5 Formal Semantics of a (Simplified) BPEL RF 145
5.1 Syntax . 146
5.2 Semantics . 147
5.3 Compensation Handler . 147
5.4 Fault Handler . 148
5.5 Event Handler . 148
5.6 BPEL Scope . 149
5.7 Example . 149
5.8 Is It Really Simpler? . 150
5.9 Design of BPEL Orchestration Engines 151

6 Summary, related works and criticisms . 152

Generation of Gluing Invariants for Checking Local
Enforceability of Message Choreographies 156

V. Kozyura and A. Roth
1 Introduction . 156
2 MCM Modeling . 158

7

3 Gluing Invariants . 163
3.1 Types of Gluing Invariants . 163
3.2 Some Rationale of the Types of Gluing Invariants 165
3.3 Automatic Generation of Gluing Invariants 166
3.4 Supporting GUI . 167

4 Verification Procedure . 167
5 Results . 169
6 Conclusion and Related Work . 170

An Adaptation of the Time Constraint Pattern for Modelling
Consistency in Business Information Systems 172

J. W. Bryans, J. S Fitzgerald, A. Romanovsky and A. Roth
1 Introduction . 172
2 Background . 174

2.1 Event-B and Event-B Patterns . 175
2.2 The Abstract Channel . 176

3 An Adaptation of the Time Constraint Pattern 178
3.1 The Time Constraint Pattern . 178
3.2 Adapting the Time Constraint Pattern for Modelling

Bounded Inconsistency . 180
4 An Error Recovery Pattern . 181
5 An Instantiation of Adapted TCP and ERP 183
6 Related Work . 186
7 Conclusions and Further Work . 187

VI Short Papers

First Models of a Safe System . 193
C. Snook

1 Extended Abstract . 193

Event-B Model Decomposition . 195
C. Pascal and R. Silva

1 Introduction . 195
1.1 Definition and constraints . 196

2 Decomposition Styles . 197
2.1 Shared Variable (A-style) Decomposition 197
2.2 Shared Event (B-style) Decomposition 198

8

3 Tool Specification . 199
4 Conclusion . 201

9

10

Part I

Event-B and Extensions

Towards a Stochastic Event-B for Designing
Dependable Systems

Zoe Andrews

School of Computing Science, Newcastle University, UK
Z.H.Andrews@ncl.ac.uk

Abstract. Designing dependable systems is complex and, whilst the state of the
art goes some way towards assisting in the design process, existing approaches
have some limitations. The benefits and limitations of existing approaches are
summarised. Based on these observations, stochastic extensions to the Event-B
notation are proposed that build on the strengths of the existing approaches and
aim to address some of their limitations. A simple case study is used to demon-
strate the use of this new language. The paper concludes with some suggestions
for further work in this area.

1 Introduction

The range and complexity of systems in which computers play a ma-
jor part is ever increasing. As complexity increases it becomes harder to
design a computer-based system that functions predictably. At the same
time, greater reliance is being placed on their correct functioning, in par-
ticular in those systems that are responsible for preserving lives or liveli-
hood. Providing the required increases in dependability is only possible
if the techniques for obtaining and assuring such dependability are con-
tinually improved and updated.

There are already many techniques and tools used for modelling and
analysing dependable computer systems. However, the existing ap-
proaches tend to fall into two distinct research areas, which we shall term:
formal methods and dependability. Formal methods use “mathematically-
based languages, techniques, and tools for specifying and verifying
computer-based systems” [6]. Formal methods concentrate on the func-
tionality of a program, with the goal being to prove that a program is
correct with respect to a specification of its functionality. Dependability
is defined by Avizienis et. al [4] as “the ability to deliver service that
can justifiably be trusted”. As such, dependability research concentrates
on evaluating the quality of service aspects of a computing system, such

as availability (readiness for correct service) and reliability (continuity
of correct service). Such evaluation usually takes place quite late in the
development process.

There is currently a gap between these two areas, with a limited body
of research that attempts to combine the two ways of thinking. This paper
focusses on a promising bridge between formal methods and dependabil-
ity; that of using quantitative formal methods to assist in the design of a
dependable system.

In order to analyse the stochastic behaviour of a system a formal lan-
guage is first needed to express such behaviour. An ideal language would:

– be easy to understand and analyse, especially providing extra insight
during the design phase

– allow analysis of a variety of stochastic systems, particularly those
with continuous behaviour

– be supported by a useful toolkit
– allow separation of concerns: functional and stochastic behaviour can

be analysed separately where appropriate

The contribution of this paper is twofold: first it provides an overview
of the state of the art in modelling dependable systems; second it pro-
poses a new approach for modelling dependable systems that addresses
limitations of current solutions.

The paper is structured as follows: in Section 2 an overview of the
existing approaches for designing dependable stochastic systems is pro-
vided; the benefits and limitations of these approaches are discussed. In
Section 3 the case study used to demonstrate the stochastic extensions to
Event-B is introduced. In Section 4 Event-B is introduced and, based on
the findings in Section 2, suitable stochastic extensions to this language
are proposed before being applied to the case study. In Section 5 further
work to develop the approach (as outlined in Section 4) is considered.
Finally, conclusions are presented in Section 6.

2 Related Work

There are essentially two main approaches to modelling the stochastic
behaviour of dependable systems. These are: Continuous Time Markov
Chain (CTMC) based languages; and refinement calculus (proof-based)
languages that have been extended with probabilistic choice. These two

4

approaches are introduced below; their benefits and limitations are sum-
marised. Note that a more detailed discussion of the existing approaches
is presented in [3].

Based on our observations of the existing approaches, a new approach
is proposed to address some of the uncovered limitations. This new ap-
proach involves extending Event-B [2, 15] with suitable stochastic be-
haviour.

The CTMC based formalisms use standard Markov Chain analysis
techniques and tend to follow a model checking approach to show that
a property holds in a given model. A number of properties of a sys-
tem can be analysed from a CTMC. Some of these are simply based
on the steady state probability distribution – as time approaches infinity
a Markov Chain may enter a steady state, i.e. the probability of observ-
ing the system in each of its possible states remains constant. Others also
rely on rewards – a value is assigned to each state and/or state transition
and the expected value of the reward is calculated.

There are many languages and tools that base their analysis on CTMCs.
Some examples include: PRISM [12]; Generalised Stochastic Petri Nets
[11]; Stochastic Activity Networks [16]; and PEPA [9]. These approaches
tend to be petri net or process algebra based and often use a model check-
ing approach for analysis. The quality of tool support varies widely be-
tween the different notations.

PRISM was chosen for further exploration in [3], as an example of a
CTMC based approach. The main benefits of PRISM were found to be:
the ability to model continuous probability distributions as well as prob-
abilistic choice; good tool support; and the ability to structure models
through the use of modules and rewards. The main limitation of PRISM
is that all parameters need initialisation, no algebraic analysis is possible
– this isn’t particularly useful in the early stages of design when values
of parameters may still need to be determined. Also, non-determinism
(useful for abstraction) cannot be combined with continuous probability
distributions. Overall PRISM is a useful tool, but perhaps more beneficial
during the later stages of the software lifecycle.

The proof based formalisms use the refinement calculus, extended
to include probabilistic choice [13], as their foundation. These notations
use a theorem-proving approach to show that certain probabilistic prop-
erties hold. Such proofs either use a refinement approach, or utilise prob-

5

abilistic invariants (known as expectations – see Section 4.2) to prove the
properties of interest.

There are a number of different formalisms that have been extended
with probabilistic choice. These include: B (pB) [10]; Action Systems
[17]; Hoare logic (pL) [7]; Z [18]; and Event-B [8] (although only for
the purposes of qualitative reasoning). Some work has also been done on
algebraic transformations of probabilistic specifications [14] to enable
simpler reasoning.

Probabilistic B (pB) was explored in more detail in [3]. The main
benefit of pB was found to be: the ability to obtain algebraic solutions
from the analysis of expectations – allowing the designer to determine
the relationship between the different parameters of the model and of the
design requirements. The main limitation of pB is that it is not possi-
ble to model continuous probability distributions. Attempting to model
systems that exhibit continuous behaviour using only discrete probabilis-
tic choice is complex and/or leads to a limited set of properties that can
be analysed. Overall probabilistic B is a promising approach to design-
ing dependable systems, but the language needs to include continuous
stochastic behaviour to enhance its usefulness.

3 Case Study Overview

The case study is a simplified scenario derived from the Deploy project1.
A vehicle has an emergency brake (EB) that can either be applied (the
brake is on and the vehicle is stopping) or not applied (the brake is off
and has no effect on the speed of the car). Some external system (ei-
ther a person or another computer system) can command the brake to be
applied at any time.

The emergency brake system can fail in two possible ways:

– An unsafe failure occurs when the emergency brake has been com-
manded, but not applied

– A safe failure occurs when the emergency brake is applied, even
though it has not been commanded

The purpose of the case study is to illustrate the use of the proposed
stochastic extensions to Event-B, not to provide an accurate representa-

1 http://www.deploy-project.eu/

6

tion of a realistic scenario. Thus, for simplicity, recovery from emergency
brake requests and failures is ignored.

There are two types of events that can occur in this system. Those that
occur in time according to some average transition rate and those that oc-
cur instantaneously, triggered by some other state change. An example of
the former is the rate at which the emergency brake is requested, events
like this are most naturally modelled by the exponential distribution. An
example of an instantaneous transition is whether, after an emergency
brake request has occurred, the emergency brake is applied or it has an
unsafe failure. This type of event is most naturally modelled as a proba-
bilistic choice between the two options, occurring immediately after the
state change triggering the choice. Therefore, an intuitive model of this
system should include state transitions according to the exponential dis-
tribution as well as instantaneous state updates with probabilistic choice.

λreq λsafe

punsafe 1-punsafe

1

2 3

4 5

Safe
Failure

EB
Requested

Unsafe
Failure

EB
Applied

Normal
Operation

Fig. 1. States and transitions for the EB system

Figure 1 shows the transitions that can occur in the emergency brake
system considered. State 1 is the initial state in which the EB is not ap-
plied and has not been commanded. From the initial state there are two
possibilities. An emergency brake request can occur taking the system
to state 2 where EB_command is set – this modelled according to the
exponential distribution with rate λreq. State 2 is considered to be a tran-
sient state from which one of two options will occur instantaneously. The
first possible transition from state 2 is that of an unsafe failure (state 4),

7

where the emergency brake is not set – this occurs with some probabil-
ity, punsa f e. The other transition from state 2 is a normal application of
the emergency brake (state 5), i.e. EB_applied is set – this occurs with
probability 1− punsa f e. The final transition that should be mentioned is
the safe failure transition, which occurs from state 1 and takes the sys-
tem to the safe failure state (state 3) in which EB_applied is set, but
EB_command is not. This transition is considered to occur according to
the exponential distribution with rate λsa f e. There is a safety objective2

required of the system that “unsa f e situation ≤ λmax/hour”. In this pa-
per the safety objective is interpreted to mean that (on average) less than
λmax transitions into an unsafe situation occur per hour, where an unsafe
situation is represented by an unsafe failure.

4 Stochastic Event-B

This section describes Event-B and the proposed stochastic extensions to
it for modelling dependable systems. An overview of “standard” Event
B is given, before describing the proposed stochastic extensions. The
emergency brake scenario is used to illustrate the proposed approach and
some comments are made on the use of stochastic Event-B.

The proposed stochastic extensions to Event-B aim to build on, and
combine, the strengths found in probabilistic B and PRISM. The pro-
posed approach is similar to that of probabilistic B, but also with the
inclusion of the exponential distribution for modelling continuous time
behaviour. The method of expectation analysis (see Section 4.2) is used
to prove probabilistic properties of interest for the emergency brake sce-
nario. A key advantage that Event-B has over B is the Rodin platform3,
an open source toolkit that supports the language with various features –
including automated and interactive provers. Event-B also seems to be a
more natural language for modelling the rate of occurrence of failures,
by modelling these as events.

4.1 Event-B overview

The Event-B formalism is derived from classical B [1], but also incor-
porates concepts from Action Systems [5]. The semantics of an Event-B

2 according to railways standard documents such as EN50126, EN50128 and EN50129
3 http://www.event-b.org/platform.html

8

model is given as a set of proof obligations. Reasoning in Event-B is
based on demonic non-determinism.

An Event-B model consists of two types of components: Machines
and Contexts. A Machine models the dynamic behaviour of the system
such as the variables and the events. The Context provides details of the
static information – constant identifiers, values and properties over such
values.

The Machine description contains the bulk of the model and may in-
clude variables, invariants and events. Variables store the state of the
machine. Invariants are used to constrain the types of the variables as
well as state other logical properties over the variables that must hold at
all times. Events define the behaviour of the system, i.e. the state transi-
tions that may occur. Each event may include a guard, which defines the
states from which the transition can occur, and will include a set actions
which define the updates to the variables. For more detailed information
about the contents of Event-B models the reader is referred to Abrial’s
forthcoming book [2].

A number of proof obligations are automatically generated for an
Event-B model. These proof obligations state the requirements for the
model to be internally consistent. For example, events must not invalidate
the invariants (known as invariant preservation), the proof obligation that
states this is as follows:

I(v)
G(t,v)
S(t,v,v′)
`

I(v′)

(1)

– v represents the variables of the Machine before the event has oc-
curred

– v′ represents the variables of the Machine after the event has occurred
– t represents the parameters of the event
– I(v) states the invariants hold for the assignment of variables v
– G(t,v) states the guard of the event holds for the assignment of vari-

ables v and parameters t
– S(t,v,v′) represents the state transition modelled in the actions of the

event

9

For further details on the proof obligations generated from an Event-
B model see Abrial’s forthcoming book [2].

4.2 Stochastic extensions

As with classical B, standard reasoning in Event-B is based on demonic
nondeterminism. Such reasoning is not sufficient for analysing quantita-
tive properties such as reliability and safety. Therefore some extensions
to standard Event-B are proposed to support stochastic reasoning for the
analysis of such properties.

There has already been a little research on how to add probabilis-
tic choice to Event-B [8]. However, that research focuses on qualitative
probabilistic reasoning; it is not possible to analyse numerical properties
such as the emergency brake’s safety requirement using such techniques.
To reason about the safety requirement, quantitative reasoning is essen-
tial. Therefore it is proposed to extend Event-B actions with the proba-
bilistic choice operator, e.g. an action of x := 1 p⊕ x := 2 would assign
a value of 1 to x with probability p and 2 otherwise (with probability
1− p).

The ability to model continuous probability distributions is also of
importance, in particular the exponential distribution for timing of events.
In order to do this it is proposed that an event may have an associated
rate parameter, which represents the rate of the occurrence of the event
with respect to the exponential probability distribution. The stochastic
behaviour of an event is assumed to be independent of that occurring in
other events and also of previous (historical) behaviours.

For some analysis a designer may be interested in the amount of time
that has passed as well as the rate of occurrence of events. Therefore
it is also proposed to extend Event-B actions to include an operator for
assigning a value to a variable from a continuous probability distribution.
For example, an action of time := time + exp(λ) would increment time
by a randomly assigned observation from the exponential distribution
with parameter λ.

In this study expectations (analogous to those used in pB [10]) are
used to analyse the safety property of the emergency brake system. An
expectations clause will be added to Event-B Machines to model these.
Expectations are essentially probabilistic versions of invariants. For an
invariant I, the initialisation would be expected to establish I and all of

10

the events required to maintain I. An expectation, E, works in a similar
way except that it is an expression over the real numbers instead of the
booleans. An initial value, e, for E is also required when working with
expectations, this can either be a constant or some expression over the
values from the Context. The initial value e must be established by the
initialisation. The notion of establishing and maintaining an expectation
is slightly different from that of invariants due to the use of real numbers.
It is required that e ≡〉[Init]E, i.e. that at least e is established by the
initialisation event, and that E ≡〉[Op]E, i.e. that no event can decrease
the expected value of E. For example consider a system that observes
the number of heads (h) and tails occurring when a tossing a fair coin
n times. An expectation of the system may be 0 ≡〉h− n

2 , meaning that
heads account for at least half of the total number of observations. Note
that a similar expectation about the number of tails observed would also
be required to ensure that the coin is fair.

4.3 Emergency brake models and analysis

This section summarises how Event-B was used to model and analyse
the case study. Three different models of the emergency brake are dis-
cussed. In a first model the limitations of analysing the scenario in stan-
dard Event-B (i.e. without any stochastic extensions) are demonstrated.
Afterwards, two different options for analysing the stochastic behaviour
of the emergency brake are explored. In option one time is modelled im-
plicitly using a rate parameter. Option two makes use of the statement
time := time + exp(λ) to update time explicitly. Note that these two
options for modelling stochastic behaviour are semantically equivalent
(and as will be seen give the same result on analysis of the expectation).
The main differences are in the event and expectation notations, and the
amount of flexibility each option provides, these issues are discussed to-
wards the end of this section. Full descriptions of all the Event-B models
can be found in [3].

In standard Event-B the closest approximation to the emergency brake
scenario involves a non-deterministic choice between the possible events:
EB_Normal, Sa f e_Failure and Unsa f e_Failure. There is no way of
stating how often each of these events occur. Similarly, the best approach
available for including the safety property is to model it as an invariant
EB_command = T RUE⇒ EB_applied = T RUE. The Unsa f e_Failure

11

event violates this invariant as it sets EB_command to T RUE, but
EB_applied remains FALSE. Therefore, it can be concluded from the
standard Event-B model that the safety property is not preserved by the
Unsa f e_Failure event. However, it is not possible to build an imple-
mentation of the emergency brake system in which it can be guaranteed
100% that an unsafe failure will never occur. Thus stochastic modelling
is needed to establish and minimise the chances of an unsafe situation
(and guarantee the stochastic version of the safety property).

For both of the stochastic Event-B options, the standard model above
is used as a basis and the EB_Normal and Unsa f e_Failure events are
combined into a single EB_Request event. This event includes a proba-
bilistic choice statement that results in either the unsafe failure situation
(with probability p) or the normal application of the emergency brake.
Both the EB_Request event and the Sa f e_Failure event are assigned a
rate value (λreq and λsa f e respectively). These rate values are taken to be
parameters of the exponential distribution parameter and model the rate
at which the events occur. Note that this representation of the emergency
brake scenario is analogous to the natural way of modelling the system,
described in Section 3.

Event EB_Request_Option1 =̂
when

grd1 : EB_applied = FALSE∧EB_command = FALSE
then

rate : λreq
act1 : (EB_command,c := TRUE,c+1) p⊕

(EB_applied,EB_command := TRUE,TRUE)
act2 : n := n+1

end

Event EB_Request_Option2 =̂
when

grd1 : EB_applied = FALSE∧EB_command = FALSE
then

rate : λreq
act1 : (EB_command,c := TRUE,c+1) p⊕

(EB_applied,EB_command := TRUE,TRUE)
act2 : time := time+ exp(λreq)

end

Fig. 2. Stochastic Event-B EB_Request event for options 1 and 2

12

For the first stochastic Event-B option considered (option 1), time is
treated implicitly through the use of the rate parameter (see Figure 2).
In order to analyse the stochastic behaviour of the model, fresh variables
are needed to track the history of the probabilistic choice statement. The
total number of times the probabilistic choice is exercised is represented
by n, and the number of times it resulted in an unsafe failure by c. The
safety property can then be translated into the following expectation to
be analysed:

0≡〉 n×λmax− c×λreq (2)

This is interpreted as n× λmax− c× λreq is always at least 0, i.e. that
c
n ×λreq (the frequency of unsafe failures) always occurs at some maxi-
mum rate λmax. The result of the expectation analysis is presented for the
EB_Request event, as this event exhibits the most interesting behaviour.
The analysis provides a relationship between the parameters of the model
and the safety property as follows:

p×λreq ≤ λmax (3)

The expectation analysis for the Sa f e_Failure event is satisfied trivially
as the event does not update any of the variables included in the expecta-
tion. Full details of the expectation analysis can be found in [3].

In the second stochastic Event-B option considered (option 2), time
is treated explicitly in event actions that update time according to the
exponential distribution (see Figure 2). A fresh variable is still required
for analysis, but this time only c (the number of unsafe failures) is needed
as time is being recorded explicitly. The safety property is translated into
the following expectation to be analysed:

0≡〉 time×λmax− c (4)

This can be read as time× λmax− c is always at least 0, i.e. that c
time

(the frequency of unsafe failures) always occurs at some maximum rate
λmax. Analysis of this expectation also gives the relationship found above
(Equation 3); this is as expected because the two options are semantically
equivalent. As before, the expectation analysis for the Sa f e_Failure event
is omitted, but is satisfied trivially as this event only increments time (not
c) and therefore never decreases the value of the expectation. Full details
of the expectation analysis can be found in [3].

13

Option two for modelling stochastic behaviour in Event-B requires
additional syntax and semantics to be defined. However, it results in a
cleaner formulation of the expectation. The explicit approach could also
be used in other situations, for example the error of some measurement
may follow a normal distribution.

4.4 Experiences with stochastic Event-B

In this section we reflect on the use of stochastic Event-B for mod-
elling dependable systems, particularly in comparison to the existing ap-
proaches described in Section 2.

Both options for stochastic Event-B, illustrated by the emergency
brake case study above, provide a clean and useful method for combining
stochastic and logical reasoning. The use of rates and the exponential dis-
tribution allow an intuitive model of the case study, where-as using prob-
abilistic choice alone (as with pB) is rather more complicated. As a con-
sequence the stochastic Event-B models are smaller than those possible
in pB, with fewer proof steps required to analyse the expectations. With
a simpler notation and shorter proofs, more complex problems should
be easier to analyse. Finally, using the expectation approach allows an
algebraic analysis of the model. Algebraic solutions reveal the precise
relationship between parameters of the model and the stochastic require-
ments, thus making the impact of design decisions more transparent.

Some valuable lessons were also learnt whilst analysing the emer-
gency brake scenario in the proposed stochastic version of Event-B. In-
terestingly, it would seem that the way an expectation is formulated has
an impact on the algebraic solution obtained. For example, for option
1, an alternative (semantically equivalent) expectation was initially anal-
ysed, 0 ≡〉 λmax− c

n × λreq, and gave the result p ≤ c
n . Whilst the two

solutions are not contradictory (different variables of the model are re-
ferred to in each), the solution presented in Section 4.3 is clearly more
useful for finding a suitable design for the system. Therefore the way in
which expectations are formulated seems to impact on the usefulness of
the results obtained.

Option 2 should also be used with some caution, as a couple of subtle
issues were noticed when analysing/implementing such a model. There
are rounding issues to consider when obtaining an observation from a
continuous probability distribution, i.e. when implementing a statement

14

such as time := time+ exp(λ). Also the statement

(x := 1 p⊕ x := 2) || time := time+ exp(λ)

would not be equivalent to

(x := 1 || time := time+ exp(λ)) p⊕ (x := 2 || time := time+ exp(λ))

in general. This parallel substitution rule is valid for probabilistic pro-
grams. However, if there is a stochastic assignment on the right-hand
side of || there needs to be some constraint in place to prevent different
values being allocated to each instance of the stochastic assignment in
the resulting statement. Note that this is not an issue if the analysis only
depends on the expected value of the observation.

Overall, stochastic Event-B looks like a promising approach to mod-
elling and analysing stochastic systems. Some suggested steps to im-
prove this approach further are discussed in the next section.

5 Further Work

The proposed extensions to Event-B for stochastic behaviour are still
very early ideas – there are many ways in which this work can be im-
proved and extended.

The reported extensions to Event-B for stochastic reasoning were
essentially a feasibility study, therefore the only proof obligation con-
sidered was that of expectation preservation. In order for the stochastic
extensions to be fully integrated into Event-B, further investigation is re-
quired to determine fully which proof obligations need to be added or
amended. In particular those on refinement, as refining stochastic be-
haviour is an interesting problem.

An intriguing problem with adding probabilistic choice to a mod-
elling language such as B, is that of the interaction between demonic and
probabilistic choice. This issue is discussed for pB in [10]. The author
is interested in exploring how demonic choice would interact with con-
tinuous probability distributions. What results would be obtained if the
model had some events occurring according to the exponential distribu-
tion, as well as some events that can occur at any time (controlled by an
external (demonic) entity)?

15

Another possible extension to the proposed approach would be to in-
clude other probability distributions, for example the Normal distribution
could be useful for modelling measurement errors. Reward structures
would also be useful for identifying the costs and benefits of specific
states, thus eliminating the need for messy fresh variables.

Comprehensive tool support encourages industrial uptake of new meth-
ods; therefore an important extension to this work would involve devel-
oping a plug-in to the Rodin platform that enables modelling and analysis
of stochastic Event-B models.

Finally, more complex case studies would allow further investigation
into this promising approach and could lead to more interesting problems
to explore.

6 Conclusions

The need for providing quantitative probabilistic modelling has been
demonstrated and existing approaches for doing so explored. The case
study highlighted the benefits of the two languages examined in detail:
PRISM and pB. However, it also exposed a number of limitations in each.
Based on these experiences a new approach has been proposed that aims
to address some of the limitations. This approach looks promising, but
needs further work as outlined in the previous section. The main findings
are summarised below.

The CTMC based approach benefits from: a good range of tools to
support modelling and analysis of properties; and the possibility to incor-
porate both continuous probability distributions and probabilistic choice.
However, this approach is aimed at the analysis of systems, not design,
so algebraic solutions to a design problem may be impossible to find. The
CTMC approach also often suffers from state space explosion problems
making it costly (in terms of time and memory usage) to model anything
too complex.

The proof-based approach has the benefit of being able to obtain al-
gebraic solutions, making design decisions clearer. However, there is cur-
rently no way to model or reason about continuous probability distribu-
tions with this approach, which makes it hard to model systems that natu-
rally follow continuous distributions without losing a significant amount
of information about their behaviour. Tool support is also very limited
for this approach.

16

The proposed approach of a “stochastic Event-B” builds on the ben-
efits of the proof-based approach, but extends this approach to include
continuous probability distributions (in particular the exponential distri-
bution). Applying this approach to the case study gave promising results.

Whilst there are still many issues that need to be addressed, the pro-
posed approach potentially has a lot to offer a designer of dependable
systems.

Acknowledgements
The author is grateful to John Fitzgerald, Thai Son Hoang, Larissa Meinicke and Jeremy Bryans
for their valuable discussions on this work. Many useful collaborations would not have been
possible without the support of the IST FP7 DEPLOY project. The research was funded by an
EPSRC PhD grant.

References
1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,

New York, 1996.
2. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University

Press, to appear 2009.
3. Z. H. Andrews. Towards a stochastic event-b for designing dependable systems. Technical

Report CS-TR-1154, Newcastle University, School of Computing Science, July 2009.
4. A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic concepts and taxonomy

of dependable and secure computing. IEEE Transactions on Dependable and Secure Com-
puting, 1(1):11–33, 2004.

5. R. J. Back. Refinement Calculus II: Parallel and reactive programs. In J. W. deBakker, W. P.
deRoever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems, volume
430 of LNCS, pages 67–93, Mook, The Netherlands, May 1989. Springer-Verlag.

6. E. M. Clarke and J. M. Wing. Formal methods: State of the art and future directions. ACM
Computing Surveys, 28:626–643, 1996.

7. R. J. Corin and J. I. den Hartog. A probabilistic Hoare-style logic for game-based crypto-
graphic proofs. In M. Bugliesi, B. Preneel, and V. Sassone, editors, ICALP 2006 track C,
Venice, Italy, volume 4052 of Lecture Notes in Computer Science, pages 252–263, Berlin,
July 2006. Springer-Verlag.

8. S. Hallerstede and T. S. Hoang. Qualitative probabilistic modelling in Event-B. In Proc.
6th International Conference on Integrated Formal Methods (IFM 2007), volume 4591 of
LNCS, pages 293–312, 2007.

9. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, New York, NY, USA, 1996.

10. T. S. Hoang. The Development of a Probabilistic B-Method and a Supporting Toolkit. PhD
thesis, School of Computer Science and Engineering, The University of New South Wales,
2005.

11. D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte. Modelling with Gener-
alized Stochastic Petri Nets. John Wiley & Sons, Inc., New York, NY, USA, 1994.

17

12. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model checker.
In T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Proc. 12th International Confer-
ence on Modelling Techniques and Tools for Computer Performance Evaluation, volume
2324 of LNCS, pages 200–204. Springer, April 2002.

13. A. McIver and C. Morgan. Abstraction, Refinement And Proof For Probabilistic Systems
(Monographs in Computer Science). Springer, 2004.

14. L. Meinicke and I.J. Hayes. Algebraic reasoning for probabilistic action systems and while-
loops. Acta Informatica, 45(5):321–382, 2008.

15. C. Métayer, J.-R. Abrial, and L. Voisin. Event-B Language, RODIN Deliverable D7, 2005.
16. W. H. Sanders and J. F. Meyer. Stochastic activity networks: Formal definitions and concepts.

In Lectures on Formal Methods and Performance Analysis: first EEF/Euro summer school
on trends in computer science, pages 315–343, New York, NY, USA, 2002. Springer-Verlag
New York, Inc.

17. E. Troubitsyna. Stepwise Development of Dependable Systems. PhD thesis, Åbo Akademi,
2000.

18. N. White. Probabilistic specification and refinement. Master’s thesis, Keble College, Oxford,
1996.

18

On Event-B and Control Flow

A. Iliasov

Centre for Software Reliability, Newcastle University, UK
alexei.iliasov@newcastle.ac.uk

1 Introduction
Event-B [1, 2, 3] is a general-purpose specification language and is a close relative of the popular
B-Method [4](or Classical B). Its distinctive feature is relying on the event-based specification
paradigm. An Event-B model is a collection of events where the next event is selected non-
deterministically among the currently enabled events. Event-B facilitates construction of models
with a large number of rather simple events. Theorem proving is the primary verification tech-
nique and, crucially, almost all the correctness conditions (proof obligations) are formulated on
per-event basis. This makes Event-B very friendly to automated theorem provers. High rate of
verification automation is extremely important and it makes Event-B one of the few practical
proof-based formalisms.

However, there are some downsides in following pure event-based paradigm. Not all systems
are naturally expressed in this style. Often the information about event ordering has to be embed-
ded into guards and event actions. This results in an entanglement of control flow and functional
specification with an additional downside of extra model variables.

There are a number of reasons to consider an extension of Event-B with an event ordering
mechanism:

– for some problems the information about event ordering is an essential part of requirements;
it comes as a natural expectation to be able to adequately reproduce these in a model;

– explicit control flow may help to prove properties related to event ordering;
– sequential code generation requires some form of control flow information;
– since event ordering could restrict the non-determinism in event selection, model checking is

likely to be more efficient for a composition of a machine with event ordering information;
– a potential for a visual presentation based on control flow information;
– bridging the gap between high-level workflow and architectural languages, and Event-B.

In this paper we discuss an extension of Event-B with a mechanism to reason about event
ordering. The practical issues, like verification means, the integration with the Event-B develop-
ment process and the tooling support are given the highest priority. Unlike much of the work on
combining state-based and process-bases specification methods [5, 6, 7, 8] our proposal is based
on theorem proving rather than model checking. We demonstrate that the proposal is realistic and
presents distinct practical advantages with a proof-of-concept tool realising the technique.

2 Flow Model
The Flow View extends Event-B with a facility for defining event ordering. A flow is an expres-
sion written in a special language resembling those used in process algebras, such CSP [9]. The

basic element of the language is an event. Events in a flow are the same events as in an Event-B
machine. Events are characterised by an event label and may have parameters (in flow analy-
sis these are treated as an integral part of an event label). The following is the summary of the
constructs forming the flow language:

e.a event with label e and arguments a
p;q sequential composition
p‖E q parallel composition synchronised on events from E
puq choice
∗(p) terminating loop
′start,′ stop,′ skip initialisation, termination and stuttering events

where p and q are flow expressions. Events starting with ′ bear special meaning. ′start is a
shortcut for Event-B event INITIALISATION, ′stop is an assumed termination event and ′skip
corresponds to an implicit Event-B skip event.

An essential part of the flow mechanism is the notion of a partial flow expression (or simply
partial flow). There are situations when it is not necessary to mention all the machine events in
a flow. For example, one may want to state flow for a part model corresponding to the current
refinement step or simply focus on a part where flow reasoning is required. The notion of partial
flow becomes clear if one thinks of a flow expression as a set of conditions formulated on a
machine. A partial flow is then a more relaxed version of a complete flow.

There are some basic well-formedness requirements to a flow. Event ′start corresponding
to the initialisation event of a machine may not be composed with other events using choice and
parallel composition. Also, it may only occur on the left-hand side of a sequential composition.
This restriction is due to the fact that the initialisation event is a special case in Event-B. It has
no guard and is always a first event to run. Since flows may be partial, initialisation event may
be omitted from a flow. The termination event ′stop also needs special treatment. This event is
not present explicitly in a machine and the following Event-B definition is implied if the event
is present in a flow expression: ′stop = when ¬(G1∨·· ·∨Gn) then skip end . Event
′stop is enabled when all other events are disabled; it executes infinitely but keeps the state intact
so that a machine cannot get into a state when anything else is enabled. Since this event diverges
it is not possible to have any other event to follow ′stop. Hence, ′stop may not occur on the right-
hand side of a sequential composition. For the same reason, a parallel composition with ′stop is
disallowed. It is possible, however, to have a choice between ′stop and another event (including
′start).

In a composition of a flow and machine, the flow loop construct ∗(p) would correspond to a
loop on machine events. It is the responsibility of the Event-B part to demonstrate the convergence
of a loop. This is a standard part of model analysis in the RODIN Event-B environment. Later
we discuss how to improve the strategy of demonstrating convergence in Event-B by using the
information contained in a flow attached to a machine.

In the context of Event-B models, the parallel composition may only be applied to certain
kind of events. We require that for any set of parallel events (as defined in a flow expression) there
exists a well-formed Event-B event that simulates all the possible interleavings of the parallel
events. This condition results in a number of syntactic requirements to machine events.

Let rd(e) return the set of all variables read by event e. These are the model variables ref-
erenced in the event guard and the event actions. Likewise, wr(e) is a set of variables updated
by event e. These are the variables found on the left-hand side of substitutions in an event body.
Events that are potentially concurrent are called independent events.

Definition 1. Independent events. Events that do not have read/write and write/write conflict are
independent. The conflicts are defined as follows:

20

– Read/write conflict. A pair of events have a read conflict if one updates the variables read
by another. This is denoted as rdcfl(e1,e2) = rd(e1)∩wr(e2) 6=�∨ rd(e2)∩wr(e1) 6=�.

– Write/write conflict. Events updating the same variable have a write conflict: wrcfl(e1,e2) =
wr(e1)∩wr(e2) 6=�.

Set E of events is independent, denoted as ind(E), if for every event pair (a,b) from E the
following holds: a 6= b⇒¬rdcfl(a,b)∧¬wrcfl(a,b)

The condition ind(. . .) must be established for all possible event pairs composed with the
parallel composition operator.

3 Semantics
This section discusses the semantics of the flow language and the way to integrate it with Event-B.
In particular we show how to reason about flow and machine consistency in the terms of machine
properties rather than flow or machine traces. But first we use the traces semantics to formally
integrate flows with Event-B. The following defines the traces of a flow expression.

traces(′skip) =̂ {〈〉}
traces(′start) =̂ {〈′start〉}
traces(′stop) =̂ {s | n ∈ N∧ s≤ 〈′stop〉n}
traces(ei.a) =̂ {〈ei.a〉}
traces(p;q) =̂ {s_z | s_z ∈ traces(p)∧ z = 〈′stop〉}∪

{s_t | s_z ∈ traces(p)∧ t ∈ traces(q)∧ z 6= 〈′stop〉}
traces(p|q) =̂ traces(p)∪ traces(q)
traces(∗(p)) =̂ traces(p|(p;∗(p)))
traces(p‖E q) =̂ {

⋃
(s‖E t | s ∈ traces(p)∧ t ∈ traces(q)}

Here s ≤ t states that trace s is a prefix of trace t; α(x) is an alphabet of x (set of all events
occurring in x). The parallel composition operator is defined as a collection of possible event
interleavings:

〈〉‖E〈〉 =̂ {〈〉}
〈a〉_ p‖E〈〉 =̂ � a ∈ E
〈a〉_ p‖E〈〉 =̂ {〈a〉_s|s ∈ (p‖E〈〉)} a /∈ E
〈a〉_ p‖E〈b〉_q =̂ � a ∈ E ∧b ∈ E ∧a 6= b
〈a〉_ p‖E〈b〉_q =̂ {〈a〉_s|s ∈ (p‖E q)} a ∈ E ∧b ∈ E ∧a = b
〈a〉_ p‖E〈b〉_q =̂ {〈b〉_s|s ∈ (〈a〉_ p‖E q)} a ∈ E ∧b /∈ E
〈a〉_ p‖E〈b〉_q =̂ {〈a〉_s|s ∈ (p‖E〈b〉_q)}∪ a /∈ E ∧b /∈ E

{〈b〉_s|s ∈ (〈a〉_ p‖E q)}
p‖E q constructs all the possible interleavings of p and q while respecting the synchronisation

on common events E.

3.1 Event-B Trace Semantics
In this section we briefly present how traces of an Event-B model are constructed. Much more
detailed treatment of the subject is given in [10] and [11].

An elementary step of a machine interpretation is the computation of the set of next states for
some current event. For some event e the next states are found by selecting a set of suitable values
for the event parameters and using them to characterise the possible next states v′. An Event-B

21

machine may be understood as a relation T : Event S S : T df= ∃pe ·(Ge(pe,v)∧Se(pe,v,v′)). Here
pe,Ge,Se are the event parameters, guard and before-after predicate. T is a predicate character-
ising a relation on system states: it is a total function from events to relations on states. A next
event would start from a state produced by a previous event. This is expressed with the sequential
composition operator ";": e1;e2 = ∀v1 ·T (e1)[v1/v′]∧T (e2)[v1/v]. v1 is a vector of fresh names
used to record the final state of e1 and pass it on to e2. The concept of sequential composition can
be generalised to a chain of events. Operator seq performs a sequential composition over an event
list: seq(〈〉) = id(S) and seq(〈e〉t) = T (e);seq(t). From these definitions, the traces of a machine
are formulated as all possible traces reachable from the initial machine state Init:

traces(M) = {t | seq(t)[Init] 6=�}

In the next section we use the traces semantics of flows and Event-B to define the consistency
conditions for a model combining a flow expression and an Event-B machine.

3.2 Flow/Machine Consistency
The minimal requirement to a given pair of a flow and machine is that the two agree on deadlocks
and divergences. To account for partial flows it is required to consider a situation when only a
part of a machine traces is specified by a flow. A flow trace starting with ′start and eventually
reaching stop would match a complete machine trace if it matches any trace at all.

Definition 2. Flow consistency. A flow f is consistent with a given machine m if it is possi-
ble to find a machine trace that contains some flow trace: ∃t,hd, tl · t ∈ traces(f)∧ hd_t_tl ∈
traces(m).

One important case of a flow and machine combination is when flow event ordering and
event guards together define a concrete, implementable event ordering. Individually, both flow
expression and machine still may have non-deterministic event choice. Such a property is essen-
tial for code generation and sometimes is a desired property of a model. While choice related
non-determinism must be resolved, non-deterministic event ordering may still be present due to
the parallel composition operator. To distinguish between these two cases we use the notion of
interleaving equivalence.

Two traces are said to be interleave equivalent if one can be obtained from another by swap-
ping events in a pair of independent events. This is formulated using the following relation on
traces: s Re t⇔ s = t ∨∃a,b,hd, tl · (hd_〈a,b〉_tl ∈ t ∧hd_〈b,a〉_tl ∈ s∧ ind({a,b})). Traces
s and t are said to be interleave equivalent if s Re∗ t where Re∗ is a transitive closure of Re.

Definition 3. Concrete flow. The traces contained in the intersection of a concrete flow and
machine traces are interleave equivalent.

Having these definitions does not lead to practical means of establishing flow properties
especially since it is our intention is to use theorem proving to reason about a combination of a
flow and machine. In the rest of the section we discuss how to transition from statements about
traces of flows and machines to equivalent conditions on machine variables, events guards and
event actions. First, some mathematical context is presented. This gives a basis for theorems
reformulating the definitions of consistent and concrete flows in terms of machine properties. In
its turn, this gives a foundation for deriving proof obligations.

In a general case, an event may be preceded by any configuration of choice and parallel
composition. Let us consider the following example: ((a‖b)|(c‖d));z. Event z gets enabled as

22

soon as both a and b or c and d terminate. One has to show that for any possible situation (that
is, the first and the second branch of the choice) it is possible to pass control to z. Even more
complex case is demonstrated by the following expression: ((a‖b)|(c‖d));((e‖ f)|(g‖h)). For
this, one also has to consider a multitude of options on the right-hand side. The notions of entry
and exit points are introduced to reason about events actively involved in passing control in a
sequential composition. These are defined as follows:

EN(e) = {{e}}
EN(′skip) = {{}}
EN(′start) = {{′start}}
EN(′stop) = {{′stop}}
EN(p;q) = EN(p) p 6=′ skip
EN(′skip;q) = EN(q)
EN(p|q) = EN(p)∪EN(q)
EN(p‖q) = {EN(p)∪EN(q)}
EN(∗(p)) = EN(p)

EX(e) = {{e}}
EX(′skip) = {{}}
EX(′start) = {{′start}}
EX(′stop) = {{′stop}}
EX(p;q) = EX(q) q 6=′ skip
EX(p;′ skip) = EX(p)
EX(p|q) = EX(p)∪EX(q)
EX(p‖q) = {EX(p)∪EX(q)}
EX(∗(p)) = EX(p)

where EN(x) is a set of entry points of a flow expression x. Correspondingly, EX(x) de-
notes the set of exit points. Note that entry and exits points are set of sets. The reason is that a
combination of parallel composition and choice results in a set of event clusters. For example
the set of entry points of ((a‖b)|(c‖d));z is {{a,b},{c,d}}. This set contains two entry points
{a,b} and {c,d} where each entry points is set itself denoting a complex entry point of a parallel
composition construct.

Independent events may be merged into a single event1. Indeed, since independent events
are conflict free and can be executed in any order there is nothing that prevents an existence of a
single event that would have the same effect as possible interleavings of the independent events.
This is a purely abstract construction. There is, of course, no need to actually introduce merged
events in a model.

Definition 4. Operator merge(a,b). The operator constructs a single event from the definitions
of events a and b. It is well-defined only when a and b are independent. For some events a and b,

a = any p where G(p,d) then S(p,d,w′) end
b = any q where H(q,g) then R(q,g,u′) end

a merged event takes the following general form:
a = any p,q where G(p,v)∧H(q,v) then S(p,v,v′)∧R(q,v,v′) end

Constant c and set s are omitted but implied in guards and before-after predicates.

Since only independent events may be merged, the resultant merged event enjoys a number
of properties. It is enabled when both its donor events are enabled and simulates the effect of
interleaving the merged events. A merged event is feasible as long as its individual donor events
are feasible. It is straightforward to see that the state observed after executing a merged event
is the same state as one would observe after executing both donor events in any order. Event
merging is a special case of event fusion [12].

Definition 5. Operator s;m t. This operator defines the consistency conditions for a sequential
composition where control is passed from a collection of exit points s to a collection of entry
points t. The operator type is

; : M×P(P(Event))×P(P(Event))→ BOOL

1 Event-B uses event merging as a refinement technique. This has nothing to do with our defi-
nition of merging.

23

where M is an Event-B model and Event is a set of model events; the second and the third
parameters are some exit and entry points. The strategy is to construct an Event-B event imple-
menting what is essentially a sequential composition of s and t. The feasibility conditions for the
event would demonstrate the well-formedness of a sequential composition.

Let us first consider a simple case of a composition of two events when s = {{e1}} and
t = {{e2}}. Events e1 and e2 are defined as follows (these definitions come from an Event-B
machine that is supplied as the first parameter to operator):

e1 = any p where G(p,v) then S(p,v,v′) end
e2 = any q where H(q,v) then R(q,v,v′) end

A composed event ”e1;e2” is an event with the same guard as e1 and the after state of e2
when executed after executing e1:

”e1;e2” = any p where G(p,v) then S(p,v,v′);(∃q ·H(q,v)∧R(q,v,v′)) end
Here we introduce operator ; for the sequential composition of event actions2. It can be

reduced to a simple action using the following definition:
S0(p,v,v′);S1(p,v,v′)=̂∃ v1 · S0(p,v,v1) ∧ S1(p,v1,v′)
Now we are ready to define the meaning of ;m when, as a special case, it is applied to a pair

of events: e1 ;̂me2 = FIS(”e1;e2”), where FIS(e) is an Event-B event feasibility condition (see
Section ?? and also [3]).

The next step is to reduce the general form of ; to the simple case above. For this we consider
all the pairs from a Cartesian product of s and t while also reducing the multiple exit and entry
points introduced by the parallel composition construct to a single event: s;m t = ∀d, f · (d, f) ∈
s× t⇒ mergeall(d);̂mmergeall(f), where mergeall(x) is a following generalisation of merge:

mergeall(x) =
{

e x = {e}
merge(hd,mergeall(tl)) x = {hd}∪ tl∧ tl = x\hd

Finally, we are ready to approach the problem of checking flow/machine consistency. Using
the ; operator, the problem is reduced to a number of conditions on Event-B machine events.
Importantly, they all are expressed in first-order logic as they are essentially various instance of
the Event-B feasibility proof obligation. The last remaining step is to lift ; to the level of a model
composed of a machine and flow.

Definition 6. Predicate cons. This predicate defines the consistency conditions for a combination
of a flow and machine. Its type is cons : F×M→ BOOL and the definition is as follows:

cons(ev,m) = true
cons(p;q,m) = cons(p,m)∧ cons(q,m)∧ (EX(p);m EN(q))
cons(p|q,m) = cons(p,m)∧ cons(q,m)
cons(p‖q,m) = cons(p,m)∧ cons(q,m)
cons(∗(p),m) = cons(p,m)

where ev is either a machine event one of the predefined events (′skip, ′start or ′stop).

Now we are able to state the flow consistency as a condition on machine elements.

Theorem 1. A flow f is consistent with a machine m provided cons(f ,m) holds.

Proof. Firstly, either a flow or machine may diverge at different points without giving an option
to continue with a non-divergent trace. For a flow this could only happen when there is a transition
into ′stop event (flow loops always agree with machine event loops on divergences since a flow
loop covers both terminating and non-terminating machine loops). In other words, there is an

2 Classical B defines a similar operator to compose actions[4].

24

instance of sequential composition p;q such that {′stop} ∈ EN(q). For a machine, a divergence
on traces happens when an event infinitely enables itself while keeping all other events disabled.
The conditions introduced by cons guarantee that any sequential composition is consistent and
thus a divergent event may not be found in the entry points of the right-hand side of a sequential
composition. Then, assuming that flow and machine traces agree on deadlocks, such an event
may only be ′stop. Hence, the satisfaction of cons(f ,m) establishes the fact that traces of f and
traces of m agree on divergences.

Secondly, there is a possibility that a combination of a flow and machine reveals deadlocks
that were not present in either flow or machine alone. The only source of such deadlocks is a
sequential composition that is not well-formed. However, cons(f ,m) states that this may not be
the case.

One interpretation of an Event-B machine is that of a loop made of machine events and
preceded by the initialisation event. In the flow language this is expressed as ′start;∗(e1| . . . |ek).
This expression gives rise to a consistency condition requiring that there is an enabled event after
the initialisation event. It is straightforward to see that machines shown to be deadlock free or
refining a deadlock free abstract machine are always consistent with this flow.

Theorem 2. A consistent flow f , containing ′start in its traces, is concrete with the respect to
machine m if for every instance of the sequential composition p;q the following condition holds:
∀s, t · {s, t} ∈ EN(q)∧ s 6= t⇒¬(EX(p);m s∧EX(p);m t)

Proof. Let us consider two traces of f : d and g, d ∈ traces(f),g ∈ traces(f) such that they are
prefixes of some machine traces: ∃md,mg · d ≤ md ∧ g ≤ mg. d and g are necessarily prefixes
since ′start is included in the flow expression f . Should it not be possible to find two machine
traces then the theorem condition is trivially satisfied. Let us assume that d and g are not interleave
equivalent: ¬(d Re∗ g). Then it is possible to find two distinct, non-independent events a and b,
a 6= b,¬ind(a,b) where ∃hd · hd_〈a〉 ≤ d ∧ hd_〈b〉 ≤ g∧ #hd > 0 and #x denotes the length
of trace x. The two traces record the same event occurrences until a point when a is recorded
in one and b is recorded in another. Since the theorem condition requires that f uses ′start it is
known that 〈′start〉 ≤ hd and thus hd is not empty. Prefix hd corresponds to some flow expression
f p such that traces(f p) = hd (it is not, however, necessarily a part of f as it might be just one
possible trace of a parallel composition in f). The fact that d and g disagree on events a and b
necessarily requires that p f is followed by a choice construct that among its entry points has a
and b. Thus, machine definition would have to satisfy the following condition: EX(f p);m {a}∧
EX(f p);m {b}. Let us consider the theorem condition where let p = f p and {a,b} ∈EX(q). Then
¬(EX(f p);m {a}∧EX(f p);m {b}). The contradiction proves the theorem.

These two theorems show how to reason about flow and machine consistency in terms of
conditions o machine elements. Next we show how derive conditions that could be used as proof
obligations in the automated reasoning framework of Rodin Platform[13].

3.3 Proof Obligations
For a combination of a flow and machine we would like to be able to demonstrate that the flow
is consistent or concrete (the latter requires the former). The general strategy is split an overall
proof into a collection of simpler conditions.

For flow consistency, a suitable way to do this is to analyse each instance of sequential
composition individually as suggested by the condition of Theorem 1 (see Definition 6 for oper-
ator cons). For an instance of a sequential composition, from Definition 5 we have the following
feasibility condition for a composed event.

25

I(v)∧G(p,v) `
∃v′ · (S(p,v,v′);(∃q ·H(q,v)∧R(q,v,v′))) `
∃ v1 · (S(p,v,v1) ∧ ∃q ·H(q,v1)∧R(q,v1,v′)))

The condition is far too complex in the current form. A more compact one could be found.
Let us first assume that the composed events are feasible on their own. This gives the following
two axioms.

axm1 : I(v)∧G(p,v) ` ∃v′ ·S(p,v,v′)
axm2 : I(v)∧H(q,v) ` ∃v′ ·R(q,v,v′)
Applying axiom axm1, the feasibility condition for a composed event is simplified to the

following:
I(v)∧G(p,v)∧S(p,v,v1) ` ∃ q · H(q,v1)∧R(q,v1,v′)
With the help of the second axiom we are able to remove R(q,v1,v′) clause from the goal:
I(v)∧G(p,v)∧S(p,v,v1) ` ∃ q · H(q,v1)
Finally, extending the above with the consideration of model constants and sets, the follow-

ing proof obligation is formulated.
P(c,s)∧ I(c,s,v)∧G(c,s, pe,v)∧S(c,s, pe,v,v′) ` H(c,s,q,v)
Here G and S are the guard and before-after predicate (actions) of what is possibly a result of

merging several model events. The proof obligation demonstrates that an event characterised by
G and S is able to pass control to another (possibly merged) event with guard H for any possible
state permitted by G.

The axioms we have rely upon are sound since they are a part of model consistency proof
obligations that are to be discharge for every Event-B model[3].

With a similar procedure we are able to find a practical form of a proof obligation for demon-
strating that a flow is concrete. The following proof obligation requires that for a given instance
p;q of a sequential composition the choice branches in q, if there any, are mutually exclusive.

P(c,s)∧ I(c,s,v)∧G(c,s, p,v)∧S(c,s, p,v,v′) `∧
{s,t}∈EN(q)∧s 6=t ¬(Hs(c,s,qs,v′)∧Ht(c,s,qt ,v′))

Here Hs and Ht are the guards of possibly merged events. The goal in this proof obligation
may become lengthy in some extreme case when there is a choice on a large number of events.
However, since the goal is in conjunctive form is relatively straightforward for a prover to apply
case analysis.

3.4 Example

In this section we consider a combination of a simple Event-B model and flow expression. An
emphasis is made on using sequential event composition as it is the construct requiring the con-
sistency proof obligations.

The example is a sluice with two doors connecting areas with dramatically different pres-
sures. The pressure difference makes it unsafe to open a door unless the pressure is levelled
between the areas connected by the door. The purpose of the system is to adjust the pressure in
the sluice area and control the door locks to allow a user to get safely through the sluice.

The model has three variables: d1 ∈ DR and d2 ∈ DR are the door states; pr ∈ PR is the
current pressure in the sluice area. A door is either closed or open: DR = {OP,CL} and pressure
is low or high: PR = {HIGH,LOW}. Initially, the doors are shut and the pressure is set to low.

A model has a number of invariants expressing the safety properties of the system: a door
may be opened only if the pressures in the locations it connects is equalised; at most one door
is open at any moment; the pressure can only be switched on when the doors are closed. Model
events control the doors and a device regulating the sluice pressure:

26

open1 = when d1 = CL∧ pr = LOW then d1 := OP end
close1 = when d1 = OP then d1 := CL end
open2 = when d2 = CL∧ pr = HIGH then d2 := OP end
close2 = when d2 = OP then d2 := CL end
pr_low = when d1 = CL∧d2 = CL∧ pr = HIGH then pr := LOW end
pr_high = when d1 = CL∧d2 = CL∧ pr = LOW then pr := HIGH end

Finally, the following flow expression is used. It describes a sequence of steps needed to let
a user through the sluice starting from an area adjoining door 1 (d1):
pr_low;open1;close1; pr_high;open2;close2

Let us see how we can check that this specification is consistent with the flow expression. For
each instance of sequential composition (pr_low;open1, open1;close1 and so on) it is needed to
show that condition (??) holds. For example, for pr_low;open1 it is:{

d1 = CL∧d2 = CL
pr′ = LOW ∧d1′ = d1∧d2′ = d2

` d1′ = CL∧ pr′ = LOW

The condition is trivially true. Another proof obligation, generated from open1;close1, also
trivially holds: d1 = CL∧ pr = LOW ∧ pr′ = pr∧d1′ = OP∧d2′ = d2 ` d1′ = OP

The next case presents some difficulties. When trying to demonstrate that event close1 al-
ways enables pr_high we find that there is not enough information to discharge the proof obliga-
tion: {

d1 = OP∧ pr′ = pr
d1′ = CL∧d2′ = d2

` d1′ = CL∧d2′ = CL∧ pr′ = LOW

The problem here is that the guard of event close1, although strong enough to satisfy safety
properties, is too weak for the flow. By strengthening the guard with the additional clauses d2 =
CL∧ pr = LOW we are able to discharge the proof obligation.

3.5 Collecting Additional Hypothesis
There is a way to discharge proof obligations like in the example above without strengthening
event guards. Indeed, by looking at the flow expression one should notice that close1 is always
preceded by pr_low and thus may only be enabled when pr = LOW . Likewise, since close1
always follows open1 and the second door is always closed in the after-states of open1 (due to
the safety invariant of the model requiring that at most one door is open a time) it is known that
the condition d2 = CL is always true for states when close1 is enabled. Hence all the information
that was introduced into proofs by strengthening event guards is already present in a model. To
benefit from this information it must be collected and added in the form of hypothesis to flow
proof obligations.

Let vi−1 be a model state preceding state vi and state vn be the most recent previous state
preceding the current state v. Also, let Hi(v1, . . . ,vn,v) be the current collection of hypothesis for
some event a. Then for an instance of sequential composition a;b the collection of hypothesis
available in the after-state of b is computed as

Hi+1 = Hi(v1, . . . ,vn,vn+1)∧G(vn+1)∧S(vn+1,v)
where G and S are the guard and actions of b. It is straightforward to generalise this ba-

sic procedure to the complete flow language. However, there an issue of filtering out irrelevant
hypothesis as a large number of hypothesis slows down some provers.

3.6 Flow Refinement
We use the traces refinement notion [9] to define the refinement relation for flow expressions. To
keep flow events in agreement with machine events, some renaming is applied before comparing
flow traces:

27

property definition description
eventually a F∗ b after a eventually b
reachable ′start F∗ b b is reachable
always reachable ∀e ·′ start F∗ e⇒ e F∗ b b is always reachable
liveness ∀e ·′ start F∗ e⇒∃n · {b}= Fn(e) b keeps happening

Fig. 1. Flow properties

fa v fc⇔ traces(R∗(fc \En))⊆ traces(fa)
where x\S removes all occurrences of events from S in traces of x; En is a set of new events

introduced in machine refinement (these events refine an implicit skip event of an abstract ma-
chine); R∗ is a function mapping concrete event labels into the labels of abstract events. Note that
since a flow selects one of the possible traces of a machine, the combination of a consistent flow
and a machine exhibits the failure-divergence refinement in respect to the pair of abstract flow
and a machine.This is due to the fact that Event-B refinement is a case of the failure-divergence
refinement [11].

3.7 Reasoning about Flows
A flow expression may be seen as a directed graph. Its vertices represent model events and edges
correspond to the transitions connecting events in a flow expression. Computing the transitive
closure of such graph, one is able to check statements like "after event a eventually event b" or
"event x is reachable". Let F be a graph constructed from a flow expression: F : Event E vent.
Then "after event a eventually event b" is understood as a F∗ b and "event x is reachable"
becomes ′start F∗ x. One is also able to check that event x is always reachable by stating
that it can be reached from any event that in its turn is reachable from the initialisation event:
∀e ·e ∈ F∗(′start)⇒ e F∗ x. With a similar technique it is possible to express liveness properties
to check that something good keeps happening throughout a system lifetime (Figure 1).

Since flow properties are checked at the level of a flow and a flow may have more traces
than a machine, not all flow properties automatically hold for a combination of a flow and ma-
chine. It this light, formulating flow properties may seem a vain exercise. However, flows give a
considerable advantage in model checking by reducing a model state space. Since validating flow
properties is computationally cheap and the user gets an instant feedback, it is more effecient to
first constrain a flow expression and then apply model checking on combination of a flow and
Event-B machine.

4 Conclusions
In our view, the ability to reason about event ordering is a useful addition to the Event-B method.
It helps to construct models with rich control flow properties and it also makes such models
more readable. Unlike the existing work in this area, it relies solely on theorem proving. It uses
practical and scalable proof obligations that are handled well by automated theorem provers. The
approach benefits from the existing tool support with a proof-of-the-concept tool implemented
for the RODIN platform [13].

We attempted to solve the problem of unmanageable proofs resulting from a sequential com-
position of actions. For instance, in Classical B, actions within operations and events may be com-
posed using operator ;, e.g., a := a+1;b := a+1. This is interpreted as applying the second action

28

in the context of the first one. Unfortunately, the verification of sequential action composition is
not compositional and all the composed actions must be analysed as a single logical statement.
With flows, we make use of event guards to do localised reasoning where possible. In fact, in all
the case studies attempted so far, it was possible to show flow consistency by strengthening event
guards and adding new invariants with most of the proof obligations discharged automatically.
This is despite the fact that in some example there were rather long chains of sequentially com-
posed events (14 for the final refinement of the sluice control). The role of guards in analysing
flow consistency is similar to the use of assertions in VDM [14] and refinement calculus [15].
Yet in our case, guards retain their primary role in the analysis of event feasibility, invariant
preservation and refinement.

We have presented a three-step verification approach where one first establishes indepen-
dently the well-formedness of a flow and consistency (and possibly refinement) of a machine and
then checks the consistency of a machine and flow combination. In addition to the consistency
condition, there is a possibility to generate proof obligations that would ensure that a flow is suit-
able for deriving an executable program. We are investigating some additional proof obligations.

The introduction of a flow is a step towards constructing runnable sequential code from
Event-B models. The addition of a flow to a machine converts an event-triggered, data-driven
Event-B model into a a sequence of assignments and control structures, such if and while. It is
possible that flows could play the role of B0 intermediate language [4] of Classical B for the
Event-B method.

The proposed mechanism has been implemented as an extension of RODIN platform [13].
The platform is an Eclipse-based integrated environment for constructing Event-B developments.
It provides means for model manipulation (editing, pretty-printing, exporting, etc.) and verifica-
tion. The platform is responsible for generating proof obligations demonstrating model consis-
tency and also the refinement obligations if a model happens to be a refinement of another model.
Proof obligations are handed over to a collection of theorem provers. Any unproved obligations
has to be analysed in an integrated interactive prover. We considered it essential to make the flow
extension a natural part of an Event-B development method. The flow editing is done within the
Platform’s machine and thus appears a natural part of a model. Flow proof obligations are au-
tomatically generated from a flow expression attached to a machine. Syntactic checks and flow
refinement checks are also done automatically in a background while a user works with a model.
A number of case studies carried with the tool demonstrated that, on average, flows account for
10 % to 25 % of interactive proof obligations.

There is a substantial amount of work based on the Morgan’s [11] failure-divergence se-
mantics for event-based systems discussing the integration of state-based and process-based for-
malisms [16, 17, 18, 8, 19]. Their main difference from our approach is that consistency analysis
is carried out with a help of process algebraic reasoning.

Our flow language lacks many constructs found in notations like CSP and CCS. In particular
there are no communication primitives. It would be hard to justify a message passing mechanism
for a single machine but it becomes an interesting possibility should a flow be able to relate
several machines. The combination of CSP and Classical B has been investigated in [17] while
the CSP style message passing was used to compose Event-B machines[12].

References
1. J. R. Abrial and L. Mussat, “Introducing Dynamic Constraints in B,” in Second International

B Conference. LNCS 1393, Springer-Verlag, April 1998, pp. 83–128.
2. J.-R. Abrial, “Event Driven Sequential Program Construction,” 2000, available at http:

//www.matisse.qinetiq.com.

29

3. C. Metayer, J. Abrial, and L. Voisin, Eds., Rodin Deliverable D7: Event B language. Project
IST-511599, School of Computing Science, Newcastle University, 2005.

4. J. R. Abrial, The B-Book: Assigning Programs to Meanings. Cambridge University Press,
2005.

5. H.Treharne and S.Schneider, “How to Drive a B Machine,” 2000, pp. 188–208.
6. M.Butler and M.Leuschel, “Combining CSP and B for Specification and Property Verifica-

tion,” 2005, pp. 221–236.
7. C. Fischer and H. Wehrheim, “Model-Checking CSP-OZ Specifications with FDR,” in

IFM ’99: Proceedings of the 1st International Conference on Integrated Formal Methods,
K. Araki, A. Galloway, and K. Taguchi, Eds. London, UK: Springer-Verlag, 1999, pp.
315–334.

8. J. Woodcock and A. Cavalcanti, “The Semantics of Circus,” in ZB ’02: Proceedings of the
2nd International Conference of B and Z Users on Formal Specification and Development in
Z and B. London, UK: Springer-Verlag, 2002, pp. 184–203.

9. C. A. R. Hoare, “Communicating Sequential Processes,” Commun. ACM, vol. 21, no. 8, pp.
666–677, 1978.

10. M. Butler, “A CSP Approach to Action Systems. phd thesis.” 1992.
11. C. Morgan, “Of wp and CSP,” pp. 319–326, 1990.
12. M. Butler, “Decomposition Structures for Event-B,” in Integrated Formal Methods

iFM2009, Springer, LNCS 5423, vol. LNCS, no. 5423. Springer, February 2009.
13. “Event-B and RODIN Platform,” http://www.event-b.org, 2004.
14. C. B. Jones, Systematic software development using VDM. Prentice Hall International (UK)

Ltd., 1986.
15. R.-J. J. Back and J. V. Wright, Refinement Calculus: A Systematic Introduction. Springer-

Verlag New York, Inc., 1998.
16. M. Leuschel and M. Butler, “Combining CSP and B for Specification and Property Verifica-

tion,” A. T. John Fitzgerald, Ian Hayes, Ed. Springer-Verlag, LNCS 3582, January 2005,
pp. 221–236.

17. M. J. Butler, “An Approach to the Design of Distributed Systems with B AMN,” in Proc.
10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM), LNCS 1212,
J. Bowen, M. Hinchey, and D. Till, Eds. Springer-Verlag, Berlin, April 1997, pp. 223–
241.

18. S. Schneider and H. Treharne, “Verifying Controlled Components,” in In Proc. IFM.
Springer, 2004, pp. 87–107.

19. C. Fischer, “CSP-OZ: a combination of object-Z and CSP,” in FMOODS ’97: Proceedings
of the IFIP TC6 WG6.1 international workshop on Formal methods for open object-based
distributed systems. London, UK, UK: Chapman & Hall, Ltd., 1997, pp. 423–438.

30

Structuring Specifications with Modes

Alexei Iliasov, Fernando Luís Dotti, Alexander Romanovsky

Centre for Software Reliability, Newcastle University, UK

Abstract. The two dependability means considered in this paper are rigorous
design and fault tolerance. It can be complex to rigorously design some classes
of systems, including fault tolerant ones, therefore appropriate abstractions are
needed to better support system modelling and analysis. The abstraction pro-
posed in this paper for this purpose is the notion of operation mode. Modes are
formalised and their relation to a state-based formalism in a refinement approach
is established. The use of modes for fault tolerant systems is then discussed and a
case study presented. Using modes in state-based modelling allows us to improve
system structuring, the elicitation of system assumptions and expected function-
ality, as well as requirement traceability.

1 Introduction

Systems are dependable if they deliver service that can be justifiably trusted [15]. Building such
systems is a challenging task, typically conducted by employing various dependability means.
In this paper we are particularly interested in the means of two types: rigorous design and fault
tolerance.

Rigorous design (or fault prevention) is often used to justify system trustworthiness by pre-
venting introduction of faults into system. This can be done by employing formal modelling and
analysis. The known problem with this approach is its scalability. A way to improve it is through
the development of abstractions and formal techniques tailored to classes of systems.

System dependability cannot be achieved by only trying to build perfect systems, any critical
system has to face abnormal situations (including malfunctioning devices, wearing hardware and
software defects) and deal with them properly. This is achieved by integrating appropriate fault
tolerance means into the system. Unfortunately the situation is not satisfactory here: as reported
by F. Cristian [9], field experience with telephone switching systems showed that up to two thirds
of system failures were due to design faults in exception handling or recovery algorithms. Other
evidences of inadequate use or construction of fault-tolerance mechanisms are reported in [21].

Several authors have investigated fault-tolerance modelling using different specification for-
malisms and verification approaches (e.g. [20, 12]). However, the identification and support of
suitable abstractions for formal design of fault tolerant systems is still an open issue. Such abstrac-
tions have to, at the one side, be amenable to representation using a formal specification language,
and, on the other side, offer the way to model and reason about (i) states: the characterization of
normal and erroneous states is inherent to fault tolerant systems; (ii) structure: separation of nor-
mal and abnormal (fault tolerant) behaviour is to be supported, as well as the representation of
control structures for different tolerance mechanisms; and (iii) system properties: the statement
of system properties under different working conditions (addressing fault assumptions) should be
supported.

In this paper the concept of ‘operation mode’ [13] is revi-sited. We use modes to structure
system specification to facilitate rigorous design and to integrate fault tolerance. Since modes ap-
pear in different types of systems, such as real-time [13], avionic and space [8, 18], the approach
is useful for building wide classes of dependable systems.

We use term mode in the same sense as [13]: both as partitions of the state space, repre-
senting different working conditions of the system, and as a way to define control information,
structuring system operation. In Section 2, modes are defined to allow the modeller to state the
property that must be respected, called guarantee, in each working system condition, called as-
sumption. In Section 3, mode refinement is discussed, allowing detalisation of the mode system.
The use of modes together with a state-based formal method is discussed in Section 5. Mode re-
finement is performed hand in hand with the refinement of the respective formal model and allow
layered definition and reasoning about properties. This helps to trace properties to requirements.
Refinement also offers a strategy to obtain a correct implementation from the formal model. The-
orem proving strategies and tools sometimes offer an attractive option to model-checking as they
avoid the state-space problem. Section 4 discusses the use of modes in the design of fault-tolerant
systems. Section 6 exemplifies the ideas with the model of a cruise control system. Related work
and conclusions are presented in Sections 7 and 8.

2 Operation Modes
Operation modes help to reason about system behaviour by focusing on the system properties
observed under different situations. In this approach, a system is seen as a set of modes partition-
ing the system functionality over differing operating conditions. The term assumption is used to
denote the different operating conditions and guarantee denotes the functionality ensured by the
system under the corresponding assumption. A system may switch from one mode to another in
a number of ways characterised by mode transition.

A mode is thus a pair A/G where A(v) is an assumption, a predicate over the current system
state, G(v,v′) is the guarantee, a relation over the current and next states of the system. Vector
v is the set of variables, characterising a system state and constrained by an invariant I(v). The
purpose of an invariant I(v) is to limit the possible states by excluding undesirable or unsafe
states. It also defines types for variables v. To limit the scope of discussion, it is assumed that a
system is only in one mode at a time. Mode overlapping and mode interference bring a number of
interesting challenges that cannot be sufficiently addressed in this paper due to space limitations.
Formally, it is required that mode assumptions are mutually exclusive and exhaustive in respect
to a model invariant, as below. ⊕ is a set partitioning operator.

I(v) = A1(v)⊕·· ·⊕An(v) (1)

Mode switching is realised with mode transitions. A mode transition is an atomic step
switching system from one source to one destination mode. It is convenient to characterise a
mode transition by a pair of assumptions - the assumptions of source and of destination modes.
Assuming that mode is assigned an index, a mode transition from Ai/Gi to A j/G j is a relation
on mode indices i ; j. A system starts executing one of initiating transitions >; k. The tran-
sition switches the system on and places it into some system mode Ak/Gk. A system terminates
by executing one of terminating transitions t ;⊥ 1. Mode transitions i ;> and ⊥; j are not
allowed. Also, it is required that during its lifetime a system enters at least in one operation mode

1 Not every system has to have this transition: a control system would be typically designed as
never aborting.

32

and thus transition >;⊥ is not possible. There can be any number of initiating and terminating
mode transitions.

There are restrictions on the way mode assumptions and guarantees are formulated. The
states described by a guarantee must be wholly included into valid model states:

I(v)∧A(v)∧G(v,v′)⇒ I(v′) (2)

The assumption and guarantee of a mode must be non-contradictory. I.e. a mode should
permit a concrete implementation:

∃v,v′ · (I(v)∧A(v)⇒ G(v,v′)) (3)

A system is characterised by a collection of modes and a vector of mode transitions:

A1/G1, . . . An/Gn
i ; j, . . . k ; l

(4)

The state of a system described using operation modes is a tuple (m,v) where m is the
index of a current operation mode and v is the current system state. Mode index helps to clarify
how mode switching is done although it may be computed from v alone due to condition 1. The
evolution of a system like above is understood as follows. While it is in some mode m the state
of model variables evolves so that the next state is any state v′ satisfying both the corresponding
guarantee G(v,v′) and the modes assumption A(v′):

internal
Am(v)∧Gm(v,v′)∧Am(v′)
〈m,v〉 → 〈m,v′〉

If there is a mode transition originating from a current mode, the transition could be enabled
to switch the system to a new mode.

switching
m ; n∧Am(v)∧An(v′)
〈m,v〉 → 〈n,v′〉

These two activities compete with each other: at each step a non-deterministic choice is
made between the two. An initiating transition is a special case: it must find an initial system
state without being able to refer to any previous state:

start
>; k∧Ak(v)
〈>,undef〉 → 〈k,v〉

where undef denotes a system state prior to the execution of an initiating transition. System
termination is addressed by the switching rule above. Note that all of the three rules also assume
that an invariant holds in current and new states: I(v)∧ I(v′). This is a corrolary of conditions 1
and 2.

3 Mode Refinement
Refinement is formal technique for transitioning from an abstract model to a concrete one [7].
Terms abstract and concrete are relative here: a concrete model of one step is another’s step
abstract model. There are a number of benefits in apply refinement in model construction: it
combats complexity by splitting design process into a number of simple steps; it helps to organise
the process of modelling by allowing a modeller to focus on one aspect of a model a time; it makes
proofs easier as for each refinement one only has to proof the correctness of new behaviour2.

2 Strictly speaking, this only applies to cases when refinement is monotonic. However, all the
popular formal methods enjoy this property and heavily rely on it.

33

Refinement is a partial order relation on model universe. This relation is denoted as v and it
is reflexive, transitive and antisymmetric. For the operation modes mechanism the refinement
technique is used to gradually evolve a system description by adding or replacing modes and
transitions. Such evolution is formal in a sense that a refined model may be used in place of its
abstraction. A number of refinement techniques can be used.

Data Refinement With data refinement, data types are changed and data structures are in-
troduced. The vector of model variables v is changed to some new vector u and model invariant
I(v) is replaced with new invariant J(v,u), often called a gluing invariant. The use of variables v
in new invariant J allows modeller to expresses a linking relation between the state of concrete
and abstract models.

Behavioural Refinement Behaviour refinement details the mode view on a system. Sys-
tem behaviour becomes more deterministic and also described in a finer level of details. One case
is changing a mode assumption or guarantee or both. It is postulated mode assumption cannot
be strengthened during refinement. This is based on understanding that an assumption is a re-
quirement of a mode to its environment. As a system developer cannot assume control over the
environment of a modelled system, a stronger requirement to an environment may not be realis-
able. On the other hand, a weaker requirement to an environment means that a system is more
robust as it would remain operational in a wider range of environments. Symmetrically, a mode
guarantee cannot be weakened as it is understood as a contract of a mode with the rest of a system
and its environment. Weakening a mode guarantee could violate expectations of another system
part. The following condition summarises this refinement rule:

A(v)/G(v,v′)⊆ A′(u)/G′(u,u′),

iff
{

I(v)∧ J(v,u)∧A(v)⇒ A′(u)
J(v,u)∧G′(u,u′)⇒ G(v,v′)

(5)

Another case is when an abstract mode is a modelling abstraction for several concrete modes.
Thus, a single mode in an abstract model evolves into a two or more concrete modes. The general
rule for such refinement step is that the combination of new modes must be a refinement of an
abstract mode. In more concrete terms, a disjunction of concrete mode assumptions must be not
stronger than the abstract mode assumption and the disjunction of concrete guarantee must be not
weaker than the abstract guarantee:

A(v)/G(v,v′)⊆ A1(u)/G1(u,u′)
A2(u)/G2(u,u′) ,

iff
{

I(v)∧ J(v,u)∧A(v)⇒ A1(u)∨A2(u)
I(v)∧ J(v,u)∧G1(u,u′)∨G2(u,u′)⇒ G(v,v′)

(6)

Superposition Refinement Sometimes it is needed to add new modes without splitting an
existing abstract mode. Through superposition refinement it is possible to refine an implicit skip
mode false/true. This is the weakest form of a mode and it can be refined into any other mode.

Refinement of Transitions A refinement of a mode or an introduction of a new mode
requires changes to mode transitions. The general rule is that a transition present in an abstract
model must have a corresponding transition in a refined model and no new transitions may appear.
Changing mode assumptions and guarantees does not affect mode transitions. Splitting a mode
into sub-modes, however, leads to the distribution of the mode transitions associated with the
refined mode among the new modes. Thus, if a mode with a transition is split into two new
modes, the transition can be associated with any one of the new modes or both.

34

Visual Notation To assist in application of the approach, a visual notation loosely based
on Modechards [13] is proposed. A mode is represented by a box with name; a mode transition
is an arrow connecting the previous and next modes. Special modes > and ⊥ are omitted so
that initiating and terminating transitions appear to be connected with a single mode. Refinement
is expressed by nesting boxes. Figure 2 exemplifies this. A transition from an abstract mode is
equivalent to having transitions from each of the concrete modes, e.g. transition ccO f f from
abstract mode Cruise Control in diagram (C) of Figure 2.

4 Modes for Fault Tolerant Systems

The use of modes together with a refinement approach, as introduced in the previous sections,
offers suitable abstractions to modelling and reasoning about fault tolerant systems, as discussed
in the following. Due to the use of a state-based approach, state representation, manipulation and
reasoning becomes natural. The support provided by modes allows to partition the state space
into normal and erroneous: mode assumptions allow this separation to be declared and erroneous
states made explicit. Refinement allows further definition of erroneous states into more specific
ones. Assumptions on normal and erroneous states can be suitably associated to modes in charge
of performing normal system operation and fault tolerance measures, respectively.

In general, a recovery mode should be associated with a particular normal mode, which it
recovers, and mode switching is in some sense reminiscent to calling an exception handler in pro-
gramming languages. Error detection is immediate, embedded in the erroneous state assumption
of a recovery mode. As soon as a state transition leads to the characterization of an erroneous
state, the recovery mode is enabled. A more concrete view is to consider the existence of a detec-
tion mechanism, which is active during normal operation. In such case the detection mechanism
affects the state used in the assumptions of normal and recovery modes. By refinement one could
start with the first and reach the second, more detailed model. Any of the possibilities allow
switching to recovery mode from any normal mode state. For reasoning purposes, one can intro-
duce the possibility of fault occurrences in parallel with the model. In an event based formalism
this takes the form of an enabled event that affects the state to satisfy the erroneous state assump-
tion.

The recovery mode has access to the state of the respective normal mode. Analogously to
assumptions, guarantees associated to normal or recovery modes assist to define properties of the
system in absence or presence of errors, respectively. Depending on the severity of the detected
error, the mode system may assert that the recovery procedure: (i) successfully recovers the state
and thus switches back to normal mode to proceed execution (Figure 1(B) or (C)); (ii) provides
degraded service in cases where full functionality is not recoverable (Figure 1(D)); (iii) fails to
recover, in which case measures to stop safely may be taken (Figure 1(A) and part of (D)).

Normal

Fail−safe Fault
masking

Normal2Normal1Normal

Fault
masking

Normal 1
Degraded

Fail−safe 2
Degraded

(C)(B)(A) (D)

Fig. 1. Modes for fault tolerance.

35

5 Operation Modes for Event-B

The operation modes method is not intended to be used as a modelling method on its own. The
schematic nature of the approach makes it it well suited to integration with an existing formal-
ism. In this section we discuss how modes can be used with a well known formalism: Event-B.
The rules for deriving formal conditions for reasoning about a combination modes and Event-B
models are presented.

Event-B is a state-based formalism closely related to Classical B [2] and Action Systems [5].
The step-wise refinement approach is the corner stone of the Event-B development method. The
combination of model elaboration, atomicity refinement and data refinement helps to formally
transition from high-level architectural models to very detailed, executable specifications ready
for code generation.

An extensive tool support through the Rodin Platform makes Event-B especially attractive
[1]. An integrated Eclipse-based development environment is actively developed, well-supported,
and open to third-party extensions in the form of Eclipse plug-ins. The main verification technique
is theorem proving supported by a collection of powerful theorem provers. The development
environment is also equipped with model checking capabilities.

An Event-B model is defined by a tuple (c,s,P,v, I,RI ,E) where c and s are constants and sets
known in the model; v is a vector of model variables; P(c,s) is a collection of axioms constraining
c and s. I is a model invariant limiting the possible states of v: I(c,s,v). The combination of P
and I should characterise a non-empty collection of suitable constants, sets and model states:
∃c,s,v ·P(c,s)∧ I(c,s,v). The purpose of an invariant is to express model safety properties (that
is, unsafe states may not be reached). In Event-B an invariant is also used to deduce model
variable types. RI is an initialisation action computing initial values for the model variables; it
is typically given in the form of a predicate constraining next values of model variables without,
however, referring to previous values - RI(c,s,v′). Finally, E is a set of model events. An event is
a guarded command:

H(c,s,v)→ S(c,s,v,v′) (7)

where H(c,s,v) is an event guard and S(c,s,v,v′) is a before-after predicate. An event may fire
as soon as the condition of its guard is satisfied. In case there is more than one enabled event
at a certain state, the demonic choice semantics is applies. The result of an event execution is
some new model state v′. The semantics of an Event-B model is usually given in the form of
proof semantics, based on Dijkstra’s work on weakest precondition [10]. A collection of proof
obligations is generated from the definition of the model and these must be discharged in order
to demonstrate that the model is correct.

Putting it as a requirement that an enabled event produces a new state v′ satisfying a model
invariant, the following would define the model consistency condition: whenever an event on an
initialisation action is attempted there exists a suitable new state v′ such that a model invariant is
maintained - I(v′). This is usually stated as two separate proof obligations: a feasibility obligation
requiring the existence of (any) new state v′ and the invariant satisfaction obligation showing that
any new state v′ maintains an invariant. The invariant satisfaction obligation requires that a new
state produced by an event must satisfies a model invariant:

I(c,s,v)∧P(c,s)∧H(c,s,v)∧S(c,s,v,v′)⇒ I(c,s,v′) (8)

An event must also be feasible: an appropriate new state v′ must exist for some given current
state v:

I(c,s,v)∧P(c,s)∧H(c,s,v)⇒∃v′ ·S(c,s,v,v′) (9)

36

Conceptually, operation modes and Event-B models are related by requiring that every mode
and mode transition has a suitable implementation in an Event-B model. A mode is related to a
non-empty subset of Event-B model events and mode transition is mapped into a single Event-B
event:

A1/G1 7→ E1, . . . An/Gn 7→ En
(i ; j) 7→ Ep . . . (k ; l) 7→ Eq

(10)

Event sets E1, . . . ,En may overlap but may not be identical. In the latter case they specify the
same mode. The mapping between transitions and events is one-to-many: a transition is mapped
into a non-empty set of events. Each event associated with a transition must properly implement
the transition, that is, it must be proven it gets enabled in a stated assumed by a source mode and
establishes a state corresponding to the assumption of a target mode. To establish mapping, for
some transition (i ; j) 7→ Ep it is required to demonstrate the following:

∀e · (e ∈ Ep∧ I(c,s,v)∧He(c,s,v)∧Se(c,s,v,v′)⇒ Ai(v)∧A j(v′)) (11)

The composition of modes and Event-B clarifies how a system evolves when it is in a mode,
how mode switching is done and the way system is initialised. The old internal rule is changed to
reflect the way a new system state is computed: assuming that a system is mode Ai/Gi 7→ Ei and
the current state is valid (I(v) holds) and satisfies the mode assumption (Ai holds) the next state is
some state v′ such that mode guarantee G(v,v′) holds along with before-after predicate Re(v,v′)
of one of enabled (He(v)) mode events (e ∈ Ei):

internal1

I(v)∧Am(v)∧Gm(v,v′)∧Am(v′)
∃e · e ∈ Ei∧He(v)∧Re(v,v′)
〈m,w〉 → 〈m,w′〉

The above states that an execution cannot progress if none of the events establishes a mode
guarantee or there is no enabled event. To ensure that in a given mode a system evolves correctly,
it is required to show for every mode event that the event establishes mode guarantee and the
event guard is compatible with the mode assumption. Rules switching1 and start1 are analogously
obtained from rules switching and start in Section 2. The rule above gives a rise to a number of
conditions on Event-B. Firstly, all the events of a mode must satisfy its guarantee provided the
assumption holds:

I(v)∧A(v)∧H(v)∧R(v,v′)⇒ G(v,v′) (12)

Also, the partitioning of the events into modes must be in an agreement with the event
guards. When event is enabled then the assumption of its mode must hold. Since an event is
potentially associated with multiple modes, the disjunction of all the relevant assumptions must
hold:

H(v)⇒ A1(v)∨·· ·∨Ak(v)
Ak+1(v)∨·· ·∨An(v)⇒¬H(v) (13)

where A1, . . . ,Ak are the assumptions of the modes containing an event with guard H(v) and
Ak+1, . . . ,An are those not containing the event.

It is required to show that a system is always able to progress once it is in a given mode.
For this, it must be shown that there is always at least one enabled event among the events of the
mode:

I(v)∧A(v)⇒ H1(v)∨·· ·∨Hn(v) (14)

37

Provided the three conditions above are discharged, it is guaranteed that, once in a given
mode, a system would unfailingly progress in accordance with the mode conditions for the system
lifetime or until the system transitions into a different mode.

a) Operation Modes and Event-B Co-refinement The Event-B development
method offers a gradual, refinement-based, model detailing. To refine model M one constructs a
new model M′ such that for any valid state of M′ there is a corresponding state in M. In Event-B,
this is accomplished by discharging a number of refinement proof obligations formulated for each
model event. As refinement in Event-B is monotonic, a model refinement could be constructed
by changing only a part of a model and demonstrating the relevant conditions for just that part.
Event-B refinement is a combination of data, superposition, behavioural and atomicity refine-
ment. Atomicity refinement permits introduction of a finer level of atomic steps needed to realise
a given functionality. Event-B behavioural refinement allows a modeller to replace an event guard
and event before-after predicate. The rules linking abstract and concrete guards and before-after
predicates are as follows. The guard of the concrete version of an event must be stronger than its
abstract counterpart:

P(s,c)∧ I(s,c,v)∧ J(s,c,v,u)∧H(s,c,u)⇒ G(s,c,v) (15)

A new before-after predicate must be a stronger version of its abstraction:

P(s,c)∧ I(s,c,v)∧ J(s,c,v,u)∧H(s,c,u)∧
S(s,c,u,u′)⇒ v′ · (R(s,c,v,v′)∧ J(s,c,v′,u′)) (16)

An event may be split into two or more events. In this case, the refinement relation is proved
for each new event in the same manner for as for on-to-one event refinement. New events may be
introduced but may only update new variables. Standard consistency conditions apply.

A composition of operation modes and Event-B models has to be refined in such a manner
that it obeys both operation mode refinement and Event-B refinement. For rule 5, it is required
that a refined operation mode is made of events refining events from an abstract mode and also
each event from the abstract mode is present as a copy or a refined event in the refined mode.

A(v)/G(v,v′) 7→ E ⊆ A′(u)/G′(u,u′) 7→ E ′,

iff

I(v)∧ J(v,u)∧A(v)⇒ A′(u)
I(v)∧ J(v,u)∧G′(u,u′)⇒ G(v,v′)
∀e · e ∈ E ′⇒∃a ·a ∈ E ∧ e⊆ a
∀e · e ∈ E⇒∃a ·a ∈ E ′∧a⊆ e

(17)

Rule 6 for refinement of modes into a collection of new modes is changed in a similar
manner.

A(v)/G(v,v′) 7→ E ⊆ A1(u)/G1(u,u′) 7→ E1
A2(u)/G2(u,u′) 7→ E2

,

iff

I(v)∧ J(v,u)∧A(v)⇒ A1(u)∨A2(u)
I(v)∧ J(v,u)∧G1(u,u′)∨G2(u,u′)⇒ G(v,v′)
∀e · e ∈ E1∪E2⇒∃a ·a ∈ E ∧ e⊆ a
∀e · e ∈ E⇒∃a ·a ∈ E1∪E2∧a⊆ e

(18)

Conditions 17 and 18 state how mode refinement is related to Event-B refinement. They are
the basis for generating proof obligations that would determine the correspondence between an
Event-B model and a modes model.

38

b) Tool Support The Rodin platform supports modelling and reasoning with Event-B mod-
els. Extensions to the Rodin platform can be integrated with: tool interface, modelling process and
verification infrastructure. An extension providing the support for modelling with modes would
let a designer to visually construct a modes model and would take care of generating the proof
obligations required to demonstrate the correspondence between the modes model and the asso-
ciated Event-B model. Proof obligations are delegated to the proof infrastructure of the Platform
that passes them on to one or of automated theorem provers and also an interactive prover should
a theorem prover find a problem or fail to discharge a proof obligation.

6 Cruise Control Case Study

A simplified version of one of the DEPLOY case studies [4] developed in cooperation with in-
dustrial partners, the case study illustrates the application of the proposed technique to the de-
velopment of a cruise control system. The purpose of the system is to assist a driver in reaching
and maintaining a predefined speed. Due to the nature of the system, attention is given to the
interaction of a driver, cruise control and the controlled parts of a car. In the current modelling we
assume an idealised car and idealised driving conditions such that the car always responds to the
commands and the actual speed is updated according to the control system commands. Figure 2
presents the diagrams with the sequence of refinements.

(A)

ignitionOn ignitionOff

IGNITION_CYCLE

(C)
MAINTAIN APPROACH

ignitionOn ignitionOff

DRIVER

ccOff

setSt

sa=st setSt

setSt

ccOnccOn

IGNITION_CYCLE

CRUISE_CONTROL

(B)

ignitionOn ignitionOff

DRIVER

ccOn ccOff
setSt

CRUISE_CONTROL

IGNITION_CYCLE

(D)
MAINTAIN APPROACH

DRIVE DRIVE
DEGRADEDNORMAL

ERROR
HAND−
LING

ccOn ccOnccOff

ignitionOffignitionOn

fault

setSt

sa=st setSt

setSt

eoIEH

faultfault

eoREH

DRIVER

IGNITION_CYCLE

CRUISE_CONTROL

Fig. 2. Mode refinement sequence for the Cruise Control System.

(A) IGNITION_CYCLE Figure 2(A) presents the diagram of the most abstract model for the
system. It is composed only by the IGNITION_CYCLE mode and represents the activity from the
instant the ignition is turned on, event ignitionOn establishes the assumption for that mode, to the
instant it is turned off, event ignitionO f f changes the conditions of the system and falsify the as-
sumptions for this mode. The model includes: the state of ignition (on/off), modelled by a boolean

39

flag ig; the current speed of the car (a modelling approximation of an actual car speed), stored in
variable sa; a safe speed limit speedLimit above which the car should not be in any case; and a
safe speed variation maxSpeedV . No memory is retained about the states in the previous ignition
cycle. Initially, the current speed is zero and ignition is off: sa ∈ 0∧ ig ∈ FALSE. Independently
of the operation of the car (by the driver or by the cruise control) the following has to be ensured
during an ignition cycle (we present the intuition in the first line and a formal representation of
the assumptions and guarantees, based on the variables introduced, in the second line).

mode assumption guarantee
IGNITION_ ignition is on keep speed under limit and

CYCLE (ac/de)celarate safely
ig = true (sa < speedLimit) ∧

(|sa′− sa|< maxSpeedV)

(B) DRIVER and CRUISE_CONTROL When the ignition is turned on, control is with the
driver. While the ignition is on, control can be passed from the driver to the cruise control and
back. It is assumed that a driver has two buttons on a control panel: the on button switches on the
cruise control; the off button returns to the driving mode. A third input is available to set the target
speed to be achieved by the cruise control. The system is naturally represented with two modes:
DRIVER corresponding to the activity when cruise control is off and CRUISE_CONTROL when
cruise control is active. The on/off buttons mentioned are mapped to transition events ccOn and
ccO f f . The diagram in Figure 2(B) depicts the two possible modes during an ignition cycle.

This refinement introduces: the state of cruise control (on/off), modelled by boolean flag cc;
the target speed that a cruise control is to achieve and maintain, represented by variable st; an
allowance interval isp that determines how much actual speed could deviate from a target speed
when cruise control tries to maintain a target speed. Initially, the target speed is undefined and
cruise control is off: st ∈ N∧ cc ∈ FALSE. The description of the modes:

mode assumption guarantee
DRIVER ignition cycle ignition cycle

assumptions and guarantees
cruise control off
ig = true ∧ (sa < speedLimit) ∧
cc = false (|sa′− sa|< maxSpeedV)

CRUISE_ ignition cycle ignition cycle guarantees
CONTROL assumptions and and maintain target speed or

cruise control on approach target speed
ig = true ∧ (sa < speedLimit) ∧
cc = true (|sa′− sa|< maxSpeedV)

∧(|sa′− st ′| ≤ isp ∨
|sa′− st ′|< |sa− st|)

(C) Refining the CRUISE_CONTROL Mode If the difference between current (sa) and
target (st) speeds is within an acceptable error interval (isp), the cruise control works to MAIN-
TAIN the current speed. Otherwise, it employs different procedures to APPROACH the target
speed, characterizing two modes refining CRUISE_CONTROL. Respective assumptions and guar-
antees are described in the table below. Figure 2(C) depicts these modes. Switching from DRIVER
to CRUISE_CONTROL may either establish the assumptions of APPROACH or MAINTAIN, de-
pending on the difference between st and sa. In either of these modes the cruise control can be
switched off and control returned to the driver.

40

mode assumption guarantee
APPROACH cruise control cruise control

assumptions and guarantees and
speed not close approach
to target target speed
ig = true ∧ (sa < speedLimit) ∧
cc = true ∧ (|sa′− sa|<
|sa′− st ′|> isp maxSpeedV) ∧

(|sa′− st ′|< |sa− st|)

mode assumption guarantee
MAINTAIN cruise control cruise control

assumptions and guarantees and
speed close maintain
to target target speed
ig = true ∧ (sa < speedLimit) ∧
cc = true ∧ (|sa′− sa|<
|sa′− st ′| ≤ isp maxSpeedV) ∧

(|sa′− st ′| ≤ isp)

(D) Error handling at any time failures of the surrounding components (e.g. airbag ac-
tivated, low energy in battery) may affect the cruise control system. These faults are signaled as
erroneous conditions and can be either reversible or irreversible: the reversible errors result in the
control to be returned to the driver and handling measures to be undertaken, so that the cruise
control becomes available again; the irreversible ones are handled but the cruise control becomes
unavailable during the ignition cycle.

mode assumption guarantee
DRIVE_ driver driver

NORMAL assumptions guarantees and
and no error cruise control available
ig = true∧ (sa < speedLimit) ∧
cc = false∧ (|sa′− sa|<
error = false maxSpeedV)

ERROR_ driver driver guarantees and
HAND- assumptions cruise control not available

LING and error and and recovery measures
handling restore normal mode or
not finished swich to degraded mode
ig = true∧ (sa < speedLimit) ∧
cc = false∧ (|sa′− sa|<
error = true∧ maxSpeedV)
eHand = true

DRIVE_ driver driver
DEGRA- assumptions guarantees and

DED and error and cruise control not available
handling finished
ig = true∧ (sa < speedLimit) ∧
cc = false∧ (|sa′− sa|<
error = true∧ maxSpeedV) ∧
eHand = false

When an error is detected it is registered in an error variable. We introduce a normal
(DRIVE_NORMAL), a degraded (DRIVE_DEGRADED) and an error handling mode
(ERROR_HANDLING). If an error is signaled in any of the system modes, the system switches
to ERROR_HANDLING, where control is with the driver. Eventually error handling reestablishes
DRIVE_NORMAL, with full functionality available, or switches to DRIVE_DEGRADED mode
where the cruise control is not available. This exemplifies situations (C) and (D) of Figure 1. Fig-
ure 2(D) shows these modes. An eHand variable registers that error handling is taking place. The

41

following table shows the assume/guarantee conditions for the modes introduced. Note that al-
though these modes have same guarantees, they have different transition possibilities. After error
handling, the system continues in degraded or normal mode. From error handling and degraded
modes it is not possible to turn the cruise control on.

7 Related Work
Several applications, structured in modes, can be found in the literature. Papers [8] and [18] show
how to formally model and analyse modal space and avionic systems. In [17] an Automated
Highway System is extended to tolerate several kinds of faults, modes are used to characterize
degraded operation. A classic case study on formal methods, the Steam Boiler Control [3], is
based on operation modes. More recent examples on the use of modes for the specification of
airspace, transportation and automotive systems can be found in [4]. Such contributions focus on
specific applications and not on general means to model and reason using modes.

In [22] the authors discuss characteristics of mode-driven distributed applications and an
infrastructure is proposed to support mode-driven fault tolerance in run time. In [19], the rep-
resentation of degraded service outcomes and exceptional modes of operation using UML use
cases, activity diagrams and state charts is discussed. Formal modelling and reasoning is not
discussed in these contributions.

In [13] a specification language for real-time systems, called Modechart, is presented. In [11]
the author discusses issues related to mode changes and scheduling for hard real-time systems.
The general notion of modes in these papers is analogous to the one discussed here, however their
focus is on the specification and analysis of timing properties of systems. Functional properties
are not discussed.

In the context of refinement based methods, the most related work found is by Back and von
Wright [6], where guarantees (of an action system) are introduced to reason about the parallel
composition of action systems. Guarantees of composed action systems have to mutually respect
the invariants. Since there is no notion of assumptions, the flexibility of allowing different modes
and mode switching, is not offered.

Finally, Jones, Hayes and Jackson, in [14], discuss a method that leads the designer to ex-
plicitly state rely conditions (to be compared with assumptions) about the physical world before
deriving a first specification of the system. The notion of ’layer’ is briefly discussed. A layer
is associated to a set of rely/guarantee predicates and could be compared to a mode. Different
layers could be used to state the behaviour under distinct conditions. Fault tolerance is briefly
mentioned, where one could have assumptions to characterise absence or presence of faults.

8 Conclusions
In this paper the notions of modes and mode refinement are formally defined and their represen-
tations in a state-base formalism (Event-B) are established. These notions allow explicit charac-
terization of various system conditions, through expressing assumptions, and the properties of the
system working under such conditions, through the use of guarantees. The complexity of design
is reduced by structuring systems using modes and by detailing this design using refinement. This
approach makes it easier for the developers to map requirements to models and to trace require-
ments. More specifically, the approach suits well for dealing with fault-tolerance requirements:
assumptions allow the explicit mapping of the error coverage provided by the system, whereas
guarantees and mode switching configurations allow the explicit mapping of requirements for
different levels of fault-tolerance.

42

In addition to developing a tool support, in the near future we plan to investigate mode
hierarchy (nesting), to express recursive structuring for fault tolerance [16], mode concurrency,
where further work is needed to support concurrent modes acting on shared states, and state
consistency during distributed execution of modes.

References
1. Event-b and the rodin platform. http://www.event-b.org/ (last accessed 8 March 2009). Rodin

Development is supported by European Union ICT Projects DEPLOY (2008 to 2012) and
RODIN (2004 to 2007).

2. J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
2005.

3. Jean-Raymond Abrial, Egon Börger, and Hans Langmaack, editors. Formal Methods for In-
dustrial Applications, Specifying and Programming the Steam Boiler Control, volume 1165
of Lecture Notes in Computer Science. Springer, 1996.

4. Jean-Raymond Abrial, Jeremy Bryans, Michael Butler, Jerome Falampin, Thai Son Hoang,
Dubavka Ilic, Timo Latvala, Christine Rossa, Andreas Roth, and Kimmo Varpaaniemi. Re-
port on knowledge transfer - deploy deliverable d5, February 2009.

5. Ralph-Johan Back and Kaisa Sere. Stepwise Refinement of Action Systems. In Jan L. A.
van de Snepscheut, editor, Proceedings of the International Conference on Mathematics of
Program Construction, 375th Anniv. of the Groningen Univ., pages 115–138, London, UK,
1989. Springer-Verlag.

6. Ralph-Johan Back and Joakim von Wright. Compositional action system refinement. Formal
Asp. Comput., 15(2-3):103–117, 2003.

7. Ralph-Johan J. Back and J. Von Wright. Refinement Calculus: A Systematic Introduction.
Springer NY, Inc., 1998.

8. Ricky W. Butler. An introduction to requirements capture using pvs: Specification of a
simple autopilot. Technical Report 110225, NASA, 1996.

9. Flaviu Cristian. Exception handling. Blackwell Scientific Publications, 1989.
10. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
11. Gerhard Fohler. Realizing changes of operational modes with a pre run-time scheduled hard

real-time system. In In Proceedings of the Second International Workshop on Responsive
Computer Systems, pages 287–300. Springer Verlag, 1992.

12. F. C. Gärtner. Transformational approaches to the specification and verification of fault-
tolerant systems: formal background and classification. Journal of Univ. Computer Science,
5(10):668–692, 1999.

13. F. Jahanian and A.K. Mok. Modechart: A specification language for real-time systems. IEEE
Transactions on Software Engineering, 20(12):933–947, 1994.

14. Cliff B. Jones, Ian J. Hayes, and Michael A. Jackson. Deriving specifications for systems
that are connected to the physical world. In Formal Methods and Hybrid Real-Time Systems,
pages 364–390, 2007.

15. Jean-Claude Laprie, Brian Randell, Algirdas Avizienis, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur. Com-
put., 1(1):11–33, 2004.

16. P. A. Lee and T. Anderson. Fault Tolerance: Principles and Practice. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1990.

17. John Lygeros, Datta N. Godbole, and Mireille E. Broucke. Design of an extended architec-
ture for degraded modes of operation of ivhs. In In American Control Conf., pages 3592–
3596, 1995.

43

18. Steven P. Miller. Specifying the mode logic of a flight guidance system in core and scr. In
FMSP ’98: Proc. of the 2nd workshop on Formal methods in software practice, pages 44–53,
New York, USA, 1998. ACM.

19. Sadaf Mustafiz, Jörg Kienzle, and Andrey Berlizev. Addressing degraded service outcomes
and exceptional modes of operation in behavioural models. In SERENE ’08: Proceedings
of the 2008 RISE/EFTS Joint International Workshop on Software Engineering for Resilient
Systems, pages 19–28, New York, NY, USA, 2008. ACM.

20. Jan Peleska. Formal methods and the development of dependable systems - habilitation-
sschrift. Technical Report 9612, Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität su Kiel, 1996.

21. Alexander Romanovsky. A looming fault tolerance software crisis? SIGSOFT Softw. Eng.
Notes, 32(2):1–4, 2007.

22. Deepti Srivastava and Priya Narasimhan. Architectural support for mode-driven fault toler-
ance in distributed applications. SIGSOFT Softw. Eng. Notes, 30(4):1–7, 2005.

44

Part II

Code Generation

A Code Generation Example for Event-B:
A Shared Channel with Concurrent

Read/Writers

Andrew Edmunds and Michael Butler

Southampton University, UK

Abstract. The Event-B method is a formal approach to modelling systems, us-
ing refinement. Initial specification is done at a high level of abstraction; detail is
added in refinement steps as the development proceeds toward implementation.
In previous work we developed an approach to bridge the gap between abstract
specifications and implementations using an implementation level specification
notation that we call OCB. We present here an example abstract development of
processes reading and writing via a shared buffer. We show how, with the help
of a diagrammatic representation, we transition between the abstract model and
the implementation specification. The implementation specification has Event-B
semantics and is translated to an Event-B model and Java source code.

1 Introduction

The Event-B method [2] is a formal approach to modelling systems, with
tool support [3]. The modelling approach uses an event based view of
how a system evolves atomically, from one state to another. The Event-
B approach has evolved from classical-B [1] which was targeted more
specifically at modelling software systems. In Event-B a system’s state
is modelled using sets, constants and variables; and updates to state are
described in the bodies of guarded events. System properties are speci-
fied in invariants and proof obligations are generated, which should be
discharged in order to prove that the event actions do not violate the
invariants. The Event-B approach uses refinement to link an abstract
model with successively more concrete models, and a linking invari-
ant relates the state of the concrete model with its abstract counterpart.
When modelling a software system, an Event-B model will be refined
to a point where we are ready to provide information about the im-
plementation. Consideration is given to how tasks may be performed
by executing processes, and how the processes may interleave. In our

paper [8] we introduce an intermediate specification language, Object-
oriented, Concurrent-B (OCB), which we use to link Event-B models
and object-oriented implementations. The new notation sits at the inter-
face between the two technologies, and we incorporate aspects of both.
We use Java [10] as the target implementation language since it is often
used to implement concurrent systems; however our work is not limited
to this target in principle.

The example that we present here involves processes reading and
writing to a shared channel. A channel may have at most one reader read-
ing, and at most one writer writing at any one time; however a number
of processes may be waiting to read from, or write to, the channel. In
our most abstract model data is transferred as a block in a single atomic
step. A write event constitutes moving a block from a writing process
to a channel buffer; and a read event constitutes moving a block from a
channel buffer to a reader. The atomicity of the read and write activity
is altered in the refinement - we introduce blocks that are made up of
packets, and each packet is written to the channel individually. This al-
lows the reader to begin reading as soon as there is data in the channel -
without the writer having to complete the data transfer. We continue with
an overview of our implementation notation (OCB), and show the im-
plementation level specification for the concurrent read/writers example.
We then present details of the implementation level refinement that re-
sults from the translation of the OCB model into Event-B, and also show
details of the source code generated by the Java translator.

2 The Abstract Event-B Development

In our first model we introduce processes, channels and data. We de-
fine carrier sets for the set of processes PROCESS, the set of channels
CHANNEL, and set of data blocks represented by Block. A block of
data is a function of packet identifiers to data, Block = PKT ID 7→DATA.
Process objects are represented by a variable proc, and channels are rep-
resented by a variable chan. Each process has a local buffer called bu f f ,
and channels hold data in a buffer called data.

48

INVARIANTS
proc⊆ PROCESS
chan⊆CHANNEL
data ∈ chan→Block
bu f f ∈ proc→Block

The Write event models the writing of a block of data b to a channel.
The parameters include the writing process p, and the target channel c. In
addition to these parameters an additional local parameter b is introduced
to keep track of the block of data to be written from the local buffer,
where b = bu f f (p).

Write,
ANY p, c, b
WHERE p ∈ proc ∧ c ∈ chan ∧b = bu f f (p) ∧

bu f f (p) 6= ∅ ∧ data(c) = ∅
THEN data(c) := b ‖ bu f f (p) := ∅
END

The block b is copied to the data buffer data(c) and the local buffer
bu f f (p) is emptied.

The event to read a block from the channel is parameterized by a
reading process p, and channel c.

Read ,
ANY p, c, b
WHERE p ∈ proc ∧ c ∈ chan ∧ b = data(c)

bu f f (p) = ∅ ∧ data(c) 6= ∅
THEN data(c) := ∅ ‖ bu f f (p) := b
END

The block in the channel buffer b is copied to the local buffer bu f f (p)
and the channel buffer data(c) is emptied.

49

3 Refinement with Packetized Data

In the first refinement we introduce writing behaviour which is performed
in three steps by the StartWrite, WritePacket, and EndWrite events.
Similarly StartRead, ReadPacket and EndRead perform reading. We can
make use of a graphical representation, introduced in [4], called Event
Refinement Diagrams. These diagrams are based on Jackson Structure
Diagrams, and are used to clarify the relationships between events of
the abstraction and refinement. It should be noted though that the dia-
grams are an informal representation of the relationship between abstract
events and events of refinements. The most abstract specification appears
uppermost in the diagram with more concrete representations below. At
each level the order of events is read from left to right, indicating the se-
quence in which the events are required to occur. The solid lines connect-
ing events represent event refinement. Dashed lines represent events that
refine skip, and add behaviour related to the abstract event. The ‘*’ anno-
tation indicates that iteration of a particular event is possible. We indicate
the parameter names of each event in the form of an event signature. In
Figures 1 and 2, k∗ indicates that the number of iterations is determined
by a guard involving parameter k. The diagrams show abstract Read and
Write events being refined by a number of events.

k*

StartWrite(p,c) EndWrite(p,c,b)WritePacket(p,c,k,d)

Write(p,c,b)

Fig. 1. Decomposing the Write Event

We introduce writing (reading) to keep track of the process/channel
pairs that are involved in the writing (reading) activity. Each channel may
have, at most, one writing (reading) process (defined by partial injection).
We also introduce bu f f 2 and data2. bu f f 2 represents a local buffer, as-

50

Read(p,c,b)

k*

StartRead(p,c) EndRead(p,c,b)ReadPacket(p,c,k)

Fig. 2. Decomposing the Read Event

sociated with a particular process, which replaces bu f f of the abstrac-
tion. The data in bu f f 2 can be added or removed one packet at a time.
data2 represents a channel buffer, which replaces data of the abstraction.
The data in data2 can be added or removed one packet at a time.

Invariants
writing ∈ proc 7� chan
reading ∈ proc 7� chan
bu f f 2 ∈ proc→Block
data2 ∈ chan→Block

We ensure processes cannot be reading and writing at the same time
with the invariant,

dom(writing)∩ dom(reading) = ∅

However we allow channels to be in the range of both reading and writing
simultaneously.

The new event StartWrite refines skip.

StartWrite,
ANY p, c
WHERE p ∈ proc ∧ c ∈ chan ∧ p /∈ dom(writing) ∧

c /∈ ran(writing) ∧ bu f f 2(p) 6= ∅ ∧ data2(c) = ∅∧
p /∈ dom(reading)

THEN writing := writing∪ {p 7→ c}
END

51

The process and channel p 7→ c are added to the set of writing pairs. Once
a process-channel pair is added to the set of writing pairs we transfer
individual packets of data k 7→ d, from one to the other. k is the packet
identifier and d represents the data.

The WritePacket event:

WritePacket ,
ANY p, c, k, d
WHERE p 7→ c ∈ writing ∧ k ∈ dom(bu f f 2(p)) ∧

d = bu f f 2(p)(k) ∧ k /∈ dom(data2(c))
THEN data2(c) := data2(c)∪ {k 7→ d}
END

In the WritePacket event a packet k 7→ d is added to the channel buffer
data2(c).

The EndWrite event refines Write.

EndWrite,
REFINES Write
ANY p, c
WHERE p 7→ c ∈ writing ∧ c ∈ chan ∧ data2(c) = bu f f 2(p)
WITH b = bu f f 2(p)
THEN writing := {p}�−writing‖bu f f 2(p) := ∅
END

The process p is removed from the set of writers writing := {p}�−writing
and the local buffer is cleared, bu f f 2(p) := ∅. The witness b = bu f f 2(p)
links local variable b of the abstraction to bu f f 2(p) of the refinement.
Local variable b does not appear in the refinement and is, instead, re-
placed by buff2(p). Both b and bu f f 2(p) represent the process’ block of
data.

52

StartRead refines skip:

StartRead ,
ANY p, c
WHERE p ∈ proc ∧ c ∈ chan ∧ p /∈ dom(reading) ∧

c /∈ ran(reading) ∧ p /∈ dom(writing) ∧ data2(c) 6= ∅ ∧ bu f f 2(p) = ∅
THEN reading∪ {p 7→ c}
END

The process and channel pair p 7→ c are added to the set of reading pairs.
ReadPacket refines skip:

ReadPacket ,
ANY p, c, k
WHERE p 7→ c ∈ reading ∧ k ∈ dom(data2(c)) ∧ k /∈ dom(bu f f 2(p))
THEN bu f f 2(p) := bu f f 2(p)∪ {k 7→ data2(c)(k)}
END

A packet from the channel buffer, represented by k 7→ data2(c)(k), is
added to the local buffer bu f f 2(p).

EndRead refines Read:

EndRead ,
REFINES Read
ANY p, c
WHERE p ∈ proc ∧ c ∈ chan ∧ p 7→ c ∈ reading ∧

c /∈ ran(writing) ∧ bu f f 2(p) = data2(c)
WITH b = data2(c)
THEN data2(c) := ∅ ‖ reading := reading\{p 7→ c}
END

The channel buffer is emptied in the event action, data2(c) := ∅, the
data is considered to have been consumed by the reading process. The
process-channel pair is removed from the set of reading pairs, reading :=
reading\{p 7→ c}.

53

We added the following gluing invariant to ensure that the channel
data block data is equal to the packetized data data2, except when the
process is writing.

∀c·c ∈ chan∧ c /∈ ran(writing)⇒data(c) = data2(c)

We also require that the process block buffer bu f f must be the same as
the packetized buffer bu f f 2, except when the process is reading.

∀p·p ∈ proc∧ p /∈ dom(reading)⇒bu f f (p) = bu f f 2(p)

All proofs of the abstract development have been discharged using the
Rodin tool.

4 A Brief Introduction to OCB

Object-oriented Concurrent-B (OCB) [8] is an intermediate specification
notation used to link Event-B and an object-oriented programming lan-
guage for implementation, see Figure 3. OCB is used to specify imple-
mentation details for an Event-B Development. The intermediate speci-
fication is translated to Java, and also to another Event-B model which
is shown to refine the abstract development. Our system may consist of
a number of processes which may perform some tasks, and some ob-
jects which may be shared; with mutually exclusive access provided by
atomic procedure calls. A specification consists of process and monitor
classes. Process classes allow specification of interleaving behaviour, us-
ing non-atomic constructs, where atomic regions are defined by labelled
atomic clauses. Monitor classes may be shared between the processes,
and contain atomic procedure definitions, these may optionally incorpo-
rate conditional waiting. We specify sequences of atomic clauses using a
semi-colon operator. A simple example of a non-atomic clause, with two
labelled atomic clauses which update variables x and y, follows:

label1 : x := 0; label2 : y := 0

Processes are able to interleave in a non-atomic clause where a semi-
colon is specified. Each labelled atomic clause maps to an event guarded
by a program counter which is derived from the label. This allows us

54

‘implements’ refines

translate

translate

Implementation Source Code

Intermediate Specification Implementation Refinement

‘Observational Equivalence’

Abstract Event−B Development

Fig. 3. Overview of a Development

to model ordered the execution of an implementation. In addition to the
semi-colon operator we have a branching construct,

if(g) then a [andthen na] endif

where g is a guard, a is an assignment action or procedure call, and na
is an optional non-atomic clause. In a branching clause, g and a form an
atomic guarded action. This may optionally be followed by a non-atomic
clause or additional branches. Each conditional branch maps to a guarded
event, and includes a default ‘else’ branch for the construct shown. The
looping construct follows,

while(g) do a [andthen na] endwhile

As in the branching clause, g and a form an atomic guarded action, and
processes may interleave after evaluation of the guarded action at each
loop iteration, and optionally in the non-atomic construct na, if one is
present. Once again, each atomic clause maps to a guarded event, and
include a branch for the false guard. Conditional waiting is specified in a
procedure using a conditional waiting construct of the following form,

when(g){ a }

55

where g is a guard and a is an action. A clause corresponds to the guarded
action, g→ a, where g maps to an event guard, and a is mapped to an
event action.

5 The Implementation-level Specification

In this section we describe the intermediate level specification. The ab-
stract development has been refined to the point where it is well under-
stood and the process of specifying implementation specific detail can
begin. We make choices about which elements are suited to implementa-
tion as a processes, and which are the shared data. We also make design
decisions such as determining loop implementation, and use of control
data to represent set membership. The implementation level refinements
are illustrated in Figures 4 and 5. We see that StartWrite is implemented

k*

p3 p4 p5 p6

StartWrite(p,c) EndWrite(p,c,b)WritePacket(p,c,k,d)

Write(p,c,b)

p2p1

Fig. 4. Implementing the Write Event

by clauses labelled p1 and p2; the iterating WritePacket event is imple-
mented by clauses p3 . . . p5; and p6 implements EndWrite. A similar
arrangement exists for the reading process. A brief description of the
clauses follows,

56

k*

Read(p,c)

StartRead(p,c) EndRead(p,c)

p11

ReadPacket(p,c,)

p10p9p8p1_else p7

Fig. 5. Implementing the Read Event

Label Description

p1 If the process is a writer then get the size of the local buffer.
p2 Obtain the write channel if it is free else block.

The process ID and number of packets to send are parameters
p3 While there is a packet to send from the local buffer

remove the packet assigning to the temporary attribute.
p4 Add the data to the channel buffer.
p5 Decrement the count of packets.
p6 Release the channel for other writers.
p1_else If the process is a reader obtain a read channel

if it is free, else block.
p7 Obtain the number of packets to read from the channel.
p8 While there are packets remove a packet from the channel

buffer and assign to the temporary attribute.
p9 Add the packet to the local buffer.
p10 Decrement the buffer counter.
p11 Free the read channel for another reader.

The clauses added at the implementation level add flow control in-
formation, and manipulate data, which also involves additional steps to
store shared data in local attributes.

Our design decision is to specify a single process to perform both
reading and writing tasks. The specific behaviour of the process is deter-

57

mined by the boolean parameter isWriter supplied at instantiation. The
process class Proc specification is shown here.

ProcessClass Proc{
Buffer buff, Boolean isWriter, Channel ch, Integer id,
Integer tmpBuffSz, Integer tmpDat
// The constructor procedure

Procedure create(Integer pid, Buffer bff,
Boolean isWritr, Channel chn){

id:=pid || buff:=bff || isWriter:=isWritr || ch:= chn ||
tmpBuffSz:=-1 || tmpDat:=-1

}
// The process behaviour

Operation run(){
p1: if(isWriter=TRUE) then

tmpBuffSz:=buff.getSize() andthen
p2: ch.getWChan(id, tmpBuffSz); // refines StartWrite

p3: while(tmpBuffSz>0) do tmpDat:=buff.remove() andthen
p4: ch.add(tmpDat); // refines WritePacket

p5: tmpBuffSz:=tmpBuffSz-1 endwhile ;
p6: ch.freeWChan() endif // refines EndWrite

else ch.getRChan(id) andthen // refines StartRead

p7: tmpBuffSz:=ch.getWriteSize();
p8: while(tmpBuffSz>0) do tmpDat:=ch.remove() andthen

p9: buff.add(tmpDat); // refines ReadPacket

p10: tmpBuffSz:=tmpBuffSz-1 endwhile ;
p11: ch.freeRChan() endelse // refines EndRead

}
}

We now look at the monitor class specification of the channel. Channel
has a cyclic buffer bu f f of where integer data elements are added to the
tail, and removed from the head of, the buffer. We now provide an infor-
mal description of the monitor procedures,

58

add Add a packet to the buffer tail, block the caller if there
is no spare capacity.

remove Remove a packet from the buffer head and return it,
block the caller if there is nothing to remove.

getWChannel Obtain a channel for writing if it is available
and there is no reader, else block the caller.

f reeWChan Release a write channel by removing the process ID.
getRChannel Obtain a channel for reading if it is available

and there is data to read, else block the caller.
f reeRChan Release a read channel by removing the process ID.
getWriteSize Returns the size of the data block.

The monitor procedures described above are specified in the Chan-
nel MonitorClass. The MonitorClass serves to encapsulate its attributes,
access to data is only permissible through atomic procedure calls and is
shown in Appendix 10.

A MainClass is used as the entry point for execution and is con-
sidered to be a special kind of process. The processes may equally be
initiated by a GUI or scheduler but details are omitted here.

6 The OCB Refinement

In this section we give details of the Event-B model which results from
translation of the OCB specification. Each labelled atomic clause gives
rise to an event with the appropriate guards and actions, but we present
only one of the translated events here. The Proc class’ clause labelled p2
refines StartWrite and gives rise to the event Proc_p2. Proc_p2 is shown
here with some minor changes to improve readability. The StartWrite
process p is related to sel f of Proc_p2 using a predicate p = sel f in the
event’s WIT H clause. The StartWrite channel c is related to target of

59

Proc_p2 with c = target.

Proc_p2,
REFINES StartWrite
ANY sel f , target
WHERE sel f ∈ Proc ∧ state(sel f) = p2 ∧

target = ch(sel f) ∧ wPID(target) =−1 ∧
writeSize(target)≤ 0

WITH p = sel f ∧ c = target
THEN wPID(target) := id(sel f) ∧

writeSize(target) := tmpBu f f Sz(sel f)
state(sel f) := p3

END

When proving the refinement of the implementation model we use
gluing invariants to relate the abstraction with the implementation. An
example of such an invariant follows,

∀pr,cn·pr ∈ proc∧ cn ∈ chan∧
pr ∈ dom(ch)∧ ch(pr) = cn∧
id(pr) = wPID(cn)
⇒ pr 7→ cn ∈ writing

This states that if a channel implementation has a writing process iden-
tifier value as its wPID attribute (given by id(pr) = wPID(cn)) then this
implies that the process-channel pair should be in the writing set in the
abstraction. A similar invariant exists for the readers,

∀pr,cn·pr ∈ proc∧ cn ∈ chan∧
pr ∈ dom(ch)∧ ch(pr) = cn∧
id(pr) = rPID(cn)
⇒ pr 7→ cn ∈ reading

We also wish to ensure that no processes have the identifier -1, which is
reserved for indicating that the channel has no reader/writer, We specify
the following,

∀pr·pr ∈ Proc∧ pr ∈ dom(id) => id(pr) 6=−1

60

7 The Java Implementation

The mapping to Java is mostly self evident since it is very similar to the
OCB specification, we therefore present it without extensive explanation.
In the OCB translation to Java, processes map to threads implementing
the Java Runnable interface. The Java source for the reader/writer ex-
ample is shown in Appendix 11. The Channel class is implemented and
encapsulated by Java constructs. Atomic procedures are implemented by
synchronized methods, and the conditional wait construct is implemented
by a try−wait − catch block. The Java code for the Channel class is
shown in Appendix 12.

8 Related Work

Our presentation is an example of code-generation from a formal spec-
ification. To the best of our knowledge this is the only published code-
generation approach for Event-B. In this approach we use an intermediate
specification notation to describe object-oriented, concurrent implemen-
tations. In classical-B the implementation level refinement specification
was facilitated by the B0 language [6]. Tools for translation to various
languages, including C and Ada, is described in [5]. A feature of this
approach is that it mapped only to sequential programs; no concurrency
constructs were provided. There is a code-generation approach handling
concurrency, aimed at Classical-B, called JCSProB [23]. It makes use of
the JCSP libraries. JCSP [21, 22] establishes a link between CSP [11, 14]
and Java. The JCSP libraries provide an implementation of the Occam
concurrency framework, it uses a message passing, rendezvous style, as
a basis for communication between concurrent Java threads. Using JC-
SProB the ProB [13] tool can be used to construct and model check a
combined CSP specification and B machine, which can then be trans-
lated to Java code. Our work is an alternative to this style and uses a
shared memory approach, where processes share data in memory and ac-
cesses are protected using synchronized method calls. We also tailor our
approach to the new Event-B tool rather than classical B.

We use some of the concepts of UML-B, [16, 17, 18, 19], to model
objects and instances, but our notation introduces process classes that
give rise to concurrently executing processes, with interleaving opera-
tions. The sequential operator used within a non-atomic operation de-

61

fines points where interleaving may take place in addition to points we
define in the looping and branching clauses. We define monitor classes
that are shared between processes, and also define a mapping to Java
code which is absent from UML-B. The OCB syntax incorporates fea-
tures such as the non-atomic looping and branching clauses which are
not part of UML-B.

Another formal approach incorporating code generation is Object-Z
[15], it is a specification language which is an extension of the Z no-
tation, incorporating the notion of classes. A class schema encapsulates
the state and behaviour of a class, and variables can take the type of a
class. Inheritance mechanisms are used to clarify the structure of the sys-
tems and aid refinement and verification. Object-Z differs from OCB in a
number of ways, for example we do not incorporate the notion of inheri-
tance and we do not refine an OCB specification. OCB forms a link in the
development process between the Event-B modelling language and the
implementation, Object-Z is used for system specification. VDM++ [7]
is an object oriented approach which is an extension of VDM-SL [12],
UML diagrams are used to specify an object oriented development which
are mapped to an underlying VDM++ model. VDM++ can be translated
to Java but is not able to model features involving concurrency. Circus
combines CSP and Z [20]. The JCircus [9] translation tool gives rise to
Java code which is intended to serve as an animator for circus. JCircus
makes use of the JCSP libraries and gives rise to Java code that is based
on the message passing approach, in this respect it is similar to JCSProB.

9 Conclusion

In this example we developed an Event-B model of reading and writing
processes sharing a channel. At the highest level of abstraction we mod-
elled reads and writes of blocks of data, this was refined so that reads and
writes of individual packets of data were modelled. We gave an overview
of the OCB notation, which we use to specify implementations for con-
current processes sharing data. We also gave an overview of JSDs and
showed how they can be beneficial in understanding the relationship be-
tween abstract and refined events, and event ordering, as a development
proceeds. The OCB notation was used to provide an implementation
level specification for our abstract development, which was subsequently
mapped to Java code. We also map to an Event-B model which models

62

the implementation, and are required to show that this implementation
model is a refinement of the abstract development (on-going work).

References
1. J.R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University Press,

1996.
2. J.R. Abrial. Event based sequential program development: Application to constructing a

pointer program. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME, volume 2805 of
Lecture Notes in Computer Science, pages 51–74. Springer, 2003.

3. J.R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool environment for
Event-B. In Z. Liu and J. He, editors, ICFEM, volume 4260 of Lecture Notes in Computer
Science, pages 588–605. Springer, 2006.

4. Michael Butler. Decomposition Structures for Event-B. In Integrated Formal Methods
iFM2009, Springer, LNCS 5423, volume LNCS. Springer, February 2009.

5. ClearSy System Engineering. Atelier B Translators, version 4.6 edition.
6. ClearSy System Engineering. The B Language Reference Manual, version 4.6 edition.
7. CSK Systems Corporation. The vdm++ language manual.
8. A. Edmunds and M. Butler. Linking Event-B and Concurrent Object-Oriented Programs. In

Refine 2008 - International Refinement Workshop, May 2008.
9. A. Freitas and A. Cavalcanti. Automatic translation from Circus to java. In J. Misra, T. Nip-

kow, and E. Sekerinski, editors, FM, volume 4085 of Lecture Notes in Computer Science,
pages 115–130. Springer, 2006.

10. J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification - Third Edition.
Addison-Wesley, 2004.

11. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
12. C.B. Jones. Systematic Software Development using VDM. Prentice-Hall, Upper Saddle

River, NJ 07458, USA, 1990.
13. M. Leuschel and M. Butler. ProB: A Model Checker for B. In Proceedings of Formal

Methods Europe 2003, 2003.
14. A. W. Roscoe, C. A. R. Hoare, and R. Bird. The Theory and Practice of Concurrency.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.
15. G. Smith. The Object-Z specification language. Kluwer Academic Publishers, Norwell,

MA, USA, 2000.
16. C. Snook and M. Butler. U2B - A tool for translating UML-B models into B, volume UML-B

Specification for Proven Embedded Systems Design. Springer, 2004.
17. C. Snook and M. Butler. UML-B: Formal modelling and design aided by UML. ACM

Transactions on Software Engineering and Methodology, 2006.
18. C. Snook and M. Butler. UML-B and Event-B: an integration of languages and tools. In The

IASTED International Conference on Software Engineering - SE2008, February 2008.
19. C. Snook, M. Butler, and I. Oliver. Towards a UML profile for UML-B. Technical report,

Electronics and Computer Science, University of Southampton, 2003.
20. J. M. Spivey. Understanding Z: A specification language and its formal semantics. Cam-

bridge Tracts in Theoretical Computer Science, 3, 1988.
21. P.H. Welch and J.M.R. Martin. A CSP model for Java multithreading. In Software Engi-

neering for Parallel and Distributed Systems, 2000.
22. P.H. Welch and J.M.R. Martin. Formal Analysis of Concurrent Java Systems. In P.H. Welch

and A.W.P. Bakkers, editors, Communicating Process Architectures 2000, pages 275–301,
sep 2000.

63

23. L. Yang and M. Poppleton. Automatic translation from combined and csp specification
to java programs. In J. Julliand and O. Kouchnarenko, editors, B, volume 4355 of Lecture
Notes in Computer Science, pages 64–78. Springer, 2007.

Appendix

10 The Channel Specification

MonitorClass Channel{
// Attributes

Integer capacity, Integer[5] buff, Integer head, Integer tail,
Integer size, Integer rPID, Integer wPID, Integer writeSize

// The Constructor

Procedure create(){
head:= 0 || tail:= 0 || size:= 0 || capacity:= 5 ||
rPID:= -1 || wPID:= -1 || writeSize:= -1

}

// ‘Refines’ WritePacket - in a call from clause p4

Procedure add(Integer val){
when(size<capacity & capacity /= 0 & tail>=0 & tail<= 4){

buff[tail]:= val || tail:= (tail+1) mod capacity ||
size:= size+1}

}

// The value is stored in a temporary buffer in a

// call from clause p8 - implementing ReadPacket

//as part of the reading activity.

Procedure remove(){
when(size>0 & capacity /= 0 & head>=0 & head<=4){

return:= buff[head] || size:= size-1 ||
head:= (head+1) mod capacity}

}: Integer

// Called in p1_else clause - refines StartRead.

// Set the channel for reading, by the process

// with identifier pid.

64

// Block if it is already owned or has nothing to read.

Procedure getRChan(Integer pid){
when(rPID=-1 & writeSize>0){rPID:= pid}

}

// Called in p11 clause - refines EndRead.

// Free the channel for reading.

Procedure freeRChan(){
rPID:= -1 || writeSize:= -1

}

// Called in p1 clause - implementing StartWrite.

// Set the channel for writing writesze bytes, by

// the process pid.

// Block if the channel is already owned for writing or

// has bytes still to write.

Procedure getWChan(Integer pid,Integer writeSze){
when(wPID=-1 & writeSize<=0){

wPID:= pid || writeSize:= writeSze}
}

// Called in p6 clause - refines EndWrite.

// Free the channel for writing.

Procedure freeWChan(){ wPID:= -1 }

// Return the number of bytes to write.

Procedure getWriteSize(){ return:= writeSize }: Integer
}

11 The Process Java Code

public class Proc implements Runnable {

private Buffer buff = null; private boolean isWriter;
private Channel ch = null; private int id;
private int tmpBuffSz; private int tmpDat;

public Proc(int pid, Buffer bff, boolean isWritr, Channel chn) {

65

id = pid; buff = bff; isWriter = isWritr; ch = chn;
tmpBuffSz = -1; tmpDat = -1;

}

public void run() {
if (isWriter == true) {
tmpBuffSz = buff.getSize(); // p1
ch.getWChan(id, tmpBuffSz); // p2
while (tmpBuffSz > 0) {
tmpDat = buff.remove(); // p3
ch.add(tmpDat); // p4
tmpBuffSz = tmpBuffSz - 1; // p5

}
ch.freeWChan(); // p6

}else {
ch.getRChan(id);
tmpBuffSz = ch.getWriteSize(); // p7
while (tmpBuffSz > 0) {
tmpDat = ch.remove(); // p8
buff.add(tmpDat); // p9
tmpBuffSz = tmpBuffSz - 1; // p10

}
ch.freeRChan(); // p11

}
}
}

12 The Channel Java Code

public class Channel {
private int capacity;private int[] buff = new int[5];
private int head;private int tail;private int size;
private int rPID;private int wPID;private int writeSize;

public Channel() {
head = 0; tail = 0; size = 0; capacity = 5; rPID = -1;
wPID = -1; writeSize = -1;

}

66

public synchronized void add(int val) {
try {

while (!(size < capacity && capacity != 0 &&
tail >= 0 && tail <= 4)) {

wait();
}} catch (InterruptedException e) { e.printStackTrace(); }
buff[tail] = val;
tail = (tail + 1) % capacity;
size = size + 1;
notifyAll();

}

public synchronized int remove() {
int initial_head = head;
try {

while (!(size > 0 && capacity != 0 && head >= 0 && head <= 4)) {
wait();
initial_head = head;

} catch (InterruptedException e) { e.printStackTrace();}
size = size - 1;
head = (initial_head + 1) % capacity;
notifyAll();
return buff[initial_head];

}

public synchronized void getRChan(int pid) {
try {
while (!(rPID == -1 && writeSize > 0)) {
wait();

}} catch (InterruptedException e) { e.printStackTrace(); }
rPID = pid;
notifyAll();

}

public synchronized void freeRChan() {
rPID = -1;
writeSize = -1;

67

notifyAll();
}

public synchronized void getWChan(int pid, int writeSze) {
try {

while (!(wPID == -1 && writeSize <= 0)) {
wait();

}} catch (InterruptedException e) { e.printStackTrace(); }
wPID = pid;
writeSize = writeSze;
notifyAll();
}

public synchronized void freeWChan() {
wPID = -1;
notifyAll();

}

public synchronized int getWriteSize() {
return writeSize;

}
}

68

Part III

Event-B Metrics and Tools

Towards Event-B Metric Support in RODIN

Christophe Ponsard, Renaud De Landtsheer and Arnaud Michot

CETIC Research Centre, Charleroi (Belgium)
{cp,rdl,arm}@cetic.be

Abstract

Metrics are a widely used instrument at code level to provide useful infor-
mation on its maturity and maintainability. However they are less widely
used at earlier development stages. Some metrics address semi-formal
modelling languages such as UML but little work focuses on formal
models metrics for languages such as Event-B.

In this paper, we consider metrics for Event-B specification in the
light of the needs expressed by some industrial partners of the project.
We identify some useful product and process metrics and discuss the
way to compute them from the specification structure and building pro-
cess. We present how to support their computation in an extensible way
on the RODIN toolset and show the on-going work of prototype imple-
mentation.

1 Introduction

A software metric is "a measure of some property of a piece of software
or its specifications. The purpose of making these measures is to improve
the overall quality of what is measured. One needs to measure some-
thing in order to improve over it" [2]. Metrics can be directly observable
quantities or can be derived from them. Some examples of raw metrics
are: number of source lines of code, number of requirements, number of
tests,etc. A metric can quantify either a characteristic of product (such as
code, test or model) or the effort to build it.

Metrics are widely used at code level to assess a number of qual-
ity attributes of the code such as maintainability, evolvability, security,
reliability. Over time, a number of metrics have been developed to as-
sess such qualities for a variety of language families (such as procedu-
ral, object-oriented) and specific instances (such as Cobol, C, C++, Java,

.Net). Over time, a number of meaningful metrics have emerged. For ex-
ample, maintainability can be assessed by examining the distribution of
the documentation (line of comments) versus the complexity of the pro-
cedure/methods (McCabe metrics [9]) and evaluating the importance of
complex under-documented methods. This information is useful for the
developer but more importantly to the project manager in order to run the
project by monitoring metric evolution over time.

Similar methods can also be applied to models rather than code. They
are not widely used, still they are gaining interest and usage, especially in
a model driven context where the code is derived from higher level mod-
els (typically: object-oriented code derived from UML models [11]). For
such generated code, it is more meaningful to make the quality assess-
ment at model level. A number of common metrics have proved to be
reusable for the object-oriented case while other have been defined to
take more into account the design-level dimension.

Concerning more formal models, with strong underlying mathemat-
ics, there is however little published work on the use of such technique.
However characteristics like understandability can be significant prob-
lem for such languages: for example special attention is required both
for the experts having to maintain a formal specification or the non-expert
having to validate it. For this, the presence of proper inline documenta-
tion or traceability information to originating or explanatory documents
should be assessed, preferably in a quantitative way. Part of the reason
for this could be the fact that such models enable powerful reasoning and
processings, reducing less importance of more empirical measurement
techniques. Indeed metrics extracted from a project have to be analysed
in the project context.

In the scope of the DEPLOY project, the Event-B formal language
is used for modelling complex systems. An interest was confirmed by
some DEPLOY industrial partners to be able to monitor some specific
characteristics of the model and of its development process (with activi-
ties such as modelling, proving and model-checking) and their evolution
over time.

In this paper we explore how metrics can be collected to support these
activities, based on the infrastructure provided by the RODIN toolset and
the underlying Eclipse platform [13]. We propose an extensible metrics
plug-in for RODIN in which new metrics can easily be registered and

72

illustrate it on some simple metrics as well as more complex metrics
such as the Halstead metrics presented in the related paper [12].

This paper is structured as follows: section 2 summarises the main
requirements for the plugin. Section 3 reviews some available model
metrics (including semi-formal and formal models). Section 4 reviews
the design of representative existing tools for model metrics. Section 5
presents the implementation of the plug-in and illustrates it on a few met-
rics. Finally section 6 discusses future work.

2 Requirements

From the user point of view, the purpose of the metric tools is to provide
the Event-B specifier with information both about the model and about
the model construction process. More precisely, it should:

– provide feedback to the user about characteristics of the Event-B
model being built to highlight potential problems. Regarding main-
tainability, the analyst can be reminded that he is not providing enough
documentation. Regarding easiness to prove, the analyst could ques-
tion if his approach with the tool is adequate. Basic metrics such as
size were also requested for project reporting.

– automate data collection about the evolution of those characteristics
over time, ideally at successive model versions. For example, some
industrial partner need a high level of proof automation, monitoring
the related metric allows to see if methods and tools are improving to
meet the required level.

– be user-friendly: by providing easy to access and understand report-
ing, for example by using meaningful graphics.

– be efficient: metrics evaluation will not significantly slow down the
interactivity with the tool

– be open: by allowing data export for external reporting.

At a more technical level, the requirements are:

– to integrate in the last version of the RODIN toolset both for the col-
lection and reporting

– to facilitate addition and adaptation of new metrics

73

3 Survey of Model Metrics

3.1 Object-Oriented Designs

A large set of metrics is available for assessing the quality of object-
oriented design (typically expressed as UML diagrams). Those were elab-
orated based on an initial suite of metrics[1]. It is interesting to examine
them from a classification point of view:

– Good design is based on principles such as strong cohesion (H, LCOM
metrics), weak coupling between packages (Ca and Ce: afferent and
efferent coupling metrics), stable abstractions (D metric), use of in-
heritance hierarchies (DIT metric)[6].

– Complexity. This can be the complexity related to methods, based on
weighted methods per class (WMC)[6]. It is equal to the sum of the
complexities of each method defined in a class which can be supposed
equal, estimated from other diagrams such as the activity, sequence,
communication diagrams or state machine diagrams. Another type of
complexity is related to the relationships between classes, based on
the number of associated elements either in the same package as the
class or not. A more generic complexity measure was developed by
Halstead and based on the analysis of the vocabulary [4]. It is also
described in details in the related paper on metrics [12].

– Understandability is based on metrics such as the presence of at-
tached documentation to model element (which is generally a tool
feature) and the associated complexity.

3.2 Formal Methods Metrics

There is little existing literature on metrics over formal models and they
mainly target complexity and understandability.

Metrics for Z specifications [15] are proposed to measure the com-
plexity of Z models [18]. They are based on count and weighted counts
over the structure of schema inclusion and referencing and on count of
the number of methods per schema. It is quite similar to the classical
metrics applied on the object-oriented software.

Another, more general, approach is Alpha-metric[5]. The underly-
ing principle expressed by Morowitz that complex systems share certain
features like having a large number of elements, possessing high dimen-
sionality and representing an extended space of possibilities [10].

74

There has been some indication that a metric might be proposed for
measuring the understandability of Z specifications. It is based on the as-
sessment that structuring a Z specification into schemas of about 20 lines
long significantly improved understandability over a monolithic specifi-
cation. However, there seems to be no perceived advantage in breaking
down the schemas into much smaller components[3].

4 Survey of Model Measurement Tools

This section provides here a survey of some tools having a metric feature
and presents their implementation in order to employ them in designing
our own tool.

A number of commercial tools for UML modelling have some form
of metric feature, for example: MagicDraw UML[7] or Enterprise Ar-
chitect [14]. Some metrics plug-ins have also been developed for open-
source tools such as [17], those are less frequent and less mature. Finally
tools such as SD Metrics are also available, such as SD Metrics [19]
which simply analyses the standard XMI export of a model. For UML,
an interesting and generic way to compute metrics, is to use Object Con-
straint Language (OCL) as powerful query language over the model.

In another kind of modelling activity, Matlab/Simulink also proposes
a "Modeling Metric Tool" [8]. This tool addresses process metrics in
order to cope with the fact that the productivity figures will be different
when using model-based tools with code generation.

At requirements level, models are also used to capture the structure
and traceability information. Such tools have a dedicated database and a
corresponding (script-based) query language that can be used to compute
the desired metrics (e.g. requirements to test coverage).

5 Design of a Metric Plug-in

5.1 Evolvable Tool

Regarding Event-B, there is no known work about specific metrics for
measuring specific aspects of a model such as complexity, maintainabil-
ity. To address this need some measuring elements have been identified,
but were not consolidated in such a higher level metric. Some classes of
metrics are:

75

– Size: based on number of machines/contexts, number of events
– Complexity: could be based on size of contexts, number of refine-

ments, invariants
– Maintainability/understandability: based on complexity, comment ra-

tio, proof ratio, structure of assertions
– Effort to prove: based on the ratio of manual/automated proofs

Developing a metric for providing a good ranking of useful character-
istics is not easy and relies on the understanding, analysis and observation
of the application of the Event-B methodology itself. A key methodolog-
ical element is the refinement strategy which should introduce smart and
progressive refinement. This suggests a metric for determining the "dis-
tance" between two refinements. At this stage such metrics are not yet
available but the purpose of the tool is to easily allow the addition of
such metrics and the validation of their reliability.

5.2 Computing Product Metrics

In order to compute metrics on Event-B model, the model must be avail-
able for interrogation. This is best done using a query language. Currently
RODIN provides a number of different ways to access the language: di-
rectly through an XML file, using a specific RODIN API (in JAVA) or
using an EMF meta-model of Event-B. The worse option is to use the file
itself because it works at XML level and not at Event-B level and there
is no guarantee of it. The RODIN API is stable and efficient but does not
provide a powerful query language and therefore some procedural en-
coding is required. Finally the EMF API allows to use a declarative style
in OCL but is less efficient.

5.3 Computing Process Metrics

Eclipse provides build-in activity support through the standard Mylyn
plugin [16]. Mylyn enables the definition of user specific task contexts
on a project which can greatly enhance the productivity by removing
all the information that is not relevant for completing that task. It also
provides a monitor interface to collect information about a user’s activity
in Eclipse. Two kind of clients can connect to the monitor: first a "Context
UI" which can transform interaction into a degree-of-interest model, and

76

second, a user study plug-ins which can report on Eclipse usage trends
(with the user’s consent).

Specific process metrics can be implemented using this Monitor API.
For example, a task context can be defined for Event-B proving and a
client can monitor the proof related events and times for manual proving.
Some assumption/convention may be necessary about the actual activity
of the user for the data to be meaningful.

6 Implementation

The current prototype is limited to the product metrics and relies on the
RODIN API. The plug-in is composed of two parts:

– the plug-in framework, providing the display at various levels of struc-
ture (such as project, machine and event). It also provides an interface
to register new metrics.

– a metric repository, composed of a set of standard metrics. The ini-
tial set is composed of simple metrics for volumetry, provability and
complexity.

The standard interface for describing a set of metrics is composed of
a method returning the name of the whole set, the names of the metrics
and the way to compute them from a model element (possibly at various
level of granularity).

public interface IMetrics {
public String getName();
public String[] getMetricNames();
public Object[] getMetricValues(IModelElement element);

}

Fig. 1. IMetrics Interface

The following code shows the implementation of simple volumetry
metrics: it counts the number of events and variables. The information is
provided at machine and project level.

The Halstead metrics adapted for Event-B in [12] was implemented
in a similar way. The total code size is about 200 lines. Figure 3 shows
the plug-in in action on the similar BepiColumbo specification used in
this paper.

77

public Object[] getMetricValues(IModelElement element) {
if (element instanceof ModelProject) {
int n_evt = 0;
ModelProject project = (ModelProject) element;
for (final ModelMachine machine : project.getRootMachines()) {
n_evt += getEventCount(machine);
n_var += getVarCount(machine);

}
return new Integer[] { n_evt };

}
if (element instanceof ModelContext)
return new Integer[] { 0 };

if (element instanceof ModelMachine) {
ModelMachine mach = (ModelMachine)element;
return new Integer[] { getEventCount(mach) };

}
}
private int getEventCount(ModelMachine machine) throws RodinDBException {
return machine.getInternalMachine().getEvents().length;

}

Fig. 2. Implementation of Volumetry Metrics

Fig. 3. Metrics plug-in in action on the BepiColombo Model

7 Future Work
The plan is to move to the EMF API to allow users to directly encode
metrics using OCL strings without any need to recompile. The Mylyn

78

monitor API will also be deployed to collect activity information that
will be available for the metrics computation. The process information
can be attached to specific extension points of the Event-B meta-model,
for example to those related to the proofs.

Currently the evolution of metrics over time is not supported. Only
computation of the current state is possible. Recording the evolution over
time is planned for a meaningful set of metrics which will be stored in
a project file. In the longer term, when model versioning becomes avail-
able, this feature should be associated with it to directly allow to query
the repository for computing the evolution of a metric over time.

Acknowledgement

This project was financially supported by the DEPLOY FP7 project (project
reference number 214158).

References
1. S. R. Chidamber and C. F. Kemerer, A metrics suite for object oriented design, IEEE Trans.

Softw. Eng. 20 (1994), no. 6, 476–493.
2. Tom DeMarco, Controlling Software Projects: Management, Measurement, and Estimates,

Prentice Hall, 1986.
3. Kate Finney, Keith Rennolls, and Alex Fedorec, Measuring the comprehensibility of z spec-

ifications, J. Syst. Softw. 42 (1998), no. 1, 3–15.
4. M.H. Halstead, Elements of software science, Elsevier North Holland, 1977.
5. Peter Kokol and Vili Podgorelec, Ranking the complexity of niam conceptual schemas by

alpha metric, SIGPLAN Not. 35 (2000), no. 3, 59–64.
6. Michele Lanza and Radu Marinescu, Object-oriented metrics in practice, Springer, 2006.
7. No Magic, MagicDraw UML, http://www.magicdraw.com.
8. Mathworks, Modeling Metrics Tool, http://www.mathworks.com/matlabcentral/

fileexchange/5574.
9. Thomas J. McCabe, A complexity measure, ICSE ’76: Proceedings of the 2nd international

conference on Software engineering (Los Alamitos, CA, USA), IEEE Computer Society
Press, 1976, p. 407.

10. H. Morowitz, The Emergence of Complexity, Complexity 1(1):4 (1995).
11. Object Management Group, Unified Modeling Language, http://www.uml.org.
12. Marta Plaşka and Kaisa Sere, Towards event-b specification metrics, Proceedings of Deploy

Technical Workshop 2009, Technical Report of the School of Computing Science, University
of Newcastle (M. Mazzara et al. Editors, ed.), 2010.

13. RODIN Community, RODIN toolset, http://sourceforge.net/projects/
rodin-b-sharp.

14. Sparx Systems, Enterprise Architect, http://www.sparxsystems.com.au.
15. J. M. Spivey, The z notation: a reference manual, Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1989.

79

16. Tasktop Technologies, Eclipse Mylyn Project, http://www.eclipse.org/mylyn.
17. Tigris Technologies, ArgoUML, http://http://argouml.tigris.org.
18. Fangjun Wu and Tong Yi, Measuring z specifications, SIGSOFT Softw. Eng. Notes 29

(2004), no. 5, 1–5.
19. Jürgen Wüst, SD Metrics, http://www.sdmetrics.com.

80

Towards Event-B Specification Metrics

Marta (Pląska) Olszewska and Kaisa Sere

Åbo Akademi University, Finland
{Marta.Plaska, Kaisa.Sere}@abo.fi

Abstract. In this paper we describe our ongoing research on Event-B specifi-
cation metrics. We focus on the physical features of specification, such as its
vocabulary or length for the Event-B machines. We base our metrics on the syn-
tactic properties of the Event-B language, namely operators and operands that we
consider meaningful for our measurement model. Presented metrics are applied
for a number of Event-B machines. Obtained results can be analysed in a per-
spective of an abstract machine and its refinements.

Keywords: Event-B, specification metrics, size, direct measurements, quantita-
tive measurements, Halstead model, complexity.

1 Introduction

Measurements for software systems and their development process are
nowadays a good practice in the computer world [1] [2]. They are a part
of software projects in order to assure certain quality [3] or even for stan-
dardisation purposes. They have been evolved for many years, extended
for particular development methods like Object-Oriented programming
[4] [5] or narrowed down to meet the needs of specific programming lan-
guages, like Java Programming Language [6]. Quality measurements are
done not only at the end-product stage, but much earlier, for the require-
ments [7] or (formal) model of the system [8]. Early quality assessment
has major influence on the final product, as there is a thorough control
over the whole development process.

Research on metrics for formal specifications has already been done
for the Z language. In [9] authors perform static analysis of Z specifica-
tion notation, whereas in [10] the focus is on the linguistic properties of
the notation and predicting erroneous parts of specifications created in
Z. There has also been done an assessment for B language [11], where
existing metrics concerned mostly traceability and safety analyses, proof
related metrics and direct statistics, like number of LOC (lines of code),
variables in a component or imported components. However, it has been

observed that there is still a need for metrics in the early phase of the
development [12]. The primary users of our metrics are anticipated to
be managers, who would be able to analyse the project in its initial
stage. Obtained information would then serve as a benchmark of how
the current approach influences the specification statistics and, ideally,
allow gathering experience on process of developing such specification.
The development team could also benefit from metrics, which could be
present already when creating a specification and assist developers with
specification’s analysis later on. To the best of our knowledge only direct
statistics, like number of LOC, automatic and interactive proofs, invari-
ants, theorems, refinement steps and the like, are gathered. It would be
valuable to provide more elaborated metrics that would help specifica-
tion analysis and assessment and in the future possibly deal with more
involved characteristics, e.g. complexity of the specification or effort pre-
diction.

Event-B is a formal method and a specification language, which is
used for system-level modelling and analysis [13]. It is supported by a
tool called Rodin Platform, which is an Integrated Development Envi-
ronment based on Eclipse framework. An Event-B specification consists
of a machine and its context that depict the dynamic and the static part
of the specification, respectively. The dynamic model defines the state
variables, as well as the operations on these. The context, on the other
hand, contains the sets and constants of the model with their properties
and is accessed by the machine through the SEES relationship [14]. At
this point of our research on metrics we concentrate on the machine only,
because we consider machine measurements as a first step towards estab-
lishing global Event-B specification metrics.

Since Rodin Platform enables users to obtain LATEX version of the
Event-B specifications, herein machines, we can process each of such
files in an automated way. We have implemented a script [15], which
parses each of the machine LATEX file and gathers the statistics about its
contents. We perform data collection from the variables and events sec-
tions of the machine, as these are crucial for obtaining the information
for our metrics. When the metrics are fully developed, they will be incor-
porated in a Rodin metrics plugin.

In our work we focus on the syntactical properties of the specifica-
tion at the source code level. We benefit from the existing code metrics
and incorporate them to our early stage development measurements. We

82

derive from Halstead’s metrics [16], which describe a program as a col-
lection of tokens that can be classified as either operators or operands.
These metrics are used to determine a quantitative measure, e.g. program
length, vocabulary size, program volume or complexity directly from the
source code [17]. Empirical studies show that standard Halstead metric is
a good estimate for program length, provided that the data needed for the
equations are available. This means that the program should be (almost)
completed, which seems to be a downside of this metric that we are aware
of. However, it can be useful in gathering the information about a size of
a program after the coding process as well. It should also be mentioned
that there have been strong debates and criticism on the methodology
and the derivations of equations [18]. We think that with certain degree
of modification this metric is worth conducting experiments and could
demonstrate to be useful in the domain of (formal) specifications. To our
knowledge, no experimentation with Halstead metrics for formal speci-
fications has been done yet.

We use the objectives of the Halstead model and carefully adjust them
to Event-B language specifics. Our motivation is that the Event-B syntax
is appropriate to be experimented with in terms of Halstead metrics, as it
contains all primitives needed for further computations. We believe that
experimenting with syntactical metrics originating from a programming
language will occur to be successful in Event-B case and the results of
this investigation will be meaningful.

Our paper is structured as follows. In Section 2, we describe our con-
cept of metrics for Event-B machines. Then we illustrate it with an ex-
ample in Section 3. We conclude and present plans for the continuation
our work in Section 4.

2 Metrics for Event-B specification

We derive our metric for Event-B machines from the Halstead model
[16], which we now shortly depict. The model is constructed based on a
collection of tokens: operators and operands, where four primitive mea-
sures can be distinguished:

– n1 - number of distinct operators in a program,
– n2 - number of distinct operands in a program,
– N1 - number of operator occurrences,

83

– N2 - number of operand occurrences.

These primitive measures are a foundation of Halstead model, which
consists of equations expressing the vocabulary, overall program length,
potential minimum volume for an algorithm and the difficulty level, which
indicates software complexity. Moreover, program difficulty, as well as
other features like development effort can be specified with given prim-
itive measures. One needs to take into account that accuracy and be-
haviour of this model varied between its application domains.

At this point of our research we consider only the machine part of the
Event-B specification, focusing on variables and events blocks. Although
we presume that refinement has an impact on the qualitative and quan-
titative aspects of the specification, currently, for the simplicity reasons,
we do not take it into consideration. It is planned as a part of our future
work.

In order to be able to adjust Halstead model to Event-B environment
we have to make several assumptions. Firstly, we decide upon mean-
ingfulness of operators [19] [20]. As an operator we consider unary op-
erators, binary operators except functions, range operator (symbol ..),
forward composition (symbol ;), parallel product (symbol ||) and direct
product (symbol ⊗). We also consider quantifiers, except separators for
set comprehension and bounded qualification (symbols | and . respec-
tively), to be operators in our model. The full list of language operators
can be found in the language description [21]. We gather the data about
the number of distinct operators (n1), as well as the number of their oc-
currences (N1).

Secondly, we determine the operands, which we chose to be wit-
nesses and variables [21]. We count the number of unique operands (n2)
and the number of their appearances (N2) respecting their visibility rules.
If a witness name appears in several events in a single machine, each
of such occurrences is distinct due to the scope. Witnesses are visible
only inside a single event, whereas variables are global for the machine.
Having defined primitive measures, we identify several metrics for spec-
ification’s machine measurements and list them after their description. It
is worth mentioning that these metrics do not depend on text formatting,
like in a case of using LOC as a machine size metric. They are more
credible, as the primitive measures are clearly defined. For comparison

84

in case of LOC it might not be obvious whether to include comments or
data definitions to the size computations [22] [23], unless well defined.

We find the metrics of Halstead [16] suitable for our case. The size
of a machine’s vocabulary (n) is defined as a sum of distinct operators
and operands (1). A machine’s size (N) is a sum of operator and operand
occurrences (2). Next metric, a machine’s volume (V), represents the in-
formation contents of the program, i.e. the size of the code of a machine.
The calculation of V is based on the number of operations and operands
present in the machine (3). Another metric, difficulty level D, represent-
ing the difficulty experienced during writing a specification, is propor-
tional to the number of distinct operators n1 and occurrences of operands
N2, and inversely proportional to the number of distinct operands n2 (4).
Other Halstead metrics are anticipated in our future work.

n = n1 +n2 (1)

N = N1 +N2 (2)

V = N log2 n (3)

D =
n1N2

2n2
(4)

3 Experimental setup and preliminary results

We apply presented metrics to an abstract machine and its subsequent
refinements in order to perform comparative study and evaluation of the
obtained results. This enables us to quantitatively assess the machine de-
velopment from its physical characteristics point of view.

Our methodology was applied to a number of specifications created
by Space Systems Finland within the European Project DEPLOY. We
performed a single domain experiment, with the same type of the devel-
opment and the same staff. This made the investigation more credible,
as we reduced the number of experiment variables that could skew the
overall results. Table 1 presents the data obtained from BepiColombo
specification Version 5.0, uploaded by SSF to the BSCW repository on
the 2nd May, 2009. The analysis of gathered statistics considers also the
number of LOC, which we defined as non empty and non-comment lines
of code. The hyphen in the D row indicates that there were only skip

85

Table 1. SSF BepiColombo Specification, Version 5.0 measurements

Metric M00 M01 M02 M03 M04 M05 M06 M07
n1 2 5 0 3 4 0 5 9
N1 7 69 0 7 11 0 44 22
n2 19 48 13 21 21 18 85 31
N2 89 360 30 104 61 28 419 116
n 21 53 13 24 25 18 90 40
N 96 429 30 111 72 28 463 138
V 422 2457 111 509 334 117 3006 734
D 5 19 - 7 6 - 12 17
LOC 231 758 455 599 538 477 1132 783

events in the corresponding machine, which arithmetically means that
the result of the computation was not a number.

There is a strong correlation between the vocabulary size n and length
N of each machine, where n is always less or equal than N. This is a direct
consequence of the n and N definitions. Moreover, a positive relationship
of n and N concerning other statistics, like number of events (also ac-
tions) can be observed. There is a strong correlation between volume and
formerly mentioned machine size metrics (N, n, LOC), which is particu-
larly visible when logarithmic scale is used in the diagrams. Therefore V
could be used as a meaningful size metric.

The difficulty level characteristic is proportional to the number of
unique operators in the program, so also to vocabulary size. There seems
to be a correlation between D and Interactive Proof Obligations, however
it is not strong enough to be a complete basis for a quality prediction
model. Therefore, it needs to be further investigated.

The Halstead metrics for Event-B specifications have to be verified
on more examples. We will pursue the search for possible relations with
other indicators, e.g. number of requirements covered.

4 Conclusions and future work directions

Our metrics for Event-B should provide better understanding of specifi-
cations’ physical features. They could facilitate early-stage development
analysis of an abstract specification and its consecutive refinements. Such
metrics could be used as a basis for further, indirect measurements, like
predictions of time and human resources necessary for a development.

86

In our paper we proposed a quantitative approach to assess Event-
B specifications. We described several metrics for the machine part of a
specification adjusted to the specifics of the Event-B language. Moreover,
we have implemented a script for automatic data collection and ran it
against existing specification.

As a continuation of our research we plan to check the validity of
presented metrics on a bigger number of machines (specifications) and
discuss the obtained results with the designers. We want to modify the
models of the machine metrics if needed, i.e. when not fully expressing
the results or not entirely reflecting the developer’s intuition. We also
need to create metrics for the context part of the specification. This would
enable us to create a set of global metrics, which take under consideration
complete Event-B specification, i.e. both context and machine, so that it
can be analysed as a whole. We also need to incorporate refinement into
our model in order to analyse the accumulated Event-B developments,
which can be done e.g. using the Breiman’s random forest theory [24].

Since software is becoming larger and more complex nowadays, the
metrics we proposed could be used for building a complexity model for
Event-B specification. Handling complexity already at the beginning of
the project would benefit not only the design process as such, but also
later on, e.g. in programming or maintenance phases. It would also serve
as early development data to managers.

Acknowledgments

This work has been done within the EC FP7 Integrated Project Deploy
(grant no. 214158).

References
1. P. Goodman. Software Metrics: Best Practices for Successful IT Management. Rothstein

Associates Inc., 2004
2. A. Gopal, M.S. Krishnan, T. Mukhopadhyay, D. Goldenson. Measurement Programs in Soft-

ware Development: Determinants of Success. IEEE Transactions on Software Engineering,
Vol. 28, No. 9, 2002

3. R. Kandt. Software Engineering Quality Practices. Auerbach Publications, 2005
4. M. Lanza, R. Marinescu, S. Ducasse. Object-Oriented Metrics in Practice: Using Software

Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems.
Springer, 2006

87

5. R.C. Martin. OO Design Quality Metrics. An Analysis of Dependencies.. 1994
6. Metrics 1.3.6, http://metrics.sourceforge.net/
7. J. Robertson, S. Robertson. Requirements: Made to Measure. American Programmer, X,

1997
8. A. Tang, M.H. Tran, J. Han, H. van Vliet. Design Reasoning Improves Software Design

Quality, Quality of Software Architectures. Models and Architectures.. Springer, Heidelberg,
2008

9. I.J. Hayes, B.E. Mahony. Using Units of Measurement in Formal Specifications. Formal
Aspects of Computing, 7, pp.329-347, 1995

10. R. Vinter, M. Loomes, D. Kornbrot. Applying Software Metrics to Formal Specifications: A
Cognitive Approach. IEEE International Symposium on Software Metrics, pp.216, 1998

11. E.M. El Koursi, G. Mariano. Assessment and certification of safety critical software. Pro-
ceedings of the 5th Biannual World Automation Congress, IEEE, Orlando, 2002

12. R.W. Whitty. Research in Specification Methods. IEEE Colloquium on Software Metrics,
2002

13. Event-B.org. http://www.event-b.org/index.html
14. J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,

1996
15. M. Olszewska, M. Olszewski. http://valhalla.cs.abo.fi/ mplaska/btexcount.rb
16. M.H. Halstead. Elements of Software Science. Elsevier North Holland, pp.128., 1977
17. S. Kan. textslMetrics and Models in Software Quality Engineering. Addison–Wesley, 2003
18. P.G. Hamer, G. Frewin. M. H. Halstead’s Software Science – A Critical Examination. IEEE

Proceedings of 6th International Conference on Software Engineering, ICSE., Tokyo, 1982
19. M. Jorgensen. Software Quality Measurement. Advances in Engineering Software, 30,

pp.907-912., 1999
20. User Manual of the RODIN Platform, Version 2.3. 2007
21. C. Metayer, J.R. Abrial, L. Voisin. Event-B Language, RODIN Deliverable 3.2 (D7). 2005
22. N. Fenton, S. Pflegger. Software Metrics. A Rigorous and Practical Approach. PWS Pub-

lishing Company, 1997
23. N. Fenton, M. Neil. Software metrics: roadmap. Conference on the Future of Software En-

gineering , Limerick, Ireland, 2000
24. L. Breiman. Random Forests, Machine Learning, Volume 45, Number 1, pp.5-32., October

2001

88

Part IV

Model Checking

Proof Assisted Model Checking for B?

Jens Bendisposto and Michael Leuschel

Institut für Informatik, Heinrich-Heine Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{bendisposto, leuschel}@cs.uni-duesseldorf.de

Abstract. With the aid of the PROB Plugin, the Rodin Platform provides an inte-
grated environment for editing, proving, animating and model checking Event-B
models. This is of considerable benefit to the modeler, as it allows him to switch
between the various tools to validate, debug and improve his or her models. The
crucial idea of this paper is that the integrated platform also provides benefits to
the tool developer, i.e., it allows easy access to information from other tools. In-
deed, there has been considerable interest in combining model checking, proving
and testing. In previous work we have already shown how a model checker can be
used to complement the Event-B proving environment, by acting as a disprover.
In this paper we show how the prover can help improve the efficiency of the ani-
mator and model checker.
Keywords: Model Checking, B-Method, Theorem Proving, Experiment, Tool In-
tegration.

1 Introduction

There has been considerable interest in combining model checking, prov-
ing and testing (e.g., [16, 17, 7, 19, 4, 8]). The Rodin platform for the for-
mal Event-B notation provides an ideal framework for integrating these
techniques. Indeed, Rodin is based on the extensible Eclipse platform and
as such it is easy for provers, model checkers and other arbitrary tools to
interact. In this paper we make use of this feature of Rodin to improve the
PROB [12, 13] model checking algorithm by using information provided
by the various Rodin provers.

More concretely, in this paper we show how we can optimize the
consistency checking of Event-B and B models, i.e., checking whether
the invariants of the model hold in all reachable states. The key insight
is that from the proof information we can deduce that certain events are
guaranteed to preserve the correctness of specific parts of the invariant.

? This research is being carried out as part of the DFG funded research project GEPAVAS and
the EU funded FP7 research project 214158: DEPLOY (Industrial deployment of advanced
system engineering methods for high productivity and dependability).

By keeping track of which events lead to which states, we can avoid
having to check a (sometimes considerable) amount of invariants.

The paper is structured as follows. In Section 2 we introduce the
Event-B formal method and the Rodin platform, while in Section 3 we
provide background about consistency checking and the PROB model
checker, which itself already employs a combination of model checking
and constraint solving techniques. In Section 4 we explain our approach
to using proof information for optimizing the process of checking in-
variants in the PROB model checker, and present an improved model
checking algorithm. Section 5 introduces a fully proven formal model
of our approach. In Section 6 we evaluate our approach on a series of
case studies, drawn from the Deploy project. The experiments show that
there can be considerable benefit from exploiting proof information dur-
ing model checking. In Section 7 we discuss how our method can be used
in the context of classical B without easy access to proof information. We
conclude with related work and discussions in Section 8.

2 Event-B and Rodin

Event-B is a formal method for state-based system modeling and analysis
evolved from the B-method [1]. The B-method itself is derived from Z
and based upon predicate logic combined with set theory and arithmetic,
and provides several sophisticated data structures (sets, sequences, rela-
tions, higher-order functions) and operations on them (set union, inter-
section, relational composition, relational image, to name but a few).

An Event-B development consists of two types of artifacts: contexts
and machines. The static properties are expressed in contexts, the dy-
namic properties of a system are specified in machines. A context con-
tains definitions of carrier sets, constants as well as a set of axioms. A
machine basically consists of finite sets of variables v and a finite set of
events. The variables form the state of the machine, they are restricted
and given a type by an invariant. The events describe transitions from
one state into another state. An event has the form:

event =̂ ANY t WHERE G(v, t) THEN S(v, t) END

It consists of a set of local variables t, a predicate G(v, t), called the guard
and a substitution S(v, t). The guard restricts possible values for t and v.

92

If the guard of an event is false, the event cannot occur and it is called
disabled. The substitution S modifies some of the variables in v, it can
use the old values of v and the local variables t. For instance, an event
that chooses two natural numbers a,b and adds their product ab to the
state variable x ∈ v could be written as

evt1 =̂ ANY a,b WHERE a ∈ N∧b ∈ N THEN x := x+ab END

The Rodin tool [2] was developed within the EU funded project RODIN
and is an open platform for Event-B. The Rodin core puts emphasis on
mathematical proof of models, while other plug-ins allow, for instance,
UML-like editing, animation or model checking. The platform interac-
tively checks a model, generates and discharges proof obligations for
Event-B. These proof obligations deal with different aspects of the cor-
rectness of a model. In this paper we only deal with proofs that are related
to invariant preservation, i.e., if the invariant holds in a state and we ob-
serve an event, the invariant still holds in the successor state:

I(v)∧G(v, t)∧SBA(v, t,v′) =⇒ I(v′)

By SBA(v, t,v′) we mean the substitution S expressed as a Before-
After predicate. The primed variables refer to the state after the event
happened, the unprimed variables to the state before the event happened.
In our small example, SBA(v, t,v′) is the predicate x′ = x+ab. If we want
to express, that x is a positive integer, i.e. x ∈ N1, we need to prove:

x ∈ N1∧a ∈ N∧b ∈ N∧ x′ = x+ab =⇒ x′ ∈ N1

This implication is obviously very easy to prove, in particular, it is pos-
sible to automatically discharge this obligation using the Rodin tool.

For each pair of invariant and event the Rodin Proof Obligation Gen-
erator, generates a proof obligation (PO) that needs to be discharged in
order to prove correctness of a model as mentioned before. A reasonable
number of these POs are discharged fully automatically by the tool. If
an obligation is discharged, we know that if we observe an event and
the invariant was valid before, then it will be valid afterwards. Before
generating proof obligations, Rodin statically checks the model. Because
this also includes type checking, the platform can eliminate a number
of proof obligations that deal with typing only. For instance the invari-
ant x ∈ Z does not give rise to any proof obligation, its correctness is
guaranteed by the type checker.

93

The propagation and exploitation of this kind of proof information to
help the model checker is the key concept of the combination of proving
and model checking presented in this paper.

3 Consistency checking and ProB

PROB [12, 13] is an animator for B and Event-B built in Prolog using
constraint-solving technology. It incorporates optimizations such as sym-
metry reduction (see, e.g., [20]) and has been successfully applied to sev-
eral industrial case studies such as a cruise control system [12], parts of
the Nokia Mobile Internet Technical Architecture (MITA) and the most
recent one: the application of PROB to verify the properties of the San
Juan Metro System deployment [14].

One core application of PROB is the consistency checking of a B
model, i.e., checking whether the invariant of a B machine is satisfied in
all initial states and whether the invariant is preserved by the operations
of the machine. PROB achieves this by computing the state space of a B
model, by

– computing all possible initializations of a model and
– by computing for every state all possible ways to enable events and

computing the effects of these events (i.e., computing all possible suc-
cessor states).

Graphically, the state space of a B model looks like in Figure 1. Note
that the initial states are represented as successor states of a special root
node.

PROB then checks the invariant for every state in the state space.
(Note that PROB can also check assertions, deadlock absence and full
LTL properties [15].)

Another interesting aspect is that PROB uses a mixture of depth-first
and breadth-first evaluation of the state space, which can lead to consid-
erable performance improvements in practice [11].

4 Proof-Supported Consistency Checking

The status of a proof obligation carries valuable information for other
tools, such as a model checker. As described, PROB does an exhaustive

94

root

State3

Initial
State2

Initial
State2 Event1

State4Event1

Event2

Event3

Event3

Event2

Fig. 1. A simple state space with four states

search, i.e. it traverses the state space and verifies that the invariant is
preserved in each state. This section describes how we incorporate proof
information from Rodin into the PROB core.

Assuming we have a model, that contains the invariant [I1, I2, I3]1 and
we follow an event evt to a new state. If we would, for instance, know that
evt preserves I1 and I3, there would be no need to check these invariants.
This kind of knowledge, which is precisely what we get from a prover,
can potentially reduce the cost of invariant verification during the model
checking.

The PROB plug-in translates a Rodin development, consisting of the
model itself, its abstractions and all necessary contexts into a represen-
tation used by PROB. We evolved this translation process to also incor-
porate proof information, i.e., our representation contains a list of tuples
(Ei, I j) of all discharged POs, that is event Ei preserves invariant I j.

Using all this information, we determine an individual invariant for
each event that is defined in the machine. Because we only remove proven
conjuncts, this specialized invariant is a subset of the model’s invariant.
When encountering a new state, we can evaluate the specialized invariant
rather than the machine’s full invariant.

As an example we can use the Event-B model shown in Figure 2.
The full state space of this model and the proof status delivered by the
automatic provers of the Rodin tool are shown in Figure 3.

The proof status at the right shows, that Rodin is able to discharge
the proof obligations a/inv1 and b/inv2 but not a/inv2 and b/inv1. This

1 Sometimes it is handier to use a list of predicates rather than a single predicate, we use both
notations equivalently. If we write [P1,P2, . . . ,Pn], we mean the predicate P1∧P2∧ . . .∧Pn.

95

VARIABLES
f,x

INVARIANTS
inv1 : f ∈ N 7→N
inv2 : x > 3

EVENTS
Initialisation
f := {1 7→ 100}||x := 10

Event a =̂
f := {1 7→ 100}||x := f(1)
Event b =̂
f := f∪ {1 7→ 100}||x := 100

Fig. 2. Example for intersection of invariants

S1 S2

x = 100
f(1) = 100

x = 10
f(1) = 100

a

b

a,bInitialize

✓

✓

✘

✘

a / inv1

a / inv2

b / inv1

b / inv2

Fig. 3. State space of the model in figure 2

means, if a occurs, we can be sure that f ∈N 7→N holds in the successor
state if it holds in the predecessor state. Analogously, we know, that if b
occurs, we are sure, that x > 3 holds in the successor state if it holds in
the predecessor state.

Consider a situation, where we already verified that all invariants hold
for S1 and we are about to check S2 is consistent. We discovered two
incoming transitions corresponding to the events a and b. From a, we
can deduct that f ∈ N 7→N holds. From b, we know that x > 3 holds. To
verify S2, we need to check the intersection of unproven invariants, i.e.,
{ f ∈ N 7→N}∩ {x > 3} = ∅, thus we already know that all invariants
hold for S2.

This is of course only a tiny example but it demonstrates, that using
proof information we are able to reduce the number of invariants for each
event significantly, and sometimes by combining proof information from
different events, we are able to get rid of the whole invariant. We actually

96

have evidence that this is not only a theoretical possibility, but happens
in real world specifications (see Section 6).

Algorithm 4.1[Proof-Supported Consistency Checking]
Input: An Event-B model with invariant I = inv1∧ . . .∧ invn

Queue := {root} ; Visited := {}; Graph := {}
for all events evt do Unproven(evt) := {invi | invi not proven for evt}; end do
while Queue is not empty do
if random(1) < α then

state := pop_from_front(Queue); /* depth-first */
else

state := pop_from_end(Queue); /* breadth-first */
end if
if ∃invi ∈ Inv(state) s.t. invi is false then

return counter-example trace in Graph
from root to state

else
for all succ,evt such that state→evt succ do

Graph := Graph ∪ {state→evt succ}
if succ 6∈ Visited then

push_to_front(succ, Queue);
Visited := Visited∪{succ}
Inv(succ) := Unproven(evt)

else
Inv(succ) := Inv(succ)∩Unproven(evt)

end if
end if

end for
od
return ok

Algorithm 4.1 describes PROB’s consistency checking algorithm, we
will justify it formally in section 5. The algorithm employs a standard
queue data structure to store the unexplored nodes. The key operations
are:

– Computing the successor states, i.e., “state→evt succ”.
– Verification of the invariant “∃invi ∈ Inv(state) s.t. invi is false”
– Determining whether “succ 6∈ Visited”

The algorithm terminates when there are no further queued states to
explore or when an error state is discovered. The underlined parts high-
light the important differences with the algorithm in [13].

In contrast to the algorithm, the actual implementation does the cal-
culation of the intersection (Inv(succ) := Inv(succ)∩Unproven(op)) in

97

a lazy manner, i.e., for each state 6∈Visited, we store the event names as
a list. As soon as we evaluate the invariant of a state, we calculate and
evaluate the intersection on the fly. The reason is, that storing the invari-
ant’s predicate for each state is typically more expensive than storing the
event names.

5 Verification

To show, that our approach is indeed correct, we developed a formal
model of an abstraction of algorithm 4.1. We omitted few technical de-
tails, such as the way the state space is traversed by the actual imple-
mentation and also we omitted the fact, that our implementation always
uses all available information. Instead, we have proven correctness for
any traversal and any subset of the available information. Our model was
developed using Event-B and fully proven in Rodin. The model is avail-
able as a Rodin 1.0 archive from
http://www.stups.uni-duesseldorf.de/models/pomc_paper.zip.
In this paper we present only some parts of the model and some lemmas,
without their proofs. All the proofs can be found in the file, we thus refer
the reader to the Rodin model.

We used three carrier sets STATES, INVARIANTS and EVENTS. We
assume, that these sets are finite. For invariants and events this is true by
definition in Event-B, but the state space can in general be unbounded.
However, the assumption of only dealing with finite state spaces is rea-
sonable in the context of our particular model, because we can interpret
the STATES set as the subset of all states that can be traversed by the
model checker within some finite number of steps.2 The following defi-
nitions are used to prove some properties of Event-B:

truth⊆ STATES× INVARIANTS
trans⊆ STATES×STATES
preserve = {s | {s}× INVARIANTS⊆ truth}
violate = STATES \ preserve
label⊆ trans×EVENTS

2 Alternatively, we can remove this assumption from our Rodin models. This only means that
we are not be able to prove termination of our algorithm; all other invariants and proofs remain
unchanged.

98

discharged⊆ EVENTS× INVARIANTS

The model also contains a set truth: pair of a state s and an invariant
i is in truth if and only if i holds in s. The set preserve is defined as
the set of states where each invariant holds, the relations trans and label
describe, how two states are related, i.e. a triple (s 7→ t) 7→ e is in label
(and therefore s 7→ t ∈ trans) if and only if t can be reached from s by
executing e. The observation that is the foundation of all theorems we
proved and is the following assumption:

∀i, t · (∃s,e · s ∈ preserve∧ (s 7→ t) ∈ trans∧
(s 7→ t) 7→ e ∈ label∧ (e 7→ i) ∈ discharged)

⇒ (t 7→ i) ∈ truth

The assumption is, that if we reach a state t from a state s where all
invariants hold by executing an event e and we know, that the invariant i
is preserved by e, we an be sure, that i holds in t. This statement is what
we prove by discharging an invariant proof obligation in Event-B, thus it
is reasonable to assume that it holds.

We are now able to prove a lemma, that will capture the essence of our
proposal; it is enough to find for each invariant i one event that preserves
this invariant leading from a consistent state into a state t to prove, that
all invariants hold in t.

Lemma 1. ∀t ·t ∈ STATES∧(∀i · i∈ INVARIANTS∧(∃s,e ·s∈ preserve∧
e∈EVENTS∧(s 7→ t)∈ trans∧(s 7→ t) 7→ e∈ label∧e 7→ i∈ discharged))⇒
t ∈ preserve

Proof. All proofs have been done using Rodin and can be found in the
model archive. ut

We used five refinement steps to prove correctness of our algorithm.
We will describe the first three steps, the last two steps are introduced to
prove termination of new events. The first refinement step mc0 contains
two events check_state_ok and check_state_broken. The events take a
yet unprocessed state and move it either into a set containing consistent
or inconsistent states. Algorithm 5.1 shows the check_state_ok event,
check_state_broken is defined analogously, except that it has the guard
s 6∈ preserve and it puts the state into the set inv_broken.

99

Algorithm 5.1[Event check_state_ok from mc0]

event check_state_ok
any s
where

s ∈ open
s ∈ preserve

then
inv_ok := inv_ok∪{s}
open := open \ {s}

end

At this very abstract level this machine specifies that our algorithm
separates the states into two sets. If they belong to preserve, the states are
moved into the set inv_ok. Otherwise, they are moved into inv_broken.
Lemma 2 guarantees, that our model always generate correct results.

Lemma 2. mc0 satisfies the invariants

1. inv_ok∪ inv_broken = STATES \ open
2. open = ∅⇒ inv_ok = preserve∧ inv_broken = violate

The next refinement strengthens the guard and removes the explicit
knowledge of the sets preserve and violate, the resulting proof obligation
leads to lemma 3.

Lemma 3. For all s ∈ open

{s}× INVARIANTS \ discharged[label[inv_ok C transB {s}]])⊆ truth

⇔ s ∈ preserve

The third refinement introduces the algorithm. We introduce a new
relation invs_to_verify in this refinement. The relation keeps track of
those invariants, that need to be checked, in the initialization, we set
invs_to_verify := STATES× INVARIANTS.

The algorithm has three different phases. It first selects a state that has
not been processed yet then it checks if the invariant holds and moves the
state into either inv_ok or inv_broken. Finally, it uses the information
about discharged proofs to remove some elements from invs_to_verify as
shown in algorithm 5.2.

Algorithm 5.2[Event mark_successor from mc2]

100

event mark_successor
any p s e
where

p ∈ inv_ok
s ∈ trans[{p}]
(p 7→ s) 7→ e ∈ label
(p 7→ s) 7→ e 6∈ marked
ctrl = mark

then
invs_to_verify := invs_to_verify�− ({s}× (invs_to_verify[{s}]∩unproven[{e}]))
marked := marked∪{(p 7→ s) 7→ e}

end

We take some state s and event e, where we know that s is reachable
via e from a state p, where all invariants hold. Then we remove all invari-
ants but those, that are not proven to be preserved by e. This corresponds
to the calculation of the intersection in algorithm 4.1.

The main differences between the formal model and our implemen-
tation are, that the model does not explicitly describe how the states are
chosen and the algorithm uses all available proof information while the
formal model can use any subset. In addition, the model does not stop if
it detects an invariant violation. We did not specify these details because
it causes technical difficulties (e.g., we need the transitive closure of the
trans relation) but does not seem to provide enough extra benefit.

Correctness of algorithm 4.1 is established by the fact that the out-
going edges of a state are added to the Graph only after the invariants
have been checked for state. Hence, the removal of a preserved invariant
only occurs after it has been established that the invariant is true before
applying the event. This corresponds to the guard p ∈ inv_ok. However,
the proven proof obligations for an event only guarantee preservation of
a particular invariant, not that this invariant is established by the event.
Hence, if the invariant is false before applying the event, it could be false
after the event, even if the corresponding proof obligation is proven and
true. If one is not careful, one could easily set up cyclic dependencies and
our algorithm would incorrectly infer that an incorrect model is correct.

6 Experimental results

To verify that the combination of proving and model checking results in a
considerable reduction of model checking effort, we prepared an exper-

101

iment consisting of specifications we got from academia and industry.
In addition we prepared a constructed example as one case, where the
prover has a very high impact on the performance of the model checker.
The rest of this section describes how we carried out the measurement.
We will also briefly introduce the models and discuss the result for each
of them. The experiment contains models where we expected to have a
reasonable reduction and models where we expected to have only a minor
or no impact.

6.1 Measurement

The latest development versions of PROB can do consistency checking of
a refinement chain. Previous versions of PROB checked a specific refine-
ment level only and removed all gluing invariants. We carried out both,
single refinement level and multiple refinement level checks. The results
have been gathered using a Mac Book Pro, 2.4 GHz Intel Core 2 Duo
Computer with 4 GB RAM running Mac OS X 10.5. For the single level
animation, we collected 40 samples for each model and calculated the
average and standard deviation of the times measured in milliseconds.
For the multi level animation, we collected 5 samples for each model.
The result of the experiment is shown in tables 1, 2 and 3. The absolute
values of tables 1 and 2 are very difficult to compare, because we used
different versions of PROB.

Except for the case of the Siemens specification, we removed all in-
teractive proofs from the models and used only those proof information,
that Rodin was able to automatically generate using default settings. In
the case of the Siemens model, we used both, a version with automatic
proofs only and a development version with few additional interactive
proofs; the development version was not fully proven.

6.2 Mondex

The mechanical verification of the Mondex Electronic Purse was pro-
posed for the repository of the verification grand challenge in 2006. We
use an Event-B model developed at the University of Southampton. We
have chosen two refinements from the model, m2 and m3. The refine-
ment m2 is a rather big development step while the second refinement
m3 was used to prove convergence of some events introduced in m2, in
particular, m3 only contains gluing invariants.

102

In case of single refinement level checking, it is obvious that it is not
possible to further simplify the invariant of m3 but we noticed, that we
do not even lose performance caused by the additional specialization of
the invariants. This is important because it is evidence, that our imple-
mentation’s performance is in the order of the standard deviation in our
measurement. For the case of m2, where we have machine invariants, we
measured a reduction of about 12%.

In case of multiple refinement level checking, we have the only case,
where we lost a bit of performance for m2. However, the absolute value
is in the order of the standard deviation. For m3 we also did not get
significant improvements of performance, most likely because the gluing
invariant is very simple, actually it only contains simple equalities.

6.3 Siemens Deploy Mini Pilot

The Siemens Mini Pilot was developed within the Deploy Project. It is
a specification of a fault-tolerant automatic train protection system, that
ensures that only one train is allowed on a part of a track at a time. The
Siemens model shows a very good reduction, as the invariants are rather
complex. This model does contain a single machine, thus multi level re-
finement checking does not affect the speedup.

6.4 Scheduler

This model is an Event-B translation of the scheduler from [10]. The
model describes a typical scheduler that allows a number of processes
to enter a critical section. The experiment has shown, that the improve-
ment using proof information is rather small, which was no surprise. The
model has a state space that grows exponential when increasing the num-
ber of processes. It is rather cheap to check the invariant

ready∩waiting = ∅∧active∩(ready∪waiting)= ∅∧active = ∅⇒ ready = ∅

because the number of processes is small compared to the number of
states. But nevertheless, we save a small amount of time in each state
and these savings can sum up to a reasonable speedup. The scheduler
also contains a single level of refinement.

103

6.5 Earley Parser

The model of the Earley parsing algorithm was developed and proven
by Abrial. Like in the mondex example, we used two refinement steps
that have different purposes. The second refinement step m2 contains
a lot of invariants, while the m3 contains only very few of them. This is
reflected in the savings we gained from using the proof information in the
case of single refinement level checking. While m3 showed practically
no improvement, in the m2 model the savings sum up to a reasonable
amount of time. In the case of multiple refinement level checking the
result are very different, while m2 is not affected, the m3 model benefits
a lot. The reason is, that it contains several automatically proven gluing
invariants.

6.6 SAP Deploy Mini Pilot

Like the Siemens model this is a Deploy pilot project. It is a model of
system that coordinates transactions between seller and buyer agents. In
the case of single refinement level case, we gain a very good speedup
from using proof information, i.e., model checking takes less than half of
the time. Like in the Siemens example, the model contains rather com-
plicated invariants. In case of the multi refinement level checking the
speedup is still good, but not as impressive as in single refinement level
checking.

6.7 SSF Deploy Mini Pilot

The Space Systems Finland example is a model of a subsystem used for
the ESA BepiColombo mission. The BepiColombo spacecraft will start
in 2013 on its journey to Mercury. The model is a specification of parts
of the BepiColombo On-Board software, that contains a core software
and two subsystems used for tele command and telemetry of the sci-
entific experiments, the Solar Intensity X-ray and particle Spectrometer
(SIXS) and the Mercury Imaging X-ray Spectrometer (MIXS). The time
for model checking could be reduced by 7% for a single refinement level
and by 16% for multiple refinement checking.

104

6.8 Cooperative Crosslayer Congestion Control CXCC

CXCC [18] is a cross-layer approach to prevent congestion in wireless
networks. The key concept is that, for each end-to-end connection, an in-
termediate node may only forward a packet towards the destination after
its successor along the route has forwarded the previous one. The infor-
mation that the successor node has successfully retrieved a package is
gained by active listening. The model is described in [?]. The invariants
used in the model are rather complex and thus we get a good improve-
ment by using the proof information in both cases.

6.9 Constructed Example

The constructed example is mainly to show a case, where we get a huge
saving from using the proofs. It basically contains an event, that incre-
ments a number x and an invariant ∀a,b,c � a ∈ N∧ b ∈ N∧ c ∈ N⇒
(a = a∧ b = b∧ c = c∧ x = x). Because the invariant contains the vari-
able modified by the event, we cannot simply remove it. But Rodin can
automatically prove that the event preserves the invariant, thus our tool
is able to remove the whole invariant. Without proof information, PROB
needs to enumerate all possible values for a,b and c which results in an
expensive calculation.

7 Proof-Assisted Consistency Checking for Classical-B

In the setting of Event-B and the Rodin platform, PROB can rely on the
other tools for providing type inference and as we have seen the proof
information.

In the context of classical B, we are working on a tighter integration
with Atelier B [21]. However, at the moment PROB does not have access
to the proof information of classical B models.

PROB does perform some additional analyses of the model and an-
notates the AST (Abstract Syntax Tree) with additional information. For
instance for each event we calculate a set of variables that are possibly
modified. For instance if we analyze the operation3

Operation1 = BEGIN x := z || y := y∧{x 7→ z} END

3 Operations are the equivalent of events in classical B.

105

w/o proof using proof
information [ms] information [ms] Speedup-Factor

Mondex m3 1454±5 1453±5 1.00
Earley Parser m3 2803±8 2776±7 1.01
Earley Parser m2 140310±93 131045±86 1.07
SSF 31242±64 29304±44 1.07
Scheduler 9039±15 8341±14 1.08
Mondex m2 1863±7 1665±6 1.12
Siemens (auto proof) 54153±50 25243±22 2.15
Siemens 56541±57 26230±28 2.16
SAP 18126±18 8280±14 2.19
CXCC 18198±21 6874±12 2.65
Constructed Example 18396±26 923±8 19.93

Table 1. Experimental results (single refinement level check)

w/o proof using proof
information [ms] information [ms] Speedup-Factor

Mondex m2 1747±21 1767±38 0.99
Mondex m3 1910±20 1893±6 1.01
Earley Parser m2 309810±938 292093±1076 1.06
Scheduler 9387±124 8167±45 1.15
SSF 35447±285 30590±110 1.16
SAP 50783±232 34927±114 1.45
Earley Parser m3 7713±40 5047±15 1.53
Siemens (auto proof) 51560±254 24127±93 2.14
Siemens 51533±297 23677±117 2.18
CXCC 18470±151 6700±36 2.76
Constructed Example 18963±31 967±6 19.61

Table 2. Experimental results (multiple refinement level check)

w/o Proof [#] w Proof [#] Savings [%]
Earley Parser m2 − − -
Mondex m3 440 440 0
Earley Parser m3 540 271 50
Constructed Example 42 22 50
SAP 48672 16392 66
Scheduler 20924 5231 75
Mondex m2 6600 1560 76
SSF 24985 5009 80
CXCC 88480 15368 83
Siemens 280000 10000 96
Siemens (auto proof) 280000 10000 96

Table 3. Number of invariants evaluated (single refinement level check).

106

the analysis will discover that the set of variables that could potentially
influence the truth value of the invariant is {x,y}.

This analysis was originally used to verify the correct usage of SEES
in the classical B-Method. The SEES construct was used in the prede-
cessor of Event-B, so-called classical B, to structure different models. In
classical B a machine can see another machine, i.e., it is allowed to call
operations that do not modify the state of the other machine. To support
this behavior, it was necessary to know if an operation has effect on state
variables, that is the set of modified variables is the empty set. It turned
out, that the information is more valuable than originally thought, as it is
equivalent to some proof obligation:

If u and v are disjoint sets of state variables, and the substitution of an
operation is SBA(v, t,v′) we know that u = u′ and thus a simplified proof
obligation for the preservation of an invariant I(u) over the variables u is

I(u)∧G(u∪ v, t)∧SBA(v, t,v′)⇒ I(u)

which is obviously true. These kind of proof obligations are not generated
by any of the proving environments for B we are aware of. In particular
Rodin does not generate them. For a proving environment, this is a good
idea as they do not contain valuable information for the user and they can
be filtered out by simple syntax analysis. But for the model checker these
proofs are very valuable; in most cases they allow us to reduce the num-
ber of invariants we need to check. As this type of proof information can
be created from the syntax, we can use them even if we do not get proof
information from Rodin, i.e., when working on classical B machines. As
such, we were able to use Algorithm 4.1 also for classical B models and
also obtain improvements of the model checking performance (although
less impressive than for Event-B).

8 Conclusion and Future Work

First of all, we never found a model where using proof information sig-
nificantly reduced the performance, i.e., the additional costs for calculat-
ing individual invariants for each state are rather low. Using proof infor-
mation is the new default setting in PROB.

We got a number of models, in particular those coming from industry,
where using the proof information has a high impact on the model check-
ing time. In other cases, we gained only a bit or no improvement. This

107

typically happens if the invariant is rather cheap to evaluate compared to
the costs of calculating the guards of the events. We used an out-of-the-
box version of Rodin4 to produce our experimental results. Obviously,
it is possible to further improve them by adding manual proof effort. In
particular, it gives the user a chance to influence the speed of the model
checker by proving invariant preservation for those parts that are difficult
to evaluate, i.e., those predicates that need some kind of enumeration.

Related Work A similar kind of integration of theorem proving into a
model checker was previously described in [?]. In their work Pnueli and
Shahar introduced a system to verfify CTL and LTL properties. This sys-
tem works as a layer on top of CMU SMV and was sucessfully applied
to fragments of the Futurebus+ system. SAL is a framework and tool to
combine different symbolic analysis [19], and can also be viewed as an
integration of theorem proving and model checking. Mocha [3] is an-
other work where a model checker is complemented by proof, mostly for
assume-guarantee reasoning. Some more works using theorem proving
and model checking together are [7, 4, 8, 9].

In the context of B, the idea of using a model checker to assist a
prover has already been exploited in practice. For example, in previous
work [5] we have already shown how a model checker can be used to
complement the proving environment, by acting as a disprover. In [5]
it was also shown that sometimes the model checker can be used as a
prover, namely when the underlying sets of the proof obligation are fi-
nite. This is for example the case for the vehicle function mentioned in
[12]. Another example is the Hamming encoder in [6], where Dominique
Cansell has used PROB to prove certain theorems which are difficult to
prove with a classical prover (due to the large number of cases).

Future Work We have done but a first step towards exploiting the full
potential for integrating proving and model checking. For instance, we
may feed the theorem prover with proof obligations generated by the
model checker in order to speed up the model checking. A reasonable
amount of time is spent evaluating the guards. If the model checker
can use the theorem prover to prove that an event e is guaranteed to be
disabled after an event f occurs, we can reduce the effort of checking

4 For legal reasons, it is necessary to install the provers separately

108

guards. We may need to develop heuristics to find out when the model
checker should try to get help from the provers.

Also we might feed information from the model checker back into the
proving environment. If the state space is finite and we traverse all states,
we can use this as a proof for invariant preservation. PROB restricts all
sets to finite sets [13] to overcome the undecidability of B, so this needs
to be handled with care. We need to ensure, that we do not miss states
because PROB restricted some sets. Also we need to ensure that all states
are reachable by the model checker, thus we may need some additional
analysis of the model.

We also think of integrating a prover for classical B, to exploit proof
information. The integration is most likely not as seamless as in Rodin
and the costs of getting proof information is higher.

Although the cost of calculating the intersections of the invariants
for each state is too low to measure it, the stored invariants take some
memory. It might be possible to find a more efficient way to represent
the intersections of invariants.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. J.-R. Abrial, M. Butler, and S. Hallerstede. An open extensible tool environment for Event-

B. In ICFEM06, LNCS 4260, pages 588–605. Springer, 2006.
3. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran. Mocha:

Modularity in model checking. In A. J. Hu and M. Y. Vardi, editors, CAV, volume 1427 of
Lecture Notes in Computer Science, pages 521–525. Springer, 1998.

4. K. Arkoudas, S. Khurshid, D. Marinov, and M. C. Rinard. Integrating model checking and
theorem proving for relational reasoning. In R. Berghammer, B. Möller, and G. Struth, edi-
tors, RelMiCS, volume 3051 of Lecture Notes in Computer Science, pages 21–33. Springer,
2003.

5. J. Bendisposto, M. Leuschel, O. Ligot, and M. Samia. La validation de modèles Event-B
avec le plug-in ProB pour RODIN. Technique et Science Informatiques, 27(8):1065–1084,
2008.

6. D. Cansell, S. Hallerstede, and I. Oliver. UML-B specification and hardware implementa-
tion of a hamming coder/decoder. In J. Mermet, editor, UML-B Specification for Proven
Embedded Systems Design. Kluwer Academic Publishers, Nov 2004. Chapter 16.

7. D. Dams, D. Hutter, and N. Sidorova. Using the inka prover to automate safety proofs
in abstract interpretation - a case study. In F. Bellegarde and O. Kouchnarenko, editors,
Workshop on Modelling and Verification, C.I.S., Besançon, France, 1999. Alternative title:
Combining Theorem Proving and Model Checking - A Case Study.

8. P. Dybjer, Q. Haiyan, and M. Takeyama. Verifying haskell programs by combining test-
ing, model checking and interactive theorem proving. Information & Software Technology,
46(15):1011–1025, 2004.

109

9. E. L. Gunter and D. Peled. Model checking, testing and verification working together. For-
mal Asp. Comput., 17(2):201–221, 2005.

10. B. Legeard, F. Peureux, and M. Utting. Automated boundary testing from Z and B. In
Proceedings FME’02, LNCS 2391, pages 21–40. Springer-Verlag, 2002.

11. M. Leuschel. The high road to formal validation. In E. Börger, M. Butler, J. P. Bowen,
and P. Boca, editors, ABZ, volume 5238 of Lecture Notes in Computer Science, pages 4–23.
Springer, 2008.

12. M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi, and
D. Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874. Springer-
Verlag, 2003.

13. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B method. STTT,
10(2):185–203, 2008.

14. M. Leuschel, J. Falampin, F. Fritz, and D. Plagge. Automated property verification for large
scale b models. In A. Cavalcanti and D. Dams, editors, Proceedings FM 2009, LNCS 5850,
pages 708–723. Springer, 2009.

15. M. Leuschel and D. Plagge. Seven at a stroke: LTL model checking for high-level specifi-
cations in B, Z, CSP, and more. In Y. A. Ameur, F. Boniol, and V. Wiels, editors, Proceed-
ings Isola 2007, volume RNTI-SM-1 of Revue des Nouvelles Technologies de l’Information,
pages 73–84. Cépaduès-Éditions, 2007.

16. O. Müller and T. Nipkow. Combining model checking and deduction for i/o-automata. In
E. Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria, and B. Steffen, editors, TACAS,
LNCS 1019, pages 1–16. Springer, 1995.

17. S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining specification,
proof checking, and model checking. In R. Alur and T. A. Henzinger, editors, Computer-
Aided Verification, CAV ’96, LNCS 1102, pages 411–414, New Brunswick, NJ, July/August
1996. Springer-Verlag.

18. B. Scheuermann, C. Lochert, and M. Mauve. Implicit hop-by-hop congestion control in
wireless multihop networks. Ad Hoc Networks, 2007. doi: 10.1016/j.adhoc.2007.01.001.

19. N. Shankar. Combining theorem proving and model checking through symbolic analysis. In
C. Palamidessi, editor, CONCUR, LNCS 1877, pages 1–16. Springer, 2000.

20. C. Spermann and M. Leuschel. ProB gets nauty: Effective symmetry reduction for B and Z
models. In Proceedings Symposium TASE 2008, pages 15–22, Nanjing, China, June 2008.
IEEE.

21. F. Steria, Aix-en-Provence. Atelier B, User and Reference Manuals, 1996. Available at
http://www.atelierb.societe.com.

110

Integrating Reliability Assessment into Formal
Development by Refinement

Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis

Åbo Akademi University, Turku, Finland
{Anton.Tarasyuk, Elena.Troubitsyna, Linas.Laibinis}@abo.fi

Abstract. Formal methods are indispensable for ensuring dependability of com-
plex software-intensive systems. In particular, the B Method and its recent exten-
sion Event-B have been successfully used in the development of several complex
safety-critical systems. However, they are currently not supporting quantitative
assessment of dependability attributes that is often required for certifying safety-
critical systems. In this paper we demonstrate how to integrate reliability assess-
ment into Event-B development. This work shows how to conduct probabilistic
assessment of system reliability at the development stage rather than at the im-
plementation level. This allows the developers to chose the design alternative that
offers the most optimal solution from the reliability point of view.

1 Introduction

Formal verification techniques provide us with rigorous and powerful
methods for establishing correctness of complex systems. The advances
in expressiveness, usability and automation of these techniques enable
their use in the design of a wide range of complex dependable systems.
For instance, the B Method [2] and its extension Event-B [1] provide us
with a powerful framework for developing systems correct by construc-
tion. The top-down development paradigm based on stepwise refinement
adopted by these frameworks has proven its worth in several industrial
projects [16, 4].

While developing system by refinement, we start from an abstract
system specification and, in a number of refinement steps, introduce the
desired implementation decisions. While approaching the final imple-
mentation, we decrease the abstraction level and reduce non-determinism
inherently present in the abstract specifications. In general, an abstract
specification can be refined in several different ways because usually
there are several ways to resolve its non-determinism. These refinement
alternatives are equivalent from the correctness point of view, i.e., they

faithfully implement functional requirements. Yet they might be differ-
ent from the point of view of non-functional requirements, e.g., relia-
bility, performance etc. Early quantitative assessment of various design
alternatives is certainly useful and desirable. However, within the current
refinement frameworks we cannot perform it. In this paper we propose
an approach to overcoming this problem.

We propose to integrate stepwise development in Event-B with prob-
abilistic model checking [11] to enable reliability assessment already at
the development stage. Reliability is a probability of system to function
correctly over a given period of time under a given set of operating condi-
tions [19, 21, 14]. Obviously, to assess reliability of various design alter-
natives, we need to model their behaviour stochastically. In this paper we
demonstrate how to augment (non-deterministic) Event-B models with
probabilistic information and then convert them into the form amenable
to probabilistic verification. Reliability is expressed as a property that
we verify by probabilistic model checking. To illustrate our approach,
we assess reliability of refinement alternatives that model different fault
tolerance mechanisms.

We believe that our approach can facilitate the process of developing
dependable systems by enabling evaluation of design alternatives at early
development stages. Moreover, it can also be used to demonstrate that the
system adheres to the desired dependability levels, for instance, by prov-
ing statistically that the probability of a catastrophic failure is acceptably
low. This application is especially useful for certifying safety-critical sys-
tems.

The remainder of the paper is structured as follows. In Section 2 we
give a brief overview of our modelling formalism – the Event-B frame-
work. In Section 3 we give an example of refinement in Event-B. In Sec-
tion 4 we demonstrate how to augment Event-B specifications with prob-
abilistic information and convert them into specifications of the PRISM
model checker [15]. In Section 5 we define how to assess reliability
via probabilistic verification and compare the results obtained by model
checking with algebraic solutions. Finally, in Section 6 we discuss the
obtained results, overview the related work and propose some directions
for the future work.

112

2 Modelling and Refinement in Event-B

The B Method is an approach for the industrial development of highly de-
pendable software. The method has been successfully used in the devel-
opment of several complex real-life applications [16, 4]. Event-B [1] is an
extension of the B Method [2] to model parallel, distributed and reactive
systems. The Rodin platform [18] provides automated tool support for
modelling and verification (by theorem proving) in Event-B. Currently
Event-B is used in the EU project Deploy [6] to model several industrial
systems from automotive, railway, space and business domains.

Event-B uses the Abstract Machine Notation [17] for constructing
and verifying system models. An abstract machine encapsulates the state
(the variables) of a model and defines operations on its state. A simple
abstract machine has the following general form:

Machine AM
Variables v
Invariants I
Events

init
evt1
· · ·
evtN

The machine is uniquely identified by its name AM. The state variables
of the machine, v, are declared in the Variables clause and initialised in
init event. The variables are strongly typed by constraining predicates of
invariants I given in the Invariants clause. The Invariants clause might
also contain other predicates defining properties that should be preserved
during system execution.

The dynamic behaviour of the system is defined by the set of atomic
events specified in the Events clause. An event is defined as follows:

evt =̂ when g then S end

where the guard g is conjunction of predicates over the state variables v,
and the action S is an assignment to the state variables.

The guard defines the conditions under which the action can be exe-
cuted, i.e., when the event is enabled. If several events are enabled then
any of them can be chosen for execution non-deterministically. If none
of the events is enabled then the system deadlocks.

113

In general, the action of an event is a composition of variable assign-
ments executed simultaneously (simultaneous execution is denoted as ‖).
Variable assignments can be either deterministic or non-deterministic.
The deterministic assignment is denoted as x := E(v), where x is a state
variable and E(v) expression over the state variables v. The non-determi-
nistic assignment can be denoted as x :∈ S or x : | Q(v,x′), where S is a
set of values and Q(v,x′) is a predicate. As a result of non-deterministic
assignment, x gets any value from S or it obtains such a value x′ that
Q(v,x′) is satisfied.

The semantics of Event-B events is defined using so called before-
after predicates [17]. It is a variation of the weakest precondition seman-
tics [5]. A before-after predicate describes a relationship between the
system states before and after execution of an event. The formal seman-
tics provides us with a foundation for establishing correctness of Event-B
specifications. To verify correctness of a specification we need to prove
that its initialization and all events preserve the invariant.

The formal semantics also establishes a basis for system refinement –
the process of developing systems correct by construction. The basic idea
underlying formal stepwise development by refinement is to design the
system implementation gradually, by a number of correctness preserving
steps, called refinements. The refinement process starts from creating an
abstract, albeit unimplementable, specification and finishes with gener-
ating executable code. The intermediate stages yield the specifications
containing a mixture of abstract mathematical constructs and executable
programming artifacts.

Assume that the refinement machine AM′ is a result of refinement of
the abstract machine AM:

Machine AM
Variables v
Invariants I
Events

init
evt1
· · ·
evtN

v

Machine AM′

Variables v′

Invariants I′

Events
init ′

evt ′1
· · ·
evt ′K

114

The machine AM′ might contain new variables and events as well as
replace the abstract data structures of AM with the concrete ones. The
invariants of AM′ – I′ – define not only the invariant properties of the
refined model, but also the connection between the state spaces of AM
and AM′. For a refinement step to be valid, every possible execution of
the refined machine must correspond (via I′) to some execution of the
abstract machine. To demonstrate this, we should prove that init ′ is a
valid refinement of init, each event of AM′ is a valid refinement of its
counterpart in AM and that the refined specification does not introduce
additional deadlocks.

In the next section we illustrate modelling and refinement in Event-B
by an example.

3 Example of Refinement in Event-B

Control and monitoring systems constitute a large class of dependable
systems. Essentially, the behaviour of these systems is periodic. Indeed,
a control system periodically executes a control cycle that consists of
reading sensors and setting actuators. The monitoring systems periodi-
cally perform certain measurements. Due to faults (e.g., caused by ran-
dom hardware failures) inevitably present in any system, the system can
fail to perform its functions. In this paper we focus on modelling fail-safe
systems, i.e., the systems that shut down upon occurrence of failure. In
general, the behaviour of such system can be represented as shown in the
specification below.

For the sake of simplicity, we omit the detailed modelling of the sys-
tem functionality. The variable res abstractly models success or failure
to perform the required functions at each iteration. Each iteration of the
system corresponds to the execution of the event out put. If no failure has
occurred then, as a result of the non-deterministic assignment, the vari-
able res obtains the value T RUE. In this case the next iteration can be
executed. However, if a failure has occurred then res obtains the value
FALSE and the system deadlocks.

115

Machine System
Variables res
Invariants

inv1 : res ∈ BOOL
Events

init =̂
begin

res := T RUE
end

out put =̂
when

res = T RUE
then

res :∈ BOOL
end

In the initial specification we have deliberately abstracted away from
modelling system components and their failures. In the next refinement
step we introduce explicit representation of system components and in-
troduce fault tolerance mechanisms. These mechanisms allow the system
to perform its functions even in the presence of certain faults [19]. Fault
tolerance is usually achieved by introducing redundancy into the system
design. The redundancy can be either static or dynamic. When static re-
dundancy is used, the redundant components work in parallel with the
main ones. In dynamic redundancy activation of the redundant compo-
nents occurs only after the main ones have failed.

Refining a system by introducing the fault tolerance mechanisms is
a rather standard model transformation frequently performed in the de-
velopment of dependable systems. Next we show by examples how to
introduce various fault tolerance mechanisms by refinement.

Triple Modular Redundancy (TMR) [19] is a well-known mechanism
based on static redundancy. The general principle is to triplicate a system
module and introduce the majority voting to obtain a single result of
the module, as shown in Figure 1. Such an arrangement allows us to
mask failures of a single module. TMR can be introduced into a system
specification by refinement as explained below. We introduce variables
m1, m2 and m3 to model the results produced by the redundant modules.
The variable phase models the phases of TMR execution – first reading
the results produced by the modules and then voting.

116

Module

Module

Module

Voter
Input Output

Fig. 1. A Triple Modular Redundancy Arrangement

Machine SystemT MR
Variables

res,m1,m2,m3, phase
f lag1, f lag2, f lag3

Invariants
inv1..3 : m1,m2,m3 ∈ {0,1}
inv4 : phase ∈ {reading,voting}
inv5..7 : f lag1, f lag2, f lag3 ∈ {0,1}
inv6 : ∑mi > 1⇒ res = T RUE

Events
· · ·

moduleok1 =̂
when

m1 = 1∧ f lag1 = 1∧
phase = reading

then
m1 :∈ {0,1} ‖ f lag1 := 0

end

module f ailed1 =̂
when

m1 = 0∧ f lag1 = 1∧
phase = reading

then
f lag1 := 0

end
· · ·

synchr =̂
when

f lag1 = 0∧ f lag1 = 0∧
f lag3 = 0∧ phase = reading

then
phase := voting

end

117

Module

Spare

Input Output
Switch

Fault
detector

Fig. 2. A Standby Spare Arrangement

The modules work in parallel. In our specification it is reflected by the
fact that all the events modelling module behaviour are enabled simulta-
neously. Each event disables itself after being executed once. When all
the modules complete their execution, the event synchr enables the events
modelling voting. Let us observe that the invariant m1 +m2 +m3 > 1⇒
res = T RUE relates the abstract and refined systems, i.e, it requires that
the correct output can be produced only if no more than one module has
failed.

In general, we can introduce any fault tolerance mechanism by re-
finement. Below we show other alternatives. For instance, instead of the
TMR arrangement we can introduce a standby spare mechanism shown
in Figure 2. In this mechanism, every result produced by an active (main)
module is checked by a fault detector. If an error is detected then the re-
sult produced by the failed module is ignored and the system switches
to accepting the results produced by the spare. The spare can be hot
meaning that the main module and spare work in parallel. In this case
the switch to spare happens almost instantly. The spare also can be cold,
i.e., the spare is in the standby mode and is activated only after the main
module fails.

Below we present an excerpt from the specification that refines the
System specification to model dynamic redundancy. The values in and
out of the variable phase correspond to the values reading and voting in
the TMR specification. The additional execution phase det is introduced
to model failure detection. The presented events specify the detection
phase for the hot spare arrangement.

The output can be produced successfully if at least one module func-
tions correctly. If an error is detected then the system switches the failed
module off.

118

Module

Module

Module

Input

Output

Spare

Switch

Voter

Disagreement
detector

Fig. 3. TMR with a Spare Arrangement

Finally, we can also introduce a hybrid arrangement, which combines
static and dynamic redundancy, as shown in Figure 3. The system works
as TMR until a failure of a module occurs. Then the system activates the
spare to "replace" the failed module. The full Event-B specifications of
this and the previous arrangements can be found in [20].

Let us observe that any specification described above is a valid re-
finement of our abstract specification System. However, even though the
fault tolerance mechanisms were introduced to increase system relia-
bility, we cannot evaluate which of the specifications is more optimal
from the point of view of reliability. This problem is caused by the non-
deterministic modelling of the failure occurrence – the only possible
modelling currently available in Event-B. To evaluate reliability, we need
to replace the non-deterministic modelling of failure occurrence by the
probabilistic ones and use the suitable techniques for reliability evalua-
tion. Next we present our approach for achieving this.

119

detectionok1 =̂
when

m1 = 1∧ phase = det
then

phase := out ‖ m := m1
f lag1 := 1 ‖ f lag2 := 1

end
detectionok2 =̂

when
m1 = 0∧m2 = 1∧ phase = det

then
phase := out ‖ m := m2 ‖ f lag2 := 1

end
detectionnok =̂

when
m1 = 0∧m2 = 0∧ phase = det

then
phase := out ‖ m := 0

end

4 From Event-B Modelling to Probabilistic Model
Checking

To enable formal, probabilistic analysis of reliability in Event-B we can
choose several options. The first and the most powerful is to rely on
probabilistic weakest precondition semantics [12] and use probabilistic
refinement technique [13] to evaluate reliability. This technique allows
us to express algebraically the reliability of the system as a function of
reliabilities of its components. However, for complex industrial-size sys-
tems finding this function might be very complex or even analytically
intractable. A simpler and more scalable solution is to use probabilistic
model checking to obtain numeric solution. To achieve this we need to
augment Event-B models with probabilities in such way that they would
become amenable for probabilistic verification. Then we need to estab-
lish connection between probabilistic verification and reliability assess-
ment.

To tackle the first problem let us observe that Event-B is a state-based
formalism. The state space of the system specified in Event-B is formed
by the values of the state variables. The transitions between states are
determined by the actions of the system events. The states that can be
reached as a result of event execution are defined by the current state. If
we augment Event-B specification with the probabilities of reaching the

120

next system state from the current one then we obtain a probabilistic au-
tomaton [3]. In case the events are mutually exclusive, i.e., only one event
is enabled at each system state then the specification can be represented
by a Markov chain. Otherwise, it corresponds to a Markov Decision pro-
cess [7, 10, 22]. More specifically, it is a discrete time Markov process
since we can use it to describe the states at certain instances of time.

The probabilistic model checking framework developed by Kwiat-
kowska et al. [11] supports verification of Discrete-Time Markov Chains
(DTMC) and Markov Decision Processes (MDP). The framework has a
mature tool support – the PRISM model checker [15]

The PRISM modelling language is a high-level state-based language.
It relies on the Reactive Modules formalism of Alur and Henzinger [3].
PRISM supports the use of constants and variables that can be integers,
doubles (real numbers) and Booleans. Constants are used, for instance, to
define the probabilities associated with variable updates. The variables in
PRISM are finite-ranged and strongly typed. They can be either local or
global. The definition of an initial value of a variable is usually attached
to its declaration. The state space of a PRISM model is defined by the set
of all variables, both global and local.

In general, a PRISM specification looks as follows:

dtmc
const double p11 = . . . ;

. . .
global v : Type init . . . ;

. . .
module M1

v1 : Type init . . . ;

[] g11→ p11 : act11 + · · ·+ p1n : act1n;
[sync] g12→ q11 : act ′11 + · · ·+q1m : act ′1m;
. . .

endmodule
module M2

v2 : Type init . . . ;

[sync] g21→ p21 : act21 + · · ·+ p2k : act2k;
[] g22→ q21 : act ′21 + · · ·+q2l : act ′2l ;
. . .

endmodule
. . . .

121

A system specification in PRISM is constructed as a parallel compo-
sition of modules. Modules work in parallel. They can be independent
of each other or interact with each other. Each module has a number of
local variables v1, v2 and a set of guarded commands that determine its
dynamic behaviour. The guarded commands can have names. Similarly
to the events of Event-B, a guarded command can be executed if its guard
evaluates to T RUE. If several guarded commands are enabled then the
choice between them can be non-deterministic in case of MDP or proba-
bilistic (according to the uniform distribution) in case of DTMC. In gen-
eral, the body of a guarded command is a probabilistic choice between
deterministic assignments.

The guarded commands define not only the dynamic behaviour of
a stand-alone module but can also be used to define synchronisation
between modules. If several modules synchronise then each of them
should contain a command defining the synchronisation condition. These
commands should have identical names. For instance, in our general
PRISM specification shown above, the modules M1 and M2 synchro-
nise. They contain the corresponding guarded commands labelled with
the name sync. The guarded commands that provide synchronisation with
other modules cannot modify the global variables. This allows to avoid
read-write and write-write conflicts on the global variables.

Converting Event-B model into a PRISM model is rather straight-
forward. When converting Event-B model into its counterpart, we need
to restrict the types of variables and constants to the types supported
by PRISM. The invariants that describe system properties can be repre-
sented as a number of temporal logic formulas in a list of properties of the
model and then can be verified by PRISM if needed. While converting
events into the PRISM guarded commands, we identify four classes of
events: initilisation events, events with parallel deterministic assignment,
non-deterministic assignment and parallel non-deterministic assignment.
The conversion of an Event-B event to a PRISM guarded command de-
pends on its class:

– The initialisation events are used to form the initialisation part of the
corresponding variable declaration. Hence the initialisation does not
have a corresponding guarded command in PRISM;

– An event with a parallel deterministic assignment

evt =̂ when g then x := x1 ‖ y := y1 ‖ z := z1 end

122

can be represented by the following guarded command in PRISM:

[] g→ (x′ = x1)&(y′ = y1)&(z′ = z1)

Here & denotes the parallel composition;
– An event with a non-deterministic assignment

evt =̂ when g then x :∈ {x1, . . .xn} end

can be represented as

[] g→ p1 : (x′ = x1)+ · · ·+ pn : (x′ = xn)

where p1, ..., pn are defined according to a certain probability distri-
bution;

– An event with a parallel non-deterministic assignment

evt =̂ when g then x :∈ {x1, . . .xn} ‖
y :∈ {y1, . . .ym} ‖ z :∈ {z1, . . .zk} end

can be represented using the PRISM synchronisation mechanism. It
corresponds to a set of the guarded commands modelling synchroni-
sation. These commands have the identical guards. Their bodies are
formed from the assignments used in the parallel composition of the
Event-B action.

module X
x : Type init . . . ;
[name] g→ p1 : (x′ = x1)+ · · ·+ pn : (x′ = xn);

endmodule
module Y

y : Type init . . . ;
[name] g→ q1 : (y′ = y1)+ · · ·+qm : (y′ = ym);

endmodule
module Z

z : Type init . . . ;
[name] g→ r1 : (z′ = z1)+ · · ·+ rk : (z′ = zk);

endmodule.

123

To demonstrate the conversion of an Event-B specification into a
PRISM specification, below we present an excerpt from the PRISM coun-
terpart of the TMR specification. Here we assume that at each iteration
step a module successfully produces a result with a constant
probability p.

SystemT MR
module module1

m1 : [0..1] init 1;
f : [0..1] init 0;

[m] (phase = 0)&(m1 = 1)&(f = 0)→
p : (m′1 = 1)&(f ′ = 1)+(1− p) : (m′1 = 0)&(f ′ = 1);

[m] (phase = 0)&(m1 = 0)&(f = 0)→ (f ′ = 1);

[] (phase = 0)&(f = 1)→ (phase′ = 1)&(f ′ = 0);

endmodule
module module2 . . .

module module3 . . .

module voter

res : bool init true;

[] (phase = 1)&(m1 +m2 +m3 > 1)→ (phase′ = 0);

[] (phase = 1)&(m1 +m2 +m3 ≤ 1)→ (res′ = f alse);

endmodule

While converting an Event-B model into PRISM we could have mod-
elled the parallel work of the system modules in the same way as we have
done it in the Event-B specifications, i.e., using non-determinism to rep-
resent parallel behaviour and explicitly modelling the phases of system
execution. However, we can also directly use the synchronisation mecha-
nism of PRISM because all the modules update only their local variables
and no read-write conflict can occur. This solution is presented in the ex-
cerpt above. In the SystemT MR specification, the guarded commands of
the modules module1, module2 and module3 are synchronised (as desig-
nated by the m label). In the module1 we additionally update the global
variable phase to model transition of the system to the voting phase.

124

5 Reliability Assessment via Probabilistic Model
Checking

In engineering, reliability [21, 14] is generally measured by the probabil-
ity that an entity E can perform a required function under given condi-
tions for the time interval [0, t]:

R(t) = P[E not failed over time [0, t]].

The analysis of the abstract and refined specification shows that we
can clearly distinguish between two classes of systems states: operating
and failed. In our case the operating states are the states where the vari-
able res has the value T RUE. Correspondingly, the failed states are the
states where the variable res has the value FALSE. While the system is in
an operating state, it continues to iterate. When the system fails it dead-
locks. Therefore, we define reliability of the system as a probability of
staying operational for a given number of iterations.

Let T be the random variable measuring the number of iterations be-
fore the deadlock is reached and F(t) its cumulative distribution function.
Then clearly R(t) and F(t) are related as follows:

R(t) = P[T > t] = 1−P[T ≤ t] = 1−F(t).

It is straightforward to see that our definition corresponds to the standard
definition of reliability given above. Now let us discuss how to employ
PRISM model checking to assess system reliability.

While analysing a PRISM model we define a number of temporal
logic properties and systematically check the model to verify them. Prop-
erties of discrete-time PRISM models, i.e, DTMC and MDP, are ex-
pressed formally in the probabilistic computational tree logic [9]. The
PRISM property specification language supports a number of different
types of properties. For example, the P operator is used to refer to the
probability of a certain event occurrence.

Since we are interested in assessment of system reliability, we have
to verify invariant properties, i.e., properties maintained by the system
globally. In the PRISM property specification language, the operator G is
used inside the operator P to express properties of such type. In general,
the property

P=?[G≤ t prop]

125

returns a probability that the predicate prop remains T RUE in all states
within the period of time t.

To evaluate reliability of a system we have to assess a probability
of system staying operational within time t. We define a predicate OP
that defines a subset of all system states where the system is operational.
Then, the PRISM property

P=?[G≤ T OP] (1)

gives us the probability that the system will stay operational during the
first T iterations, i.e, it is a probability that any state in which the sys-
tem will be during this time belongs to the subset of operational states.
In other words, the property (1) defines the reliability function of the
system.

Let us return to our examples. As we discussed previously, the oper-
ational states of our systems are defined by the predicate res = true, i.e.,
OP =̂ res = true. Then the PRISM property

P=?[G≤ T (res = true)] (2)

denotes the reliability of our systems within time T .
To evaluate reliability of our refinement system, let us assume that

a module produces a result successfully with the probability p equal to
0.999998. In Figure 4 we present the results of analysis of reliability up
to 500000 iterations. Figure 4 (a) shows the comparative results between
single-module and both TMR systems. The results show that the triple
modular redundant system with a spare always gives better reliability.
Note that using the simple TMR arrangement is better comparing to a
single module only up to approximately 350000 iterations. In Figure 4 (b)
we compare single-module and standby spare arrangements. The results
clearly indicate that the better reliability is provided by the dynamic re-
dundancy systems and that using of the cold spare arrangement is always
more reliable.

It would be interesting to evaluate precision of the results obtained
by the model checking with PRISM. For our case study it is possible to
derive analytical representations of reliability functions, which then can
be used for comparison with verification results of property (2). It is well-
known that the reliability of a single module system is RM(t) = pt and

126

(a) (b)

Fig. 4. Resulting Reliabilities

it is easy to show that the reliability of a TMR system, consists of three
identical modules, is

RT MR(t)= R3
M(t)+3R2

M(t)(1−RM(t))= 3R2
M(t)−2R3

M(t)= 3p2t−2p3t .

Indeed, we can also calculate that the standby spare arrangement with a
faulty detector has the resulting reliability

RHSS = 1− (1− pt)2

for the hot spare, and the resulting reliabilty

RCSS = pt(1+ t(1− p))

for the cold spare module. Finally, for the TMR arrangement with a spare,
the resulting reliability is given by the expression

RT MRS = (6t−8)p3t−6t p3t−1 +9p2t .

It is easy to verify that the results obtained by the model checking are
identical to those can be calculated from the formulas presented above.
This fact demonstrates the feasibility of using the PRISM model checker
for reliability assessment.

6 Conclusion

In this paper we have proposed an approach to integrating reliability as-
sessment into the refinement process. The proposed approach enables

127

reliability assessment at early design phases that allows the designers to
evaluate reliability of different design alternatives already at the develop-
ment phase.

Our approach integrates two frameworks: refinement in Event-B and
probabilistic model checking. Event-B supported by the RODIN tool
platform provides us with a suitable framework for development of com-
plex industrial-size systems. By integrating probabilistic verification sup-
ported by PRISM model checker we open a possibility to reason about
non-functional system requirements in the refinement process.

The Event-B framework has been extended by Hallerstede and Hoang
[8] to take into account probabilistic behaviour. They introduce qualita-
tive probabilistic choice operator to reason about almost certain termina-
tion. This operator attempts to bound demonic non-determinism that, for
instance, allows to demonstrate convergence of certain protocols. How-
ever, this approach is not suitable for reliability assessment since explicit
quantitative representation of reliability would not be supported.

Kwiatkowska et al. [11] proposed an approach to assessing depend-
ability of control systems using continuous time Markov chains. The gen-
eral idea is similar to ours – to formulate reliability as a system property
to be verified. However, this approach aims at assessing reliability of al-
ready developed system. In our approach reliability assessment proceeds
hand-in-hand with system development.

The similar topic in the context of refinement calculus has been ex-
plored previously by Morgan et al. [13, 12]. In this approach the prob-
abilistic refinement was used to assess system dependability. However,
this work does not have the corresponding tool support, so the use of this
approach in industrial practice might be cumbersome. In our approach
we see a great benefit in integrating frameworks that have mature tool
support [18, 15].

When using model checking we need to validate whether the ana-
lysed model represents the behaviour of the real system accurately
enough. For example, the validation can be done if we demonstrate that
model checking provides a good approximation of the corresponding al-
gebraic solutions. In this paper we have deliberately chosen the exam-
ples for which algebraic solutions can be provided. The experiments
have demonstrated that the results obtained by model checking accu-
rately match the algebraic solutions.

128

In our future work it would be interesting to further explore the con-
nection between Event-B modeling and dependability assessment. In par-
ticular, an additional study is required to establish a formal basis for con-
verting all types of non-deterministic assignments into the probabilistic
ones. Furthermore, it would be interesting to explore the topic of proba-
bilistic data refinement in connection with dependability assessment.

References
1. J.-R. Abrial. Extending B without changing it (for developing distributed systems). In

H. Habiras, editor, First Conference on the B method, pages 169–190. IRIN Institut de
recherche en informatique de Nantes, 1996.

2. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
2005.

3. R. Alur and T. Henzinger. Reactive modules. In Formal Methods in System Design, pages
7–48, 1999.

4. D. Craigen, S. Gerhart, and T.Ralson. Case study: Paris metro signaling system. In IEEE
Software, pages 32–35, 1994.

5. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
6. EU-project DEPLOY. online at http://www.deploy-project.eu/.
7. W. Feller. An Introduction to Probability Theory and its Applications, volume 1. John Wiley

& Sons, 1967.
8. S. Hallerstede and T. S. Hoang. Qualitative probabilistic modelling in Event-B. In J. Davies

and J. Gibbons, editors, IFM 2007, LNCS 4591, pages 293–312, 2007.
9. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. In Formal

Aspects of Computing, pages 512–535, 1994.
10. J. G. Kemeny and J. L. Snell. Finite Markov Chains. D. Van Nostrand Company, 1960.
11. M. Kwiatkowska, G. Norman, and D. Parker. Controller dependability analysis by proba-

bilistic model checking. In Control Engineering Practice, pages 1427–1434, 2007.
12. A. K. McIver and C. C. Morgan. Abstraction, Refinement and Proof for Probabilistic Sys-

tems. Springer, 2005.
13. A. K. McIver, C. C. Morgan, and E. Troubitsyna. The probabilistic steam boiler: a case

study in probabilistic data refinement. In Proc. International Refinement Workshop, ANU,
Canberra. Springer-Verlag, 1998.

14. P. D. T. O’Connor. Practical Reliability Engineering, 3rd ed. John Wiley & Sons, 1995.
15. PRISM. Probabilistic symbolic model checker.

online at http://www.prismmodelchecker.org/.
16. Rigorous Open Development Environment for Complex Systems (RODIN). IST FP6 STREP

project, online at http://rodin.cs.ncl.ac.uk/.
17. Rigorous Open Development Environment for Complex Systems (RODIN). Deliverable D7,

Event-B Language, online at http://rodin.cs.ncl.ac.uk/.
18. RODIN. Event-B platform. online at http://www.event-b.org/.
19. N. Storey. Safety-Critical Computer Systems. Addison-Wesley, 1996.
20. A. Tarasyuk, E. Troubitsyna, and L. Laibinis. Reliability assessment in Event-B. Technical

Report 932, Turku Centre for Computer Science, 2009.
21. A. Villemeur. Reliability, Availability, Maintainability and Safety Assessment. John Wiley

& Sons, 1995.
22. D. J. White. Markov Decision Processes. John Wiley & Sons, 1993.

129

130

Part V

Business Information Systems

A Formal Semantics for the
WS-BPEL Recovery Framework

The π-Calculus Way

Nicola Dragoni1 and Manuel Mazzara2

1 DTU Informatics, Technical University of Denmark, Denmark
ndra@imm.dtu.dk

2 School of Computing Science, Newcastle University, UK
manuel.mazzara@newcastle.ac.uk

Abstract. While current studies on Web services composition are mostly fo-
cused — from the technical viewpoint — on standards and protocols, this work
investigates the adoption of formal methods for dependable composition. The
Web Services Business Process Execution Language (WS-BPEL) — an OASIS
standard widely adopted both in academic and industrial environments — is con-
sidered as a touchstone for concrete composition languages and an analysis of
its ambiguous Recovery Framework specification is offered. In order to show the
use of formal methods, a precise and unambiguous description of its (simplified)
mechanisms is provided by means of a conservative extension of the π-calculus.
This has to be intended as a well known case study providing methodological ar-
guments for the adoption of formal methods in software specification. The aspect
of verification is not the main topic of the paper but some hints are given.

1 Introduction

Service Oriented Architectures and the related paradigm are modern at-
tempts to cope with old problems connected to Business-to-Business
(B2B) and information interchange. Many implementations of this para-
digm are possible and the so called Web services look to be the most
prominent, mainly because the underlying architecture is already there;
it is simply the web which has been extensively used in the last 15 years
and where we can easily exploit HTTP [21], XML [5], SOAP [8] and
WSDL [3]. The World Wide Web provides a basic platform for the in-
terconnection on a point-to-point basis of different companies and cus-
tomers but one of the B2B complications is the management of causal
interactions between different services and the way in which the mes-
sages between them need to be handled (e.g., not always in a sequential
way). This area of investigation is called composition, i.e., the way to

build complex services out of simpler ones [4]. These days, the need for
workflow technology is becoming quite evident and the positive aspect is
that we had investigated this technology for decades and we also have ex-
cellent modeling tools providing verification features that are grounded
in the very active field of concurrency theory research.

1.1 BPEL and its Ambiguous Specification

Several organizations worked on composition proposals. The most im-
portant in the past have been IBM’s WSFL [1] and Microsoft’s XLANG
[2]. These two have then converged into Web Services Business Process
Execution Language [18] (BPEL for short) which is presently an OA-
SIS standard and, given its wide adoption, it will be used as a touchstone
for composition languages in this paper. BPEL allows workflow-based
composition of services. In the committee members’ words the aim is
“enabling users to describe business process activities as Web services
and define how they can be connected to accomplish specific tasks”. The
problem with BPEL was that the earlier versions of the language were
not very clear, the specification was huge and many points confusing,
especially in relation to the Recovery Framework (RF) and the interac-
tions between different mechanisms (fault handlers and compensation
handlers). BPEL indeed represents a business tradeoff where not nec-
essarily all the single technical choices have been made considering all
the available options. Although in the final version of the specification
(which is lighter and cleaner) fault handling during compensation has
been simplified, we strongly believe that the sophisticated mechanism of
recovery still needs a clarification.

1.2 Contribution of the Paper

In this paper we aim to reduce this ambiguity providing an easily read-
able formal semantics of the BPEL Recovery Framework (BPEL RF for
short). This goal requires at least two different contributions:

1. a formal semantics of the framework, focusing on its essential mech-
anisms

2. an easily readable specification of these mechanisms

We provide both contributions following a “π-calculus way”, that is
using the π-calculus as formal specification language. It is worth noting

134

that here the actual challenge is to provide not only a formal semantics
for the BPEL RF but also an easily readable specification. Indeed, other
attempts might be found in literature providing the first contribution only.
For instance, in [12] such encoding has been proposed by one of the
authors. However, one of the unsatisfactory aspects about that encoding
is that it is hardly readable and complex. The actual challenge here is to
reduce such complexity while keeping a formal and rigorous approach.
As a result, in this paper we contribute with a better understanding of how
the BPEL RF works. Moreover, the case study allows us to show the real
power of the webπ∞ calculus (i.e., the π-calculus based formal language
exploited for the mentioned encoding) not only in terms of simplicity
of the resulting BPEL specification, but also sketching how webπ∞ can
contribute to the implementation of real orchestration engines.

Finally, we would like to stress that different formal models might be
chosen for this goal. As discussed in the next section, our choice is pri-
marily motivated by the “foundational feature” of the π-calculus, namely
mobility, i.e. the possibility of transmitting channel names that will be, in
turn, used by any receiving process. It is worth noting that in the specific
contribution of this paper this feature is not really exploited or totally
necessary since the modeled mechanisms requested us to pay more at-
tention to process synchronization and concurrency than to full mobility.
Anyway, in the general case, we have the strong opinion that mobility is
an essential feature that composition languages should exhibit [13]. This
aspect will be better discussed in section 2.

Outline. The paper is organized as follows. Section 2 will discuss the
rationale behind our “π-calculus way” choice, briefly motivating why the
π-calculus could be considered a formal foundation for dependable Web
services composition. Section 3 will present webπ∞ discussing its syntax
and semantics. Sections 4 and 5 will contribute with a clarification of the
BPEL RF semantics. In particular, Section 4 will show how it appears
in the original (ambiguous) specification, and Section 5 will propose the
actual simplification and formal specification. Section 6 will add some
conclusive remarks.

135

2 The π-Calculus Way to Dependable Composition

The need for formal foundation has been discussed widely in the last
years, although many attempts to use formal methods in this setting have
been speculative. Some communities, for example, criticized the process
algebra options [19] promoting the Petri nets choice. The question here
is whether we need a formal foundation and, if that is the case, which
kind of formalism we need. While sequential computation has well es-
tablished foundations in the λ-calculus and Turing machines, when it
comes to concurrency things are far from being settled. The π-calculus
([16] and [17]) emerged during the eighties as a theory of mobile sys-
tems providing a conceptual framework for expressing them and reason-
ing about their behavior. It introduces mobility generalizing the channel-
based communication of CCS by allowing channels to be passed as data
through rendezvous over other channels. In other words, it is a model
for prescribing (specification) and describing (analysis) concurrent sys-
tems consisting of agents which mutually interact and in which the com-
munication structure can dynamically evolve during the execution of
processes. Here, a communication topology is intended as the linkage
between processes which indicates who can communicate with whom.
Thus, changing the communication links means, for a process, moving
inside this abstract space of linked entities.

A symmetry between λ-calculus and π-calculus could be suggested
and the option to build concurrent languages (and so workflow languages
as well) on a formal basis could actually make sense. It has indeed been
investigated in many works, even in the BPEL context. But, while formal
methods are expected to bring mathematical precision to the develop-
ment of computer systems (providing precise notations for specification
and verification), so far BPEL — despite having been subject of a num-
ber of formalizations (for example [10], [7] and [22]) — has not yet been
proved to be built on an exact and specific mathematical model, includ-
ing process algebras (this argument has been carefully developed in [13]).
Thus, we do not have any conceptual and software tools for analysis, rea-
soning and software verification. If we are not able to provide this kind
of tools, any hype about mathematical rigor becomes pointless.

It is also worth noting that, although many papers use the term π-
calculus and process algebra interchangeably, there is a difference be-
tween them. Algebra is a mathematical structure with a set of values and

136

a set of operations on the values. These operations enjoy algebraic prop-
erties such as commutativity, associativity, idempotency, and distributiv-
ity. In a typical process algebra, processes are values and parallel com-
position is defined to be a commutative and associative operation on pro-
cesses. The π-calculus is an algebra but it differs from previous models
for concurrency precisely for the fact that it includes a notion of mobil-
ity, i.e. the possibility of transmitting channel names that will be, in turn,
used by receiving processes. This allows a sort of dynamic reconfigura-
tion with the possibility of creating (and deleting) processes through the
alteration of the process topology (although it can be argued that, even if
the link to a process disappears, the process itself disappears only from
“an external point of view”).

The π-calculus looks interesting because of its treatment of compo-
nent bindings as first class objects, which enables this dynamic recon-
figuration to be expressed simply. So, the question now is: do we need
this additional feature of the π-calculus or should we restrict our choice
to models, like CCS, without this notion of mobility? Why all this hype
over the π-calculus and such a rare focus on its crucial characteristic? We
have the strong opinion that mobility is an essential feature that compo-
sition languages should exhibit. Indeed, while in some scenarios services
can be selected already at design-time, in others some services might
only be selected at runtime and this selection has then to be propagated
to different parties. This phenomenon is called link passing mobility and
it is properly approached in [6].

It is worth noting that in the specific contribution of this paper this
feature is not really exploited or totally necessary since the modeled
mechanisms requested we pay more attention to process synchroniza-
tion and concurrency than to full mobility. This aspect has been instead
essential in the full formalization of BPEL. In [13] it has been shown
how it plays an important role in the encoding of interactions of the kind
request-response. Indeed, in that case the invoker must send a channel
name to be used then to return the response. This is a typical case of the
so called output capability of the π-calculus, i.e. a received name is used
as the subject of outputs only. The full input capability of the π-calculus
— i.e. when a received name is used also as the subjects of inputs —
has been not exploited in the BPEL encoding (and neither it is in this
work). Indeed in [13] a specific well-formedness constraint imposes that
“received names cannot be used as subjects of inputs or of replicated

137

inputs”. Thus, at the present moment we remain agnostic regarding the
need of the π-calculus input capability in the description of BPEL mecha-
nism. We realize that this admission could be an argument for discussing
again the choice of the original model.

2.1 Our Approach

WS-standards for dependability only concerns SOAP when employed
as an XML messaging protocol (e.g. OASIS WS-Reliability and WS-
Security), i.e., at the message level. However, things are more compli-
cated than this since loosely coupled components like Web services, be-
ing autonomous in their decisions, may refuse requests or suspend their
functionality without notice, thus making their behavior unreliable to
other activities. Henceforth, most of the web languages also include the
notion of loosely coupled transaction – called web transaction [11] in
the following – as a unit of work involving loosely coupled activities that
may last long periods of time. These transactions, being orthogonal to
administrative domains, have the typical atomicity and isolation proper-
ties relaxed, and instead of assuming a perfect roll-back in case of failure,
support the explicit programming of compensation activities. Web trans-
actions usually contain the description of three processes: body, failure
handler, and compensation. The failure handler is responsible for react-
ing to events that occur during the execution of the body; when these
events occur, the body is blocked and the failure handler is activated. The
compensation, on the contrary, is installed when the body commits; it re-
mains available for outer transactions to require some undo of previously
performed actions. BPEL also uses this approach.

Our approach to recovery is instead described in [13], where it has
been shown that different mechanisms for error handling are not nec-
essary and the BPEL semantics has been presented in terms of webπ∞,
which is based on the idea of event notification as the unique error han-
dling mechanism. This result allows us to extend any semantic consid-
erations about webπ∞ to BPEL. webπ∞ (originally in [14]) has been in-
troduced to investigate how process algebras can be used as a founda-
tion in this context. It is a simple and conservative extension of the π-
calculus where the original algebra is augmented with an operator for
asynchronous events raising and catching in order to enable the program-
ming of widely accepted error handling techniques (such as long run-

138

ning transactions and compensations) with reasonable simplicity. We ad-
dressed the problem of composing services starting directly from the π-
calculus and considering this proposal as a foundational model for com-
position simply to verify statements regarding any mathematical founda-
tions of composition languages and not to say that the π-calculus is more
suitable than other models (such as Petri nets) for these purposes. The
calculus is presented in detail in section 3 while in section 4 and 5 it is
showed how it can be useful to clarify the BPEL RF semantics.

3 The Composition Calculus

In this section we present a proposal to cope with the issues presented
in section 2. Although webπ∞ is ambitious, for sure we do not pretend to
solve all the problems and to give the ultimate answer to all the questions.
Giving all the details about the language and its theory is beyond the
scope of this paper which is giving a brief account about how webπ∞ can
be considered in the overall scenario of formal methods for dependable
Web services. You can find all the relevant details in some previous work,
especially in [12], [13] and [15].

3.1 Syntax

The syntax of webπ∞ processes relies on a countable set of names, ranged
over by x,y,z,u, · · · . Tuples of names are written ũ. We intend i ∈ I with
I a finite non-empty set of indexes.

P ::=
0 (nil)
| x ũ (output)
| ∑i∈I xi(ũi).Pi (alternative composition)
| (x)P (restriction)
| P |P (parallel composition)
| !x(ũ).P (guarded replication)
| 〈|P ; P|〉x (workunit)

A process can be the inert process 0, an output x ũ sent on a name
x that carries a tuple of names ũ, an alternative composition consisting
of input guarded processes that consumes a message xi w̃i and behaves
like Pi

{w̃i/ũi
}

, a restriction (x)P that behaves as P except that inputs
and messages on x are prohibited, a parallel composition of processes,
a replicated input !x(ũ).P that consumes a message xw̃ and behaves like

139

P
{

w̃/ũ
}
| !x(ũ).P, or a workunit 〈|P ; Q|〉x that behaves as the body P until

an abort x is received and then behaves as the event handler Q.
Names x in outputs, inputs, and replicated inputs are called subjects

of outputs, inputs, and replicated inputs, respectively. It is worth to notice
that the syntax of webπ∞ processes simply augments the asynchronous
π-calculus with workunit process. The input x(ũ).P, restriction (x)P and
replicated input !x(ũ).P are binders of names ũ, x and ũ respectively. The
scope of these binders is the process P. We use the standard notions of
α-equivalence, free and bound names of processes, noted fn(P), bn(P)
respectively.

3.2 Semantics

We give the semantics for the language in two steps, following the ap-
proach of Milner [17], separating the laws that govern the static rela-
tions between processes from the laws that rule their interactions. The
first step is defining a static structural congruence relation over syntac-
tic processes. A structural congruence relation for processes equates all
agents we do not want to distinguish. It is introduced as a small collec-
tion of axioms that allow minor manipulation on the processes’ structure.
This relation is intended to express some intrinsic meanings of the oper-
ators, for example the fact that parallel is commutative. The second step
is defining the way in which processes evolve dynamically by means of
an operational semantics. This way we simplify the statement of the se-
mantics just closing with respect to ≡, i.e., closing under process order
manipulation induced by structural congruence.

Definition 1. The structural congruence ≡ is the least congruence satis-
fying the Abelian Monoid laws for parallel and summation (associativity,
commutativity and 0 as identity) closed with respect to α-renaming and
the following axioms:

1. Scope laws:
(u)0≡ 0, (u)(v)P≡ (v)(u)P,

P |(u)Q≡ (u)(P |Q) , if u 6∈ fn(P)
〈|(z)P ; Q|〉x ≡ (z)〈|P ; Q|〉x , if z 6∈ {x}∪ fn(Q)

2. Workunit laws:
〈|0 ; Q|〉x ≡ 0

〈|〈|P ; Q|〉y |R ; R′|〉x ≡ 〈|P ; Q|〉y | 〈|R ; R′|〉x
3. Floating law:

〈|z ũ |P ; Q|〉x ≡ z ũ | 〈|P ; Q|〉x

140

The scope laws are standard while novelties regard workunit and
floating laws. The law 〈|0 ; Q|〉x ≡ 0 defines committed workunit, namely
workunit with 0 as body. These ones, being committed, are equivalent
to 0 and, therefore, cannot fail anymore. The law 〈|〈|P ; Q|〉y |R ; R′|〉x ≡
〈|P ; Q|〉y | 〈|R ; R′|〉x moves workunit outside parents, thus flattening the
nesting. Notwithstanding this flattening, parent workunits may still affect
the children ones by means of names. The law 〈|z ũ |P ; Q|〉x≡ z ũ | 〈|P ; Q|〉x
floats messages outside workunit boundaries. By this law, messages are
particles that independently move towards their inputs. The intended se-
mantics is the following: if a process emits a message, this message tra-
verses the surrounding workunit boundaries until it reaches the corre-
sponding input. In case an outer workunit fails, recoveries for this mes-
sage may be detailed inside the handler processes.

The dynamic behavior of processes is defined by the reduction rela-
tion where we use the shortcut:

〈|P ; Q|〉 def= (z)〈|P ; Q|〉z where z 6∈ fn(P) ∪ fn(Q)

Definition 2. The reduction relation → is the least relation satisfying
the following axioms and rules, and closed with respect to≡, (x)_ , _ |_,
and 〈| _ ; Q|〉z:

(COM)

xi ṽ | ∑i∈I xi(ũi).Pi → Pi
{

ṽ/ũi
}

(REP)

x ṽ | !x(ũ).P → P
{

ṽ/ũ
}
| !x(ũ).P

(FAIL)
x | 〈|∏i∈I ∑s∈S xis(ũis).Pis |∏ j∈J!x j(ũ j).Pj ; Q|〉x → 〈|Q ; 0|〉

whereJ 6= ∅∨ (I 6= ∅∧S 6= ∅)

Rules (COM) and (REP) are standard in process calculi and models input-
output interaction and lazy replication. Rule (FAIL) models workunit fail-
ures: when a unit abort (a message on a unit name) is emitted, the corre-
sponding body is terminated and the handler activated. On the contrary,
aborts are not possible if the transaction is already terminated (namely
every thread in the body has completed its own work), for this reason we
close the workunit restricting its name.

Interested readers may find all the definitions and proofs with an ex-
tensive explanation for the extensional semantics, the notions of barb,

141

process contexts and barbed bisimulation in [13]. Definitions for La-
belled Semantics, asynchronous bisimulation, labelled bisimilarity and
the proof that it is a congruence are also present. Finally, results relat-
ing barbed bisimulation and asynchronous labeled bisimulation as well
as many examples are discussed. A core BPEL is encoded in webπ∞ and
a few properties connected to this encoding are proved for it.

4 A Case Study: the BPEL RF

One of the unsatisfactory things about the encoding of the BPEL RF we
presented in [12] is that it was hardly readable for humans. The goal was
to capture in that encoding all the hidden details of the BPEL semantics
and working out the full theory also for verification purpose. But surely
we lost something in readability since the target for that encoding were
not humans but machines. Many people who approached our work jus-
tified their problems in understanding the encoding claiming that was
exactly the proof of the BPEL recovery framework complexity. This is
definitely true but, in order to be really useful, that work needs to be un-
derstandable also to non-specialists (and humans in general). With the
goal of better understanding how the BPEL RF works, in this section we
analyze a case study where webπ∞ shows its power. We will firstly report
the description of the mechanisms following the original BPEL specifi-
cation, then we will consider a simplification of the actual mechanisms
giving a simplified semantics and a simplified explanation. In this way
some details will be lost but we will improve readability. The first sim-
plification is considering only the case in which a single handler exists for
each of the three different type (fault, compensation and event). Further-
more, we do not consider interdependencies between the mechanisms:
default handlers with automatic compensation of inner scope. This study
is an integration of what done before in [12] and [15]. The semantics
provided is not the one implemented by the engines supporting BPEL,
we have already given a formalization for the Oracle BPEL Manager in
[13]. While in [12] you can find a complete description, here we want
to focus only on the essence of the single mechanisms to understand at
which stage of the execution they play their role and in which way.

142

4.1 Details from the BPEL Specification

Instead of assuming a perfect roll-back in case of failure, BPEL supports
in its RF the notion of the so-called loosely coupled transactions and
the explicit programming of compensation activities. This kind of trans-
actions lasts long periods (atomicity needs to be relaxed wrt ACIDity),
crosses administrative domains (isolation needs to be relaxed) and possi-
bly fails because of services unavailability etc... They usually contain the
description of three processes:

– body
– fault handler
– compensation handler

BPEL also adds the possibility to have a third kind of handler called the
event handler. The whole set of activities is included in a construct called
scope introduced as follows in the specification:

“A scope provides the context which influences the execution
behavior of its enclosed activities. This behavioral context in-
cludes variables, partner links, message exchanges, correlation
sets, event handlers, fault handlers, a compensation handler, and
a termination handler [...]
Each scope has a required primary activity that defines its nor-
mal behavior. The primary activity can be a complex structured
activity, with many nested activities to arbitrary depth. All other
syntactic constructs of a scope activity are optional, and some of
them have default semantics. The context provided by a scope is
shared by all its nested activities."

In the following, we report the way in which the concepts of the Re-
covery Framework and the need for it are motivated in [18].

Compensation Handler

“Business processes are often of long duration. They can manipu-
late business data in back-end databases and line-of-business ap-
plications. Error handling in this environment is both difficult and
business critical. The use of ACID transactions is usually limited
to local updates because of trust issues and because locks and

143

isolation cannot be maintained for the long periods during which
fault conditions and technical and business errors can occur in a
business process instance. As a result, the overall business trans-
action can fail or be cancelled after many ACID transactions have
been committed. The partial work done must be undone as best as
possible. Error handling in BPEL processes therefore leverages
the concept of compensation, that is, application-specific activi-
ties that attempt to reverse the effects of a previous activity that
was carried out as part of a larger unit of work that is being aban-
doned. There is a history of work in this area regarding the use
of Sagas and open nested transactions. BPEL provides a variant
of such a compensation mechanism by providing the ability for
flexible control of the reversal. BPEL achieves this by provid-
ing the ability to define fault handling and compensation in an
application-specific manner, in support of Long-Running Trans-
actions (LRT’s) [...] BPEL allows scopes to delineate that part
of the behavior that is meant to be reversible in an application-
defined way by specifying a compensation handler. Scopes with
compensation and fault handlers can be nested without constraint
to arbitrary depth.[...]
A compensation handler can be invoked by using the
compensateScope or compensate (together referred to as the
“compensation activities”). A compensation handler for a scope
MUST be made available for invocation only when the scope
completes successfully. Any attempt to compensate a scope, for
which the compensation handler either has not been installed or
has been installed and executed, MUST be treated as executing
an empty activity. [...]”

Fault Handler

“Fault handling in a business process can be thought of as a mode
switch from the normal processing in a scope. Fault handling in
BPEL is designed to be treated as “reverse work” in that its aim
is to undo the partial and unsuccessful work of a scope in which
a fault has occurred. The completion of the activity of a fault
handler, even when it does not rethrow the handled fault, is not
considered successful completion of the attached scope. Compen-

144

sation is not enabled for a scope that has had an associated fault
handler invoked.
Explicit fault handlers, if used, attached to a scope provide a way
to define a set of custom fault-handling activities, defined by catch
and catchAll constructs. Each catch construct is defined to inter-
cept a specific kind of fault, defined by a fault QName. An op-
tional variable can be provided to hold the data associated with
the fault. If the fault name is missing, then the catch will intercept
all faults with the same type of fault data. The fault variable is
specified using the faultVariable attribute in a catch fault handler.
The variable is deemed to be implicitly declared by virtue of being
used as the value of this attribute and is local to the fault handler.
It is not visible or usable outside the fault handler in which it is
declared. A catchAll clause can be added to catch any fault not
caught by a more specific fault handler.”

Event Handler

“Each scope, including the process scope, can have a set of event
handlers. These event handlers can run concurrently and are in-
voked when the corresponding event occurs [...] There are two
types of events. First, events can be inbound messages that corre-
spond to a WSDL operation. Second, events can be alarms, that
go off after user-set times.”

5 Formal Semantics of a (Simplified) BPEL RF

The plain text description of these mechanisms taken from the specifica-
tion should give an idea of the complexity of this framework. The main
difficulty we have found at the beginning of this investigation was to clar-
ify the basic difference between failure and compensation handlers, since
many words have been spent on this but the true essence of these mech-
anisms has never been given in a concise and simple way. In the past we
also promoted a complete explanation of the mechanisms focusing on
inessential minor details. Here we want to give the basic idea explaining
that failure and compensation handlers differ mainly because they play
their role at different stages of computation: failure handler is responsi-
ble for reacting to signals that occur during the normal execution of the

145

body; when these occur, the body is interrupted and the failure handler is
activated. On the contrary, compensation handler is installed only when
the body successfully terminates. It remains available if another activity
requires some undo of the committed activity. In some sense, failures re-
gard “living” (not terminated) processes, while compensation is only for
“successfully terminated process”. The key point regarding event han-
dlers is instead bound to the sentence reported above: they are invoked
concurrently to the body of a scope that meanwhile continues running.
This is very different from what happens for failures that interrupt the
main execution and compensations which run only after the completion
of the relative body.

The difficulty of the encoding we gave in [12] lies in the nontrivial
interactions between the different mechanisms and it is due to the sophis-
ticated implicit mechanism of recovery activated when designer-defined
fault or compensation handlers are absent. Indeed, in this case, BPEL
provides backward compensation of nested activities on a causal depen-
dency basis relying on two rules:

– control dependency: links and sequence define causality
– peer-scope dependency: the basic control dependency causality is re-

flected over peer scopes

These two rules resemble some kind of structural inductive definition,
as is usually done in process algebra. It is exactly our goal to skip these
details here and to clarify the semantics.

5.1 Syntax

Let (A; H)s be a scope named s where A is the main activity (body) and
H a handler. Both A and H have to be intended as BPEL activities com-
ing from a subset of the ones defined in [12]. Practically, that work was
limited to basic activities, structured activities and error handling. The
idea now is to represent a simplified BPEL scope called s having a single
handler H, so we are providing a semantics for the error handling mecha-
nisms alternative to the previous one. For the sake of simplicity, we start
considering a single handler at a time. Afterward we will consider the full
scope construct. In the following subsection the formal semantics derived
from webπ∞ will be presented, here we just define the syntax giving an
informal explanation.

146

Definition 3 (Compensation Handler). We define the compensation han-
dler as follows:

(A;COMP s→ C)s

If s is invoked after the successful termination of A, then run the allocated
compensation C.

Definition 4 (Fault Handler). We define the fault handler as follows:

(A;FAULT f → F)s

If f is invoked in A, then abort immediately the body A and run F.

Definition 5 (Event Handler). We define the event handler as follows:

(A;EVENT e→ E)s

If e is invoked in A then run E in parallel while the body A continues
running still listening for another event e.

5.2 Semantics

The formal semantics of the three mechanisms is defined here in terms
of webπ∞. These constructs are encoded in webπ∞ which has a formal
semantics, as a consequence the semantic of the constructs themselves
is given. The continuation passing style technique is used like in [12].
Briefly, [[[A]]]y means that the encoding of the BPEL activity A completes
with a message sent over the channel y. More details can be found also
in [13]. In that work the function [[[A]]]y : ABPEL→ Process has been used
to map BPEL activities into webπ∞ processes flagging out y to signal
termination.

5.3 Compensation Handler

Definition 6 (Compensation Handler). The semantics of the single Com-
pensation Handler scope is defined in terms of webπ∞ as follows:

(A;COMP s→ C)s
def= (y)(y′)(〈|[[[A]]]y ; s().[[[C]]]y′|〉y)

147

The reader will realize that there are two new names y and y′ defined at
the outer level. This means that all the interactions related to this name
are local to this process, i.e., interferences from the outside are not al-
lowed (they are restricted names). Then you have a workunit containing
the main process and the compensation handler. Both these processes are,
in turn, contained by the double brackets, which means that their encod-
ings need to be put here. As you can see the compensation is blocked
until a message on s (the name of the scope) is received and C will be
available only after the successful termination of A signaled on the local
channel y. This expresses exactly the fact that the compensation is avail-
able only after the successful termination of the body as required in the
BPEL specification. The reason for which C is activated after the termi-
nation of A stands in the webπ∞ rule (FAIL) which activates the workunit
handler s().[[[C]]]y′ when the signal y (the workunit name) is received. This
name is precisely sent by A when it terminates (because of the continua-
tion passing style encoding).

5.4 Fault Handler

Definition 7 (Fault Handler). The semantics of the single Fault Han-
dler scope is defined in terms of webπ∞ as follows:

(A;FAULT f → F)s
def= (f)(y)(y′)(〈|[[[A]]]y ; [[[F]]]y′|〉 f)

The fault handler has a semantic very close to the webπ∞ workunit. For
this reason the encoding here is basically an isomorphism. The handler
is triggered when receiving the signal f which interrupts the normal exe-
cution of the body. Since the activation of the fault handler is internal to
the scope itself, the scope name is not relevant in the right hand side.

5.5 Event Handler

Definition 8 (Event Handler). The semantics of the single Event Han-
dler scope is defined in terms of webπ∞ as follows:

(A;EVENT e→ E)s
def= (e)(y)(y′)(〈|[[[A]]]y ; 0|〉y | !e().[[[E]]]y′)

The event handler is interesting. The main point here is that the body
execution is not interrupted when e is received. Consider indeed that E is

148

outside the workunit and it is triggered only by e. The handler, receiving
e and activating E, will run in parallel with A without interrupting it.
It is worth noting also that the presence of the replication allows e to
be received many times during the execution of A, each time running a
new handler. The event handler will stay active without any risk of being
stopped by other scopes since all the names inside the handler are local
to E (bound names) due to the way in which BPEL activities are encoded
by the function [[[A]]]y. This is a simplification to clarify the mechanism, it
actually represents a deviation from the BPEL standard where the events
are not restricted in this way.

5.6 BPEL Scope
Now that we have understood each mechanism let us put all together.
We define a scope construct including all the three handlers. Again, we
consider single handlers of each type with no interactions, no default
handler and no automatic compensation of inner scopes.

Definition 9 (Full Scope Construct). The semantics of the full scope
construct is defined in terms of webπ∞ as follows:

(A;FAULT f → F;EVENT e→ E;COMP s→ C)s
def=

(e)(f)(y)(y′)(y′′)(y′′′)(〈|[[[A]]]y ; [[[F]]]y′|〉 f
| !e().[[[E]]]y′′ | 〈|(x)x() ; s().[[[C]]]y′′′|〉y)

It is worth noting that here the name s is a free global name (unde-
fined) available to all the scopes which possibly run in parallel. The tech-
nical problem is that, in this way, the encoding is not compositional. Ac-
tually, this problem is easily fixed when the encoding is extended to the
complete set of BPEL constructs, including the top level process where
all the scopes are defined since there you can restrict all the names of
the inner scopes. This has been done previously in [12]. The purpose
of this work is just to explain in a clearer way the differences between
the mechanisms of the recovery framework without presenting again the
whole encoding. A synergy between this result and what we have done
in [12] is left as future work.

5.7 Example
Let us now show an example of how this mechanism works in practice.
To do this we will run a process description on the “reduction semantics

149

machine" of webπ∞. This example serves as a clarification for all the
concepts presented in this paper, especially for those readers who are not
very familiar with the mathematical tools exploited in our investigation.
Let us consider the following process where, for simplicity, the body and
the handlers are already presented in terms of webπ∞:

((z)(f |z().0);FAULT f → warning ;EVENT e→ 0;COMP s→ 0)s

Looking at the previous encoding it results in the following full webπ∞

process:

(e)(f)(y)(y′)(y′′)(y′′′)(〈|(z)(f |z().0) |y ; warning |y′ |〉 f
| !e().y′′ | 〈|(x)x() ; s().y′′′ |〉y)

where warning is some global channel handling the actual warning (for
example displaying a message on the screen). This is a specific instance
of the Full Scope Construct as defined above where event and compensa-
tion handlers are empty while the fault handler sends an empty message
on the warning channel. The process z().0 expresses the fact that we want
the process to fail without allocating the compensation handler and it has
to be the standard encoding when raising a failure signal to indicate that
there is no successful termination. Now, applying the (FAIL) rule and the
floating law, we have:

(e)(f)(y)(y′)(y′′)(y′′′)(〈|warning |y′ ; 0|〉
| !e().y′′ | 〈|(x)x() ; s().y′′′ |〉y)

which will lead to a warning on the appropriate channel without activat-
ing the compensation (which would need a message on y) since the scope
did not successfully complete. It is worth noting that the event handler
remains ready to accept events but it never activates in this scenario. This
happens because the channel on which the event handler listens is re-
stricted, and this is consistent with the expected behaviour.

5.8 Is It Really Simpler?

The intention of this work is to demonstrate, in real life scenarios, the
added value of formal methods. We believe that what has been intro-
duced so far can been really useful in the clarification of the BPEL RF

150

semantic. Just to stress better this point, let us recall only the complete
Event Handler compilation presented in [12]:EH(Se,yeh) = (y′)({ex | x ∈ he(Se)})

eneh().(〈|∏(x,ũ,A)∈Se ! x(ũ).ex ũ ; yeh |〉diseh
|∏(x,ũ,Ax)∈Se ! ex(ũ).[[[Ax]]]y′)

while the new one is:

(A;EVENT e→ E)s
def= (e)(y)(y′)(〈|[[[A]]]y ; 0|〉y | !e().[[[E]]]y′)

For the proper background please refer to [13] where you can find a de-
tailed explanation of the encodings and all the theory. Here the idea is just
to give a flavor of how this work contributes (in terms of simplification)
to the improvement of the BPEL specification.

5.9 Design of BPEL Orchestration Engines

Although this paper has to be intended as investigating a well known
case study and providing methodological arguments for the adoption of
formal methods in software specification, the aspect of verification is not
alien to our work and here we intend to give some hints in this regard.
The most common formalization of behavioral equivalence is through
barbed congruence, which guarantees that equated processes are indistin-
guishable by external observers, even when put in arbitrary contexts. For
instance, equivalent Web services remain indistinguishable also when
composed to form complex business transactions. The barbed congru-
ence in this scenario has been presented in [15]. The proposed encoding,
based on the function [[[A]]]y : ABPEL → Process, can be used to test the
equivalence of BPEL processes on the basis of the barbed congruence
developed in the theory. The idea is to inherit the equivalence notion
from webπ∞ to decide BPEL processes equivalence. Here, as a further
contribution, we want to show that, despite its simplicity, there are many
ways in which BPEL can benefit from this work exploiting this idea of
behavioral equivalence. For example, our proposal can contribute to the
implementation of real orchestration engines. The application example
comes from one of the theorems proved in [13]:

〈|!z(u).P |Q ; v |〉x ≈a (y)(〈|!z(u).P ; y |〉x | 〈|Q |(w)w(u) ; v |〉y)

151

where the symbol ≈a has to be intended as barbed congruence, i.e. the
process on its left and the one on its right exhibit the same behavior. It is
worth noting that the process (w)w(u) is necessary to prevent v from dis-
appearing in the case the workunit on the right would terminate succes-
fully. This theorem suggests a transformation where it is always possible
to separate the body and the recovery logics of the workunit expressing,
for example, the event handler behavior. This is possible not only when
the recovery logic is a simple output (as in this case) but in all the other
cases, on the basis of another theorem showed in the same work:

〈|P ; Q|〉x ≈a (x′)(〈|P ; x′ |〉x | 〈|x
′().Q ; 0|〉)

Now we have the design option to compile the mechanism in an alterna-
tive way allowing a logical separation of code which can lead to an actual
physical separation. For example, different workunits could be loaded on
different machines. Although BPEL typically allows a centralized con-
trol and a local compilation, this result gives us further insights in the
direction of distribution. Consider, for example, the case in which differ-
ent scopes can share instances of the same handler loaded on a specific
dedicated machine. This result can also be interpreted in a choreographic
perspective.

6 Summary, related works and criticisms

The goal of this paper was to show how a variant of the π-calculus can
be of some use in the context of dependable Web services composition.
The specific case study presented aimed at reducing the ambiguity of
the BPEL RF providing a (simplified) formal semantics opposed to the
complete one already given in [12]. This is what we have called the “π-
calculus way”, i.e., using the π-calculus as formal specification language.
As we have already underlined, several different formal notations might
have been chosen for this purpose. Our choice depended on the “founda-
tional feature” of mobility. It has been noted that in the specific contribu-
tion the mobility feature has not been fully exploited since the modeled
mechanisms required us to pay more attention to process synchroniza-
tion and concurrency than to full mobility. Anyway, we have realized
that, in the general case, mobility is an essential feature of composition
languages and this point is discussed more in detail in [13].

152

Although before this work [15] and [12] have been earlier attempts at
defining a formal semantics for WS-BPEL and unifying and simplifying
its recovery mechanisms, those papers are far from being complete and
from providing the ultimate BPEL formal semantics. Many other works
have been presented recently that significantly improved what has been
done there. For example, Blite [10] is a “lightweight BPEL” with formal
semantics taking into account also dynamic aspects (e.g. dynamic com-
pensations) that have not been directly part of our investigation. Another
relevant work adding dynamic compensation features is [20]. In this pa-
per the interested reader can find a comparison between different com-
pensation mechanisms presented in the recent literature. The criticism
in this work is that in webπ∞ completed transactions cannot be compen-
sated. This is of course true but, as shown in this paper, this aspect can
be easily modeled (look for example at the encoding of the BPEL com-
pensation handler). The basic idea behind webπ∞ is indeed to provide a
unifying theory for Web services composition as discussed in [15] where
different mechanisms can be easily mapped without being directly sup-
ported. A good analysis of fault, compensation and termination (FCT) in
WS-BPEL is also discussed in [7]. Here the BPEL approach to FCT with
related formal semantics is given, thus covering termination handler that
has not been part of our work. Furthermore, the authors in [22] recognize
that in [12] the lack of support for control links has to be seen as a major
drawback. And this is a criticism that we do not hide and we find rele-
vant. The same paper proposes an alternative formalization of WS-BPEL
2.0 based on the π-calculus and then compares different approaches (in-
cluding the one in [12]) from the complexity point of view for verifi-
cation purposes. The authors found out that their approach presents a
smaller number of states deriving from the neglect of internal activity
states. Indeed, while the encoding in [12] requires every activity to signal
(at least) its termination (due to the continuation passing style technique
used), in [22] the activity lifecycle is not modeled. Apart from the criti-
cisms presented in the recent literature (the list included here is not ex-
haustive anyway), other interesting questions have been asked regarding
this approach to the BPEL RF, for example if we intend to capture fault
tolerance behavior depending on external factors, for example timeout.
This topic indeed has not been central to our investigation. Other authors
worked on these aspects, in particular [9] discusses timed transactions.

153

Although we know that much needs to be done yet, we are confident
that the issues we have identified are worth investigating. We have to ad-
mit that sometimes we have doubts regarding what we are doing and the
solution we are adopting, so we usually look for some reassurance in the
famous words of Descartes: “Dubium Sapientiae initium”, i.e. “Doubt is
the origin of wisdom”.

Acknowledgments. The paper has been improved during the useful con-
versations with Cliff Jones, Alexander Romanovsky and Anirban Bhat-
tacharyya. For some of the ideas discussed here we have to thank Cosimo
Laneve, Roberto Lucchi, Claudio Guidi and Gianluigi Zavattaro. Very
useful comments came also by Joey Coleman, Felix Loesch and Michael
Jastram that kindly provided other written reviews for this work (Ani
Bhattacharyya also provided a written review). Finally, we have also to
thank the anonymous WSFM reviewers for their contribution. This work
has been partially funded by the EU FP7 DEPLOY Project (Industrial
deployment of system engineering methods providing high dependabil-
ity and productivity). More details at http://www.deploy-project.eu/.

References
1. Web services flow language (wsfl 1.0). www.ebpml.org/wsfl.htm.
2. Xlang: Web services for business process design. http://www.ebpml.org/xlang.htm.
3. R. Chinnici, J.J. Moreau, A. Ryman, and S. Weerawarana. Web services description language

(wsdl 1.1), W3C Recommendation 26 June 2007. http://www.w3.org/TR/wsdl20/.
4. P. Chris. Web services orchestration and choreography. Computer, 36(10):46–52, 2003.
5. World Wide Web Consortium. Extensible markup language (xml) 1.0. W3C Recommenda-

tion: http://www.w3.org/XML/.
6. G. Decker, F. Leymann, and M. Weske. Bpel4chor: Extending bpel for modeling choreogra-

phies. In Proceedings International Conference on Web Services (ICWS), 2007.
7. Christian Eisentraut and David Spieler. Fault, compensation and termination in ws-bpel 2.0

– a comparative analysis. pages 107–126, 2009.
8. M. Gudgin, M. Hadley, N. Mendelsohn, J.J Moreau, H.F. Nielsen, A. Karmarkar, and Y. La-

fon. Simple object access protocol (soap) 1.1, W3C Recommendation 27 April 2007.
http://www.w3.org/TR/soap12-part1/.

9. Cosimo Laneve and Gianluigi Zavattaro. Foundations of web transactions. pages 282–298.
Springer, 2005.

10. A. Lapadula, R. Pugliese, and F. Tiezzi. A formal account of WS-BPEL. In Proc. 10th
international conference on Coordination Models and Languages (COORDINATION’08),
volume 5052 of Lecture Notes in Computer Science, pages 199–215. Springer, 2008.

11. M. Little. Web services transactions: Past, present and future.
www.jboss.org/jbosstm/resources/presentations/XML2003.pdf.

12. R. Lucchi and M. Mazzara. A pi-calculus based semantics for ws-bpel. Journal of Logic
and Algebraic Programming, 70(1):96–118, 2007.

154

13. M. Mazzara. Towards Abstractions for Web Services Composition. PhD thesis, 2006.
14. M. Mazzara and S. Govoni. A case study of web services orchestration. In COORDINA-

TION, pages 1–16, 2005.
15. M. Mazzara and I. Lanese. Towards a unifying theory for web services composition. In

WS-FM, pages 257–272, 2006.
16. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University

Press, 1999.
17. Robin Milner. Functions as processes. Mathematical Structures in Computer Science,

2(2):119–141, 1992.
18. OASIS Web Services Business Process Execution Language (WSBPEL)

TC. Web services business process execution language version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

19. W.M.P. van der Aalst. Pi calculus versus Petri nets: Let us eat humble pie rather than further
inflate the Pi hype, 2004. http://is.tm.tue.nl/research/patterns/download/pi-hype.pdf.

20. Cátia Vaz, Carla Ferreira, and António Ravara. Dynamic recovering of long running trans-
actions. pages 201–215, 2009.

21. W3C. Http - hypertext transfer protocol. www.w3.org/protocols.
22. Matthias Weidlich, Gero Decker, and Mathias Weske. Efficient analysis of bpel 2.0 pro-

cesses using pi-calculus. In APSCC ’07: Proceedings of the The 2nd IEEE Asia-Pacific
Service Computing Conference, pages 266–274, Washington, DC, USA, 2007. IEEE Com-
puter Society.

155

Generation of Gluing Invariants for Checking
Local Enforceability of Message

Choreographies

Vitaly Kozyura and Andreas Roth

SAP

Abstract. The paper describes how to check local enforceability (refinement)
property for Message Choreography Models (MCM) using Event-B specification
language. We consider the definition of MCM and its translation to Event-B. The
challenge is to find (heuristically) a number of gluing invariants between local
and global models, which allow one to prove the refinement property. The in-
variants are constructed partially automatically from the translation of MCM to
Event-B. Our experiments have shown that for the most of the considered mes-
sage choreographies the refinement property could be successfully proved using
only the proposed types of invariants.

1 Introduction

Introducing formal modeling and verification into the development of
business information application is a challenging task. There are spe-
cialized established domain-specific languages for the development of
this software in place which developers need to use. Switching to non-
domain-specific languages and working with mathematical syntax is typ-
ically considered not to be feasible.

One approach to make business application developers nevertheless
benefit from formal verification techniques is to hide the mathematical
formalisms, such as Event-B, behind the languages normally used in
business software development and to rely on the high automation of to-
day’s verification tools, so that developers do not have to directly interact
with the formalism.

In earlier work [6] we have presented a diagrammatic domain-specific
language called Message Choreography Modeling (MCM) to precisely
model message choreographies in the context of SAP applications. MCMs
describe the allowed order of how messages are exchanged between two
independent business components. This domain is very important in service-
oriented architectures and modeling the choreography can uncover in a

very early design phase crucial flaws of the design. MCM consists of two
layers: one for the component-neutral global view, and one for modeling
the send and receive events of the individual components (local view).

Our approach to hide the mathematical formalism behind domain-
specific front-ends imposes a number of challenges. First there must be
a semantics preserving translation from the state transition systems of
global and local MCM models to Event-B. Second, since formal verifi-
cation in Event-B heavily relies on the addition of additional invariants
enriching the model, we need to cater for the addition of invariants in
MCM. Third, one needs to take care that results of the verification pro-
cess, e.g. failed proof attempts, are adequately presented in the MCM
diagram.

We have introduced the translation procedure and its implementation
in earlier work [5] and will report on our experiments with the third task
in future work. This paper focuses on the second activity, i.e. how to
make the process of specifying invariants for users of our approach easy.
The invariants are crucial in verifying MCM because the result of the
translation from MCM are two Event-B models, one for the local model
and one for the global model. Since we would like to show that the local
model is a refinement of the global model, gluing invariants are needed
which link the two models together.

Our approach relies on templates of gluing invariants which we typi-
cally find for MCM. A user of our tool may then select instances of these
templates which she/he believes are applicable for the concrete MCM
instance. This selection is considered much more feasible for the tool
users than creating the invariants from scratch. It moreover exploits the
domain-specific information reflected in MCMs. Finding the gluing in-
variant templates is a heuristic task. We have thus conducted a number of
experiments with concrete realistic MCM examples from SAP and report
on our experience with the approach.

The paper is structured as follows. In Section 2 we introduce the
MCM modeling approach and the translation of MCM into Event-B. Sec-
tion 3 presents our approach to generating gluing invariants for MCM.
How users are interacting with the tool to specify the invariants is de-
scribed in Section 3.4. Then the process of working with the tool is il-
lustrated in Section 4. In Section 5 the results of our experiments are
presented and conclusions are drawn in Section 6.

157

2 MCM Modeling

The service choreography modeling language MCM complements the
structural information of the communicating components (e.g. service in-
terface descriptions and message types) with information on the message
exchange between them. A detailed discussion of the underlying con-
cepts of MCM and how they support service development can be found
in [7, 6]. MCM consists of different model types each defining different
aspects of service choreographies.

1. Global Choreography Model. The global choreography model (GCM)
is a labeled transition system which specifies a high-level view of the
conversation between service components. Its purpose is to define ev-
ery allowed sequence of observed messages.

2. Local Partner Model. The local partner models (LPMs) specify the
communication-relevant behavior for exactly one participating ser-
vice component. Each LPM must be a structural copy of the GCM
with extra constraints on some of the local transitions, usually lead-
ing to the affected sending actions being deactivated.

3. Channel Model. The channel model (CM) describes the characteris-
tics of the communication channel on which messages are exchanged
between the service components. These characteristics determine for
example whether messages sent by one component preserve their
order during transmission and are formalized by the WS-RM stan-
dard [1].

The following running example (as in [5]) illustrates the approach:
Two service components, a buyer and a seller, negotiate a sales order. The
buyer starts the communication by sending a Request message that will
be answered with a Confirm by the seller. The buyer afterwards has the
choice either to send a Cancel that rolls back the previous communication
and allows to restart the negotiation or to send an Order that successfully
concludes the ordering process. We assume a (reliable) communication
channel that is not necessarily preserving the message order. Because of
this a Cancel can be delivered after a new negotiation process already
started.

Figure 1 shows how the example described above can be modeled
with MCM. In the GCM at the top of Figure 1, the arrows labeled with
an envelope depict the interactions Request, Confirm, Cancel, Order, and

158

Cancel(deprecated)1 which are ordered with the help of the states Start,
Request, Reserved, and Ordered. The states connected with a filled cir-
cle, i.e. Ordered and Start are so-called target. Only in these states, the
communication between the partners is allowed to terminate.

Fig. 1. GCM (top) of the choreography and LPMs of the buyer (left) and the seller (right)

The LPM of the buyer partner of our example is depicted in the lower
left part of Figure 1. It is a structural copy of the GCM, but the interac-
tion symbols now represent send or receive events of the buyer. Moreover
some send-events are ”inhibited” by special local constraints. It is for ex-
ample inhibited that a Cancel(deprecated) is ever sent (thus these send-
events have been erased) and that a Request is sent in the Reserved state.
However, due to possible message overtaking on a channel that does not
guarantee to enforce the message order during transmission, receiving a

1 Deprecated here means that the message is out-dated and no-longer relevant as the negotiation
has been restarted.

159

deprecated Cancel is possible on the seller side. The LPM of the seller
is depicted in the lower right part of Figure 1. Event-B fits quite natu-
rally to MCM: interactions can be seamlessly expressed as events and
the relationship between GCM and LPMs can be formulated as Event-B
refinement. The distinguishing aspect is the tool support in form of the
Eclipse-based Rodin tool [2]. Due to the extensible architecture, various
plugins for Rodin exist. The tool can be integrated with other Eclipse-
based tools such as the MCM editor.

Abstract Syntax of MCM. Now we present the abstract syntax of
MCM, which is the basis for the translation into Event-B. Although in
our tool we consider choreographies having multiple status variables, for
a simplified presentation, we assume that each choreography consist of
exactly one status variable. In this case a choreography can be consid-
ered as based on a finite state machine. A message choreography model
MCM = (GCM,LPM1,LPM2,CM) consists of a global choreography
model (GCM), two local partner models (LPM1 and LPM2) and a chan-
nel model CM. The GCM is a finite state machine L = (S, I,→), where S
is a finite set of states, I is a finite set of interactions and→⊆ S× I×S.
The system has an initial state init ∈ S and target states {e1, ...,en}, where
ei ∈ S. Each interaction i∈ I is then assigned to a type itype(i)∈ T , where
T in our context can be considered as being a set of labels. We demand
our models to be confluent in the following sense: Starting from the same
starting state, the applications of interactions e1,e2 and e2,e1 lead to the
same resulting state.

LPM1 and LPM2 are obtained from the GCM by duplicating the
states, for each of them. Moreover each interaction i ∈ I is transformed
into the corresponding element from
PI = {send_i,receive_i | for all i ∈ I}. The elements from PI inherit
types, states, preconditions and actions from elements from I. LPMs can
be further extended with an additional inhibitor function inhib : I→ P (S)
which describes that the partner must not send a message associated with
I if it is in one of the states inhib(i).

The channel model CM is a total function from a sequence of mes-
sages (of types T) to a sequence of messages (of types T). With T ′ ⊆ T
and a message sequence s, πT ′(s) denotes the projection of s to sequences
of messages of types T ′. Let πT ′ be canonically extended on the chan-
nel model. The channel model CM is then based on assignments of dis-
joint subsets T ′ of T to channel reliability guarantees which enforce that

160

πT ′(CM) satisfies certain properties. Reliability guarantees such as from
WS-RM standard [1] can be modeled:

– Exactly once in order (EOIO) where πT ′(CM) is the identity function
on interaction sequences.

– Exactly once (EO) where πT ′(CM) is a permutation on an interaction
sequence.

Translation to Event-B. Here we present a translation of MCM into
Event-B as described in detail in [5]. The translation is implemented and
can thus be applied completely automatically. For each transition in the
GCM we generate exactly one event. For representing the states we de-
fine a global variable status with elements from a set type {s1, ...,sk},
with constants s1, ...,sk. It is initialized with init ∈ S. The basic transla-
tion of an Interaction i ∈ I with (s1, i,s2) ∈→ is as follows:

i of type t
when

guard1 : status = s1
then

act1 : status := s2
end

For the target state e ⊆ S we define a special event terminate with a
guard status = c1∨...∨status = cn (for all ci ∈ e) and an action targetstate :=
true, where targetstate is a global variable. In each event from the trans-
lation of GCM we additionally add an action targetstate := f alse. As a
result, targetstate equals true iff the system state is a target state.

In the local model we generate events representing sending and re-
ceiving of messages. Depending on the viewpoint either the send or the
receive event can be defined to be a refinement of the corresponding inter-
action in GCM. By definition of LPMs, the status variable is duplicated
(one for each partner). In receive events, local variables (parameters) are
used in order to obtain some message from a channel. A channel is de-
fined as a global variable of type P (T) denoting the set of messages on
the being exchanged. It is initialized with ∅. Typically, we have two part-
ners P1 and P2 and two sequencing contexts (EO and EOIO). In that case
we obtain four possible channels in the model (two in each direction).

Example. Below we show a translation of the interactions Request
from the GCM and the LPMs for the partners buyer (B) and seller (S) of
the example. The duplicated variables can be distinguished by the corre-

161

sponding prefixes. The channel from buyer to seller having the sequenc-
ing EO is denoted by channel_BS_EO.

Request
when

grd1 : status = Reserved∨ status = Start
then

act1 : status := Requested
end

send_Request
when

grd1 : B_status = Reserved∨B_status = Start
then

act1 : B_status := Requested
act2 : type(msg) := Request
act3 : channel_BS_EO := channel_BS_EO∪{msg}
act4 : msg := msg+1

end

receive_Request
any m where

grd1 : S_status = Reserved∨S_status = Start
grd2 : m ∈ channel_BS_EO
grd3 : type(m) = Request

then
act1 : S_status := Requested
act2 : channel_BS_EO := channel_BS_EO\{m}

end

For inhibitor conditions inhib(i) =C (with i∈ I) we add a guard status /∈
C to the event send_i. In our example, we add the guard grd2 : B_status /∈
{Reserved} to send_Request. Target states are treated similar to the trans-
lation of GCM except that we additionally demand channel = ∅ for all
of them. Only if all channels are empty the system can enter into a tar-
get state. For all other events of the translation from the LPM we add an
action targetstate := f alse.

The purpose of the verification procedure is to prove local enforce-
ability property for choreographies. In [7] we have defined a notion of
local enforceability as a trace inclusion: Traces of the local model must
be a subset of traces of the global model. Depending on viewpoint either
the send or the receive event is defined as a refinement of the correspond-
ing interaction in the global model. In order to prove the trace inclusion

162

we show (with the help of the translation to Event-B) that local model is
a refinement of the corresponding global one.

3 Gluing Invariants

In this section we describe seven types of gluing invariants that we pro-
pose to add in the translation of MCM to Event-B in order to prove the
refinement property described above. We also present some considera-
tions about rationale and usage of invariants. Following notation is used
below: P1 and P2 are two partners, S = {s1,s2, ...,sn} is a global status
variable, P1_S and P2_S are the copies of the status variable for both
partners, m(e) is a message produced by the event e, and channel is a
generalized channel between partners.

In this work we try to obtain a classification of gluing invariants used
in order to prove the local enforceability of choreographies. The obtained
types of gluing invariants between local and global models are found
heuristically and allow one to prove the refinement property in some
cases. The list of types is not necessarily complete and can be extended
when needed. An extension is required if new types of gluing invari-
ants are needed for some proof obligations. Our experiments have shown
that for the typically considered choreographies the refinement property
could be successfully proved using only the proposed types of invariants.

3.1 Types of Gluing Invariants

The following types of gluing invariants are currently considered:

Type 1 (Local state implies global state):

I1(s j,Pi)≡ (Pi_S = s j)⇒ (S = sk1 ∨S = sk2 ∨ ...∨S = skn).

The meaning of the invariants of this type is that given a state of a
single partner the possible global states are represented.

Type 2 (Message in the channel implies state): An event e sent by the
partner Pi is called a non-cyclic event if it does not produce, together with
other events sent by Pi, a cycle. Consider an event e such that

1. The event e is a non-cyclic event.

163

2. There exists a non-cyclic e′ of another partner Pj, such that sl →e sm
and sm→e′ sn.

The second type of invariants is:

I2(e)≡ (m(e)∈ channel)⇒ ((S = sk1∨S = sk2∨...∨S = skn)∧(Pi_S 6= sl)).

Usually we use the form I2(e), but there exist variants, which can also
be useful for proving local enforceability.

Type 3 (Bounded Event): The following invariant holds if the event e is
bounded. In a more complex case the event can be bounded by a constant
k 6= 1 and one can change the invariant I3 correspondingly.

I3(e)≡ channel(m(e))≤ 1.

Type 4 and Type 5 (Initial Value without Inputs): If an initial state has
no input (i.e., there exists no event with an action S := initial), then the
following types of invariants can be useful:

I4(Pi)≡ (Pi_S = initial)⇒ (S = sk1 ∨S = sk2 ∨ ...∨S = skn) ∧

(m(e1) /∈ channel∧m(e2) /∈ channel∧ ...∧m(ek) /∈ channel),

for all non-cyclic events {e1,e2, ...,ek} of the partner Pi.

I5(Pi)≡ (S = initial)⇒ (Pi_S = initial) ∧

(m(e1) /∈ channel∧m(e2) /∈ channel∧ ...∧m(ek) /∈ channel),

for all non-cyclic events {e1,e2, ...,ek} of the partner Pi with initial
value in the guards.

Type 6 (Concurrent Events): If two events (e1 and e2) of the same part-
ner have the same status value in guards and both events are non-cyclic
(with respect to the partner), then the following type of invariants can be
needed:

I6(e1,e2)≡ m(e1) /∈ channel∨m(e2) /∈ channel

.

164

Type 7 (Variable modified by Partner): If a status variable is changed
(in send or receive events, corresponding to the point of view) only by
the partner Pi, then we can write

I7(S,Pi)≡ (S = Pi_S)

3.2 Some Rationale of the Types of Gluing Invariants

In this section we give some rationale for the first three types of invari-
ants. For each event e and the corresponding send or receive (dependent
on used send or receive point of view) event e′ in order to show the re-
finement relation we obtain the following proof obligation:

Guard(e′)⇒ Guard(e) (GRD PO).

For the rest of the section we fix a send point of view.

Type 1: Let the partner Pi sends e with s1 →e s2. In order to prove the
GRD PO we consider the invariant I1(s1,Pi), which is usually enough.

Type 2: Let us consider a receive-event er corresponding to the acyclic
event e with s1→e s2 and an invariant of a first type I1(e′,Pi) correspond-
ing to the acyclic event e′ with s2 →e′ s3. Before receive-event er the
invariant holds because the event e is acyclic. After the receive event we
have to prove

(s2 = s2)⇒ (S = sk1 ∨S = sk2 ∨ ...∨S = skn).

This can be proved only if we have additional information about
global states of status during the receive-event er. Since global states are
changed by send events, we need a connection between send and receive
events.

The following invariants can be formulated in this case:

I0
2 (e)≡ m(e) ∈ channel⇒ (S = sk1 ∨S = sk2 ∨ ...∨S = skn).

Now this invariant cannot be proved by the acyclic send-event e′s with
s2→e′ s3. We need to show that if a message m(e′) is sent, then the mes-
sage m(e) is already received, i.e.:

165

Iadd
2 (e)≡ m(e′) ∈ channel⇒ m(e) /∈ channel.

This can be done by extending I0
2 (e) to I2(e) or by using Iadd

2 (e). The
invariant I2(e) can be usually proved by contradiction using the first types
of invariants.

Type 3: The invariant of the second type I2(e) cannot in general be
proved in the case of receive-event er. We have to prove that after delet-
ing a message from the channel the invariant for an event e still holds.
In general the right side of the implication in I2(e) is false and the impli-
cation holds only if m(e) /∈ channel, i.e., we have to prove that after one
deletes from the channel a message corresponding to the event e, there
will be no more such messages in the channel. To prove this we should
demand additionally that channel(m(e)) ≤ 1. The invariant holds if the
event e is bounded. In a more complex case the event can be bounded by
a constant k 6= 1 and one changes the invariant I3(e) correspondingly.

3.3 Automatic Generation of Gluing Invariants

In this section we consider the construction of the invariants on the ex-
ample of invariants of first type. We show that in the case of the send
point of view the construction is automatic and in the case of the receive
point of view some user interaction is needed. This is also the case with
the second type of invariants. All other types of invariants can be trivially
constructed. In the case of the send point of view the following algorithm
can be used for the calculation of the invariant I1(s j,Pi):

1. Start with X = s j.
2. Repeat until X is fixed:

Add all s′ to X such, that s→e′ s′, where e′ is an event sent by another
partner Pj and s ∈ X .

3. Write I1(s j,Pi) for all s j ∈ X .

The intuition here is that in the case of the send point of view the
global state is either s j or another partner Pj has sent some messages
starting from s j. Note that the choreographies that we consider are con-
fluent (see Section 2).

In the case of receive point of view calculating the possible global
states from the partner’s state s j one should consider the situation, where

166

another partner is still not in the state s j. This corresponds to the situation
where some messages were not received. Compared to the send point of
view, where a forward calculation starting from s j is needed, in the case
of receive point of view one should calculate backward starting from s j.
But in this case also the possible channel content should be considered.
This makes the later calculation to a hard (if at all decidable) problem.
Therefore in the case of receive point of view we give user a possibility
to correct the proposed set {sk1, ...,skn} manually.

3.4 Supporting GUI

Because the types of invariants and their usage are obtained in the heuris-
tic way, we are not sure that the proposed set of invariants is optimal in
each concrete case. In our approach we give users the possibility to cor-
rect the set of proposed invariants.

An invariant is in general connected (logically) with the following
modeling elements: model itself, status values, status variables (note that
in general there is more than one of them), interactions, local partners.
Each modeling element has also its graphical representation (graphical
element) in the tool. In Fig. 2 we show how the graphical user interface
for working with invariant proposal looks like. For example in the case of
the second type of invariants the automatic proposal is: Model - always,
Variable - always, Value - always, Partner - always, Interaction - only if
the interaction is acyclic and has an interaction sent by another partner as
a successor.

As we have mentioned already, in the case of receive point of view not
all types of invariants can be constructed automatically. It was shown in
the previous section, that the status values in invariants of the first and the
second types cannot be calculated automatically in general. In this case
some graphical interface similar to the one in Fig. 2 can be provided to
the user in order to fulfill (correct) the automatically generated versions
of invariants. The tool still makes an initial proposal.

4 Verification Procedure

In this section we describe the whole verification procedure for MCM us-
ing the types of invariants proposed in this paper. Given an MCM model

167

Fig. 2. GUI for participation of gluing invariants

Fig. 3. Verification Procedure

168

the purpose is to check is the model is local enforceable (by fixed send
or receive point of view).

In Fig. 3 the whole verification procedure is schematically depicted.
First of all an MCM is translated to Event-B model as described above
(both global and local parts). After this the automatic invariant proposal
is generated. The proposal can be changed each time using the graphical
user interface (GUI) as described above. Having an invariant proposal the
Event-B model can be extended with automatically generated invariants.

In the case of receive point of view, where we have no guarantee, that
the constructed invariants are correct, the GUI can help one to edit the
sets of status values needed for invariant generation. Having an Event-B
model with generated invariants, one can start with the proving of the
generated prove obligations. In Rodin this can be done in both automatic
and manual modes. If during the proofs the necessity of new invariants
(or corrected versions of the existing invariants) appears, then the mod-
eler can (through the GUI) help either by changing the invariant proposal
or by correcting content of the invariants.

5 Results

In the framework of the verification procedure described above we have
tried to verify a number of typical and realistically sized choreographies
from the SAP context. The following statistics was obtained with Rodin
0.9 and is based on seven considered case studies.

We have used the send point of view allowing automatic generation
of proposed invariants and all considered examples could be success-
fully verified by using only the automatically proposed types of invari-
ants. The numbers of generated proof obligations were between 300 and
600 depending on the example. About 70% of them could be proved au-
tomatically (with repeated runs of the auto-provers). Up to 80% of the
remaining proof obligations could be successfully solved by manually
calling the ML, P0 and P1 provers of Rodin. The fact that these proofs
have not been obtained during the runs of auto-provers can be partially
explained by the small timeout number set in the auto-provers (which
currently cannot be changed from the GUI). The remaining proof obliga-
tions were solved manually (about 6% from the whole number of proof
obligations).

169

6 Conclusion and Related Work

In this work we have investigated means to integrate modeling in indus-
trial domain-specific languages with formal modeling in Event-B/Rodin.
We have built on existing work which automatically translates extended
finite state machines like choreography models into Event-B. We have
shown that the fact that models are created in a special domain, here
message choreographies, can help to even create and propose advanced
modeling constructs, such as gluing invariants, here the coupling between
global and local views of the choreographies. We have shown that this
approach has been useful in practical realistic applications.

As a related work we mention here the project BART [4], where col-
lected libraries of known refinement schemes can be automatically ap-
plied to abstract B machines. Another approach to the automatic con-
struction of refined specifications is based on using design patterns [3]. It
tries to incorporate a proved and refined mini-model into a larger model
and works with a pre-defined number of solutions of small commonly
occurring problems.

In future work we would like to extend the approach to cover other
kinds of invariants typically found in choreographies which are not glu-
ing. Moreover we will explore how the approach can help to propose
invariants in other domains such as business object models and business
process models.

References

1. Web services reliable messaging v1.2, 2007.
2. Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, and Laurent Voisin. A roadmap

for the rodin toolset. In Egon Börger, Michael J. Butler, Jonathan P. Bowen, and Paul Boca,
editors, ABZ, volume 5238 of Lecture Notes in Computer Science, page 347. Springer, 2008.

3. Jean-Raymond Abrial and Thai Son Hoang. Using design patterns in formal methods: An
event-b approach. In ICTAC, pages 1–2, 2008.

4. Antoine Requet. Bart: A tool for automatic refinement. In ABZ, page 345, 2008.
5. Sebastian Wieczorek, Vitaly Kozyura, Andreas Roth, Michael Leuschel, Jens Bendisposto,

Daniel Plagge, and Ina Schieferdecker. Applying model checking to generate model-based
integration tests from choreography models. In Proceedings of the 21st IFIP Int. Conference
on Testing of Communicating Systems (TESTCOM’09), LNCS. Springer, 2009.

6. Sebastian Wieczorek, Andreas Roth, Alin Stefanescu, and Anis Charfi. Precise steps for
choreography modeling for SOA validation and verification. In Proceedings of the IEEE 4th
International Symposium on Service-Oriented Software Engineering (SOSE’08), pages 148–
153. IEEE Computer Society, 2008.

170

7. Sebastian Wieczorek, Andreas Roth, Alin Stefanescu, Vitaly Kozyura, Anis Charfi,
Frank Michael Kraft, and Ina Schieferdecker. Viewpoints for modeling choreographies in
service-oriented architectures. In Proceedings of the 8th IEEE/IFIP Conference on Software
Architecture (WICSA’09). IEEE Computer Society, 2009.

171

An Adaptation of the Time Constraint Pattern
for Modelling Consistency in Business

Information Systems

J. W. Bryans1, J. S Fitzgerald1, A. Romanovsky1, and A. Roth2

1 School of Computing Science
Newcastle University

United Kingdom
2 SAP Research CEC Darmstadt

SAP AG, Bleichstr. 8,
64283 Darmstadt, Germany

{Jeremy.Bryans|John.Fitzgerald|Alexander.Romanovsky}@ncl.ac.uk
Andreas.Roth@sap.com

Abstract. Maintaining semantic consistency of data is a significant problem in
distributed information systems, particularly those on which a business may de-
pend. Our current work aims to use Event-B and the Rodin tools to support the
specification and design of such systems in a way that is well integrated into ex-
isting development processes. This paper presents Event-B patterns that may be
used to represent time-bounded inconsistency and illustrates their use in a model
derived from industrial applications.
KEYWORDS: Real-time, Patterns, Formal Verification, Event-B, Error Recovery

1 Introduction

Computer-based business information systems are often critical to the
successful functioning of enterprises, but are demanding to develop be-
cause of their large scale and distributed character. Our work in Deploy3

aims to provide formal modelling and analysis technology that helps to
reduce development risk by allowing early-stage comparison of design
alternatives and identification of potential sources of defects. In order to
promote take-up, we aim for a high degree of automation in the analy-
sis of formal models that are derived, where possible automatically, from
designs expressed in domain-specific, often diagrammatic, notations [5].

We focus on applications of the kind developed using SAP technol-
ogy which support companies’ business processes. These can be best

3 www.deploy-project.eu

practice customisable processes like order-to-cash or procure-to-pay. They
are assembled from components describing parts of processes, such as
buying, selling, planning, site logistics and accounting. On the other
hand, business processes can also be very specific to customers and can
be modelled with the help of specific business process management (BPM)
tools such as SAP NetWeaver BPM [22].

With the help of service-oriented architectures (SOA), business pro-
cesses can be closely linked to their technical realisation using inde-
pendent business application components. For a typical business pro-
cess, dozens of independent business components form a complex net-
work where (mostly asynchronous) messaging is used to satisfy the com-
ponents’ communication needs without giving up their loose coupling.
Complexity arises from the large-scale composition of relatively simple
protocols, making it a challenge to determine application-level properties
such as inconsistency and race conditions.

A typical example is the business process Sell from Stock, which de-
scribes the fulfilment of a sales order for material from stock. In this
scenario, sales order data reflecting a customer’s purchase order is han-
dled and transmitted to process components responsible for managing
invoicing, accounting, and the supply chain [13]. The consistency of data
across the components involved in these processes is of considerable im-
portance. For example, the quantity of a product in the sales order data
should be the same in the invoice and the dispatch note. The exact notion
of consistency depends on the application, so we refer to this as semantic
consistency.

Although semantic consistency is important in business information
systems, inconsistency is also a fact of life. Consider the Sell from Stock
example. First, orders or parts of orders can often be changed or can-
celled, even though the subsequent process steps have already reached
an advanced state. This is problematic if, for example, the delivery of
cancelled orders has already started. Second, a sub-process may require
a manual approval or other manual processing like moving or packag-
ing goods. Finally, messages which are intended to update other process
components may be blocked in transmission through lower layers, caus-
ing errors to be propagated to the higher layers. For these reasons, pro-
cesses are often in temporarily inconsistent states. After a certain delay
caused by late changes, manual steps, or recovery from errors, they must
however assume a consistent state.

173

Modelling consistency and error recovery may help the developers
to integrate late change or (partial) cancellation of business objects into
business logics, and to mechanically analyse earlier in the development
cycle the ways the business scenarios are constructed to recover from
such errors and to adapt them if necessary before implementing them.
Since semantic consistency involves the consideration of delays, han-
dling consistency in models entails understanding and modelling time.

Our objective is to support Event-B modelling and analysis of busi-
ness processes that can accommodate time-bounded semantic inconsis-
tency. Experience suggests [5] that the choices of abstractions and mod-
elling/refinement patterns have a significant bearing on the level of au-
tomation achievable in analysis. We therefore focus first on abstractions
and patterns that can form the basis of reasoning about bounded incon-
sistency. The contribution of this paper is to identify Event-B patterns
that can be used to model and analyse time-bounded semantic inconsis-
tency in distributed business information systems. At this stage, we do
not deal with the automation of the analysis process based on definitions
of workflows in, for example, BPMN-like notations.

We first briefly describe salient aspects of Event-B and patterns (Sec-
tion 2.1), giving an abstract machine that forms the basis of the patterns
presented. We consider the Time Constraint Pattern (TCP) in Section 3.1
and describe an adaptation that separates time and consistency in Sec-
tion 3.2. We give a simple pattern for modelling error detection and re-
covery at the level of abstraction of the business information systems
models that we deal with (Section 4). This is integrated with the adapted
TCP in Section 5. Related work is discussed in Section 6. Conclusions
and further work are described in Section 7.

2 Background

As indicted in Section 1, inconsistency can arise in normal operation or
because of faults in lower layers. In normal operation, each process at-
tempts to maintain semantic consistency by informing other processes
of changes that need to be made. The parts of the system related to
this change are necessarily inconsistent while these messages are cre-
ated, transmitted, received and processed. This normal operational in-
consistency is time-bounded. Further, the system may include a recovery

174

mechanism to allow it to recover from the occurrence of faults at lower-
levels in the system. This will involve the distribution of error recovery
messages. In both normal operation and error recovery message trans-
mission, latency will be a significant factor in bounding the resulting
inconsistency. We therefore begin to model time-bounded inconsistency
by considering message transfer.

2.1 Event-B and Event-B Patterns

We use the Event-B modelling formalism [2] and the Rodin tools plat-
form [1], because they have several features that make them appropri-
ate to our application area. The modelling language allows description of
both structured data and functionality, and the available abstractions form
a promising basis for describing business information systems applica-
tions [5]. The tools are open-source and based on the Eclipse framework,
allowing the integration of specialised provers, model checkers, editors,
pretty printers and other new features. The method and tools have a sig-
nificant and growing community of practice.

The basic modelling unit in Event-B is the machine. Each machine
may contain variables modelling persistent state data, invariants that re-
strict the valid content of variables, and guarded events that describe
functionality in terms of actions defined over the state variables. Defi-
nitions of the carrier sets and constants may be defined in units called
contexts that are visible to machines. A system model typically consists
of a chain of Event-B machines, each of which (apart from the first)
is linked to its predecessor by a refinement relation expressed in terms
of a linking invariant. Machines and refinement steps give rise to proof
obligations that ensure internal consistency of machines and behaviour
preservation across refinement steps. A typical Event-B model has an
extremely simple initial machine, with detail added in a controlled way
through refinement steps.

Patterns in Event-B [4, 9, 12, 6] are a means of expressing reusable
modelling structures and managing effort by promoting proof re-use.
Several forms of Event-B pattern have been proposed, differing in their
levels of generality. Iliasov [12] treats a pattern as a general model trans-
formation method. Fürst [9], by contrast, treats a pattern as a fragment
of Event-B which may have a number of refinement steps designed to be
directly substituted into a development. The first and last machine of the

175

Fig. 1. Structure of the developed models.

pattern are referred to as the abstract and concrete pattern respectively.
Cansell et al. [6] regard a pattern as being less general than Iliasov, but
still requiring some specialisation before it is applied to a development.

In Fürst’s approach [9] the application of a pattern to an Event-B de-
velopment requires that each variable and event in the abstract pattern
must be matched with a variable or event in the current machine in the
development. Variables match if a subset of the variables in the develop-
ment have the same type as variables in the abstract pattern. Events match
if a subset of the events in the development have the same behaviour as
the events in the abstract pattern. The development can then be extended
by replacing matched events and variables (and relevant invariants) with
the events, variables and invariants of the concrete pattern. The corre-
spondence required to apply the pattern from [6] is less strict, allowing
for both data refinement (of variables) and event refinement.

Beginning with the Time Constraint Pattern [6], we develop a patten
to add timing information to a fragment of a business information system.
We then develop a pattern for adding error recovery behaviour, and then
combine the two patterns developed. The patterns that we develop are
in the style of Fürst’s approach, since our goal is to automatically apply
these patterns.

2.2 The Abstract Channel

We have identified the duration of message transmission to be a major
source of time-bounded inconsistency. We therefore need to be able to
describe real-time requirements, and in particular to articulate and prove
properties relating to time-bounded consistency, as well as the means

176

of recovery from inconsistency. In this section we develop an abstract
machine of a small fragment of a business information system which
contains no representation of time or error recovery. We then investigate
patterns for refining this machine by adding time and error recovery. In
Section 3.1 we apply the TCP to this abstract channel. In Section 3.2 we
apply a modification of the pattern to our example. In Section 4 we pro-
pose a pattern to describe error recovery, and in Section 5 we instantiate
the modified example with the error recovery pattern. An outline of these
developments is given in Fig. 1.

We identify two processes, a sender and a receiver, and consider a
channel carrying messages between them. We consider only messages
that identify inconsistencies to be resolved. At this level of abstraction,
receipt of a message models correction of the inconsistency. We identify
a set cons of messages. A message is in this set if the inconsistency to
which it refers has been resolved. We refer to these messages as consis-
tent.

We model the transmission and reception of messages over the chan-
nel (events snd and rcv in Fig. 2.) The variables sent, chan and cons
are all subsets of MSG (a carrier set representing the set of all messages
identifying inconsistencies). Variables sent and chan represent messages
that have been sent and the contents of the channel respectively. In this
abstract machine, and in subsequent developments, we will state consis-
tency invariants. These are normal Event-B invariants, and their purpose
is to capture what we can prove about consistency in the different ma-
chines. The (untimed) consistency invariant is given in Fig. 2. Consistent
messages are those that have been removed from the channel.

snd
any m where

m ∈MSG∧m /∈ sent
then

sent := sent ∪ {m}
chan := chan∪ {m}

end

rcv
any m where

m ∈ chan
then

cons := cons∪ {m}
chan := chan\{m}

end

invariants
cons = sent \ chan

Fig. 2. The abstract channel.

177

3 An Adaptation of the Time Constraint Pattern

Time is not an explicit part of the Event-B language, so in order to de-
scribe time-bounded consistency, we begin by examining an important
pattern for representing time.

In this section, we describe the timed behaviour of the channel. We
will go on to model recovery from time-bounded inconsistency. At this
stage we do not wish to set a hard upper limit on the period on inconsis-
tency, so we do not set an upper bound on the duration of message trans-
mission. Instead, we associate a real-time period limit with each message
in the channel. This limit is the time limit of “acceptable” inconsistency.
If a message arrives after limit then recovery will be necessary.

3.1 The Time Constraint Pattern

Several extensions have been proposed for modelling time in B and Event-
B (e.g. [16], [18]). However, we prefer to work entirely within the Event-
B language in order to take advantage of the tools provided. Cansell et
al. propose a promising Event-B pattern (called the Time Constraint Pat-
tern, TCP) for introducing time constraints into a development [6]. An
elaboration is given by Rehm [19].

In the TCP, time progression is measured by the increase of a dedi-
cated variable time of type NAT . The passage of time is modelled by a
separate event tick_tock in [6], see Fig 3. A collection of “active times” is
maintained to represent the times in the future when certain events must
be performed. (Rehm [19] associates events with these times, whereas
the earlier paper of Cansell et al. [6] just records the set of active times
in the variable at.) The value tm is the new value for time after the event
tick_tock. Time must not progress beyond the point at which the next
event is scheduled to be performed, as guaranteed by the third guard
in tick_tock. Time constraints are introduced to and removed from the
set of active times by the events post_time and process_time respec-
tively (Fig. 3).

The TCP is not designed to be applied directly, but must be adapted to
a match a specific development. Here, we wish to use the pattern to allow
us to record constraints that messages are handled within deadlines: each
message should be received within limit time units. The constant limit
(defined as a natural number in the associated context) is the upper limit
on the delivery of messages before recovery is necessary.

178

post_time
any tm where

tm ∈ NAT
tm > time

then
at := at ∪ {tm}

end

process_time
when

time ∈ at
then

at := at \{time}
end

tick_tock
any tm where

tm ∈ NAT
tm > time
(at 6= ∅⇒ tm < min(at))

then
time := tm

end

Fig. 3. The TCP events.

In Fig. 4 we show the machine TCP-channel resulting from an ap-
plication of the TCP to our abstract channel of Fig. 2. The variable now
(representing elapsed time) matches the TCP variable time. The corre-
spondence between variable deadline and TCP variable at is less imme-
diate. We use deadline to record the time at which messages must leave
the channel. The variable at therefore matches rng(deadline). The map
structure associating messages and times is similar to the presentation
given in [19].

The variable timesent is a total function from sent messages to time,
and records the time at which messages are placed on the channel. The
variable timercvd records the time at which messages are received from
the channel. All messages in chan have an associated deadline.

We refine the snd event to record the time at which a message is sent,
as suggested by the event post_time from the TCP. Event snd also adds
the message to the channel, and adds timing information in the form of
the maplet {m 7→ now+ limit} to the variable deadline. The time posted
in deadline is now + limit, giving a real-time deadline for receipt of the
message.

The concrete rcv event corresponds to the process_time event. We
generalise the timed guard from process_time to now ≤ deadline(m),
to allow messages to be received at any point before their deadline is
reached. Event rcv removes a message from the channel and the asso-
ciated maplet from deadline, adds the message to cons, and records the
time at which the message was received. The tick event is a refinement of
the tick_tock event of TCP. When tick fires, time progresses by one unit.

179

invariants
now ∈ N
sent = dom(timesent)
timesent ∈ dom(timesent)→N
deadline ∈ dom(timesent) 7→N
timercvd ∈ dom(timesent) 7→N
dom(deadline) = chan

snd
any m where

m ∈MSG
m /∈ dom(timesent)

then
timesent := timesent ∪ {m 7→ now}
chan := chan∪ {m}
deadline := deadline∪ {m 7→ now+ limit}

end

tick
when

dom(deadline) 6= ∅⇒
now < min(ran(deadline))

then
now := now+1

end

rcv
any m where

deadline 6= ∅
m ∈ chan
now≤ deadline(m)

then
deadline := deadline\{m 7→ deadline(m)}
chan := chan\{m}
cons := cons∪ {m}
timercvd := timercvd ∪ {m 7→ now}

end

Fig. 4. The invariants and events of the TCP-channel.

For this machine timely receipt of a message represents time-bounded
recovery from inconsistency. A timed consistency invariant is given be-
low.

∀m·m ∈ dom(timesent)⇒ (timesent(m)+ limit < now⇒m ∈ cons)

Any sent messages for which the deadline has passed (timesent(m)+
limit < now) must be in the consistent set cons.

This direct application of TCP produces a machine that excludes the
possibility of messages being delayed, since deadline(m) gives an upper
bound on the duration of transmission of message m. We now adapt the
TCP, to model message delay.

3.2 Adapting the Time Constraint Pattern for Modelling Bounded
Inconsistency

We adapt the TCP by removing the guard on tick and the third guard on
rcv, giving events ungrd_tick and untmd_rcv (Fig. 5). By allowing time

180

untmd_rcv
any m where

deadline 6= ∅
m ∈ chan

then
deadline := deadline\{m 7→ deadline(m)}
chan := chan\{m}
cons := cons∪ {m}
timercvd := timercvd ∪ {m 7→ now}

end

ungrd_tick
begin

now := now+1
end

Fig. 5. Events untmd_rcv and ungrd_tick.

to progress at any stage in the execution of a machine, we allow any mes-
sage to be delayed beyond deadline(m). In the machine that results, with
concrete events snd (unchanged from TCP-channel, Fig. 4), untmd_rcv
(Fig. 5) and ungrd_tick (Fig. 5), all received messages are consistent. A
possible consistency invariant is:

dom(timercvd) = cons

We now need to separate normal and recovery behaviour, so we dis-
tinguish the receipt of message m before and after deadline(m). We pro-
pose an error recovery pattern to deal separately with this error recovery
behaviour.

4 An Error Recovery Pattern

Fig. 6. Structure of Concrete Error Recovery Pattern.

Effective modelling and analysis of fault tolerance relies on a clear
separation between normal and abnormal states and behaviours. This

181

rcv_good
refines rcv
any m where

m ∈ q_rcv
then

consistent := consistent ∪ {m}
q_rcv := q_rcv\{m}

end

rcv_bad
any m where

m ∈ q_rcv
then

q_comp := q_comp∪ {m}
q_rcv := q_rcv\{m}

end

invariants
cons = consistent ∪ compensated
chan = q_comp∪ q_rcv

recover
refines rcv
any m where

m ∈ q_comp
then

compensated := compensated ∪ {m}
q_comp := q_comp\{m}

end

Fig. 7. Concrete Error Recovery Pattern.

structuring reduces the complexity of system design. It allows developers
to reason explicitly about erroneous states and to associate appropriate
recovery actions with them. Moreover, it provides a consistent means of
expressing the switchover between normal and abnormal modes of exe-
cution, the initiation of recovery actions and the management of success
and failure of this recovery.

In this section we present a pattern modelling error recovery. We will
refer to this as the Error Recovery Pattern (ERP). The ERP has one ab-
stract and one concrete machine. The abstract machine is original de-
scription of the channel given in Fig. 2. To model error recovery, we
begin by distinguishing the possibilities that the message transmission is
either correct or faulty. If the transmission is faulty (the message is cor-
rupted, late, etc.), then some recovery action is required. The concrete
part of the pattern is pictured in Fig. 6. Event rcv from Fig. 2 is now re-
fined into three events (rcv_good, rcv_bad and recover, Fig.7), and the
channel of the abstract machine is split into two queues. q_rcv is the
queue of messages waiting to be received, and q_comp is the queue of
messages which have been received and for which compensation is re-
quired. The variable consistent represents those messages that are imme-
diately consistent on arrival, and compensated represents those messages
for which the system had to perform recovery.

182

In the concrete machine of the ERP Fig.7 the event rcv_good models
the receipt of a good message from q_rcv. No further action is required
and the part of the system to which it refers is immediately consistent.
Event rcv_bad models the receipt of a faulty message and its placement
in the queue of messages which need to be compensated q_comp. Event
recover performs the recovery action, removing the faulty message from
q_comp and placing it in the set of compensated messages compensated.
The event snd (not given) is almost unchanged, except that sent messages
are placed in the queue for the receiving component q_rcv instead of
chan.

Fig. 8. Hierarchical Error Recovery.

As well as the general role that careful structuring plays in the pro-
vision of effective fault tolerance, recursive structuring supports the de-
scription of the propagation of responsibility for error handling through
system levels [17]. An example of this is hierarchical error recovery is
Fault Detection, Isolation and Recovery (FDIR) [21]. If, rather than just
consider the case where compensation is successful, we consider as well
the case where it fails, we can reapply the ERP to itself to model hierar-
chical error recovery. A single application of ERP to itself results in the
machine summarised in Fig. 8, and presented in full in Fig. 9.

5 An Instantiation of Adapted TCP and ERP

We apply the ERP to the adapted TCP to generate the concrete part of
the time-bounded inconsistency pattern. We distinguish the timely and
late arrival of messages. Event rcv_good becomes rcv_ontime (Fig. 10.)
The addition of the timing guard deadline(m) ≥ now ensures that this
event applies only to messages whose deadline has not yet passed. Event

183

snd
refines snd
any m where

m ∈MSG
m /∈ sent

then
sent := sent ∪ {m}
q_rcv := q_rcv∪ {m}

end

rcv_good
refines rcv_good
any m where

m ∈ q_rcv
then

consistent := consistent ∪ {m}
q_rcv := q_rcv\{m}

end

rcv_bad
refines rcv_bad
any m where

m ∈ q_rcv
then

to_comp := to_comp∪ {m}
q_rcv := q_rcv\{m}

end

init_recovery
refines init_recovery
any m where

m ∈ to_comp
then

to_comp := to_comp\{m}
q_recovery := q_recovery∪ {m}

end

recovery_success
refines term_recovery
any m where

m ∈ q_recovery
then

q_recovery := q_recovery\{m}
recovered1 := recovered1∪ {m}

end

recovery_fail
any m where

m ∈ q_recovery
then

q_comp2 := q_comp2∪ {m}
q_recovery := q_recovery\{m}

end

level2_recovery
any m where

m ∈ q_comp2
then

recovered2 := recovered2∪ {m}
end

Fig. 9. Hierarchical Error Recovery events.

184

rcv_late is derived from the rcv_bad event of the ERP, with the addition
of the guard deadline(m) < now. Event compensate deals with a late
message which requires compensation. It places the message in the set
of messages which have been compensated, and removes the deadline
information from deadline.

tick
begin

now := now+1
end

rcv_ontime
refines rcv
any m where

m ∈ q_rcv
deadline(m)≥ now

then
deadline :=

deadline\{m 7→ deadline(m)}
consistent := consistent ∪ {m}
q_rcv := q_rcv\{m}

end

rcv_late
any m where

m ∈ q_rcv
deadline(m) < now

then
q_rcv := q_rcv\{m}
q_comp := q_comp∪ {m}

end

compensate
refines rcv
any m where

m ∈ q_comp
then

deadline :=
deadline\{m 7→ deadline(m)}

compensated := compensated ∪ {m}
q_comp := q_comp\{m}

end

snd
refines snd
any m where

m ∈MSG
m /∈ dom(timesent)

then
timesent := timesent ∪

{m 7→ now}
deadline := deadline ∪
{m 7→ now+ limit}

q_rcv := q_rcv∪ {m}
end

Fig. 10. The events of the concrete part of time-bounded inconsistency pattern.

We also record the time at which a message is received (timercvd.)
With these, we can then prove the bounded time consistency invariants
below.

185

∀m·(m ∈ dom(timercvd)∧ timercvd(m)− timesent(m)≤ limit)⇔
m ∈ consistent

∧ ∀m·(m ∈ dom(timercvd)∧ timercvd(m)− timesent(m) > limit)⇔
m ∈ q_comp∪ compensated

The pattern has been proved using the Rodin provers, largely (but not
completely) automatically.

6 Related Work

Approaches to the formal modelling and analysis of workflows over service-
oriented architectures, particularly for BPEL, use a variety of notations
and tools. Many base formal models on transition systems and Petri Nets,
allowing the analysis of path and termination properties [10, 23]. Finite
automata encoded in Promela have also been used for deadlock detec-
tion [15]. Process Calculi such as FSP [8], and LOTOS [20] and Abstract
State Machines [7] have also been used to model workflow supporting a
range of properties including aspects of fault handling and compensation.

Our approach, based on Event-B, naturally focuses on the use of
proof to give semantic analysis of functional and timing aspects of work-
flows over distributed business systems. The closest work to our own
is perhaps that of Aït-Sadoune and Aït-Ameur [3] in which an Event-B
model of BPEL workflows, including fault handling, is developed, al-
lowing proof-based validation of properties such as deadlock-freeness.
The approach does not yet make use of refinement in the target Event-B
models. Ball and Butler [4] identify design patterns relating fault tol-
erance behaviour in response to problems which agents can encounter
when exchanging requests to carry out actions. These are inherent for the
family of agent interaction protocols, dealing with agent contracts. The
patterns are presented as blueprints, capturing typical elements of the
agent models. Our work differs from the approaches above by address-
ing application-level semantic consistency, focusing on patterns that can
be included in the Event-B model derived from workflow and having an
explicit model of real time.

We have already discussed the Time Constraint Pattern and related
work. Besides time and consistency, our approach makes use of a sim-
ple error recovery pattern. There are several approaches to patterns for
fault tolerance in B/Event-B. Laibinis and Troubitsyna [14] propose a
formal specification pattern (in B) that can be recursively applied to

186

specify exception raising and handling at various architectural layers of
component-based systems. The approach is developed for the systems
in which components interact by issuing synchronous calls and which
mainly face hardware failures and human errors. Iliasov [11, 12] offers
a general approach to defining fault tolerance refinement patterns assist-
ing system developers in disciplined application of software fault toler-
ance mechanisms during rigorous system design. Our work additionally
requires modelling of temporal constraints. These patterns are formally
defined as model transformations producing correct model refinements.
The approach is backed by a tool and a theory of pattern composition.

7 Conclusions and Further Work

We have presented a pattern that may be used to describe time-bounded
semantic consistency properties for distributed business information sys-
tems. Our approach adapts the Timed Consistency pattern of Cansell et
al., adding (optionally hierarchical) error recovery.

Although our approach was inspired by business information systems
applications, we conjecture that the same approach could be used for a
wider class of distributed applications. Our previous work [5] modelled
the effect of lower-level faults lower-level faults in communications mid-
dleware on the completion of communications protocols that underpin
applications. Our work here is at a higher level and deals with the se-
mantics of the application. An important direction for future work is to
link the two in order to provide more complete coverage of error propa-
gation and recovery.

We intend to apply the patterns for modelling temporary semantic in-
consistency to realistic business processes typically implemented in SAP
software and to custom business processes modelled with the help of
BPMN. To this end we are investigating ways of representing these pro-
cesses in a formal language like Event-B, similar to the general approach
of Aït-Sadoune and Aït-Ameur [3]. Automating and providing tool sup-
port for the translation into a formal language and for the application of
the error recovery pattern may give business process designers the most
convenient support for their work. It is in our plans for the future work to
evaluate the applicability of general patterns approaches such as those of
Iliasov [12] to the development of the time constraint and error recovery

187

patterns proposed in this paper. The use of good labour-saving patterns
is likely to play a significant part in the achievement of that goal.

Acknowledgements: This work has been supported by the EC FP7 Inte-
grated Project Deploy. We are grateful to our colleagues in the project
for their continuing fruitful collaboration.

References
1. J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool environment

for event-b. In Z. Liu and J. He, editors, Formal Methods and Software Engineering: 8th
International Conference on Formal Engineering Methods, ICFEM 2006, volume 4260 of
Lecture Notes in Computer Science, pages 588–605. Springer, November 2006.

2. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2009. To appear. See also http://www.event-b.org.

3. I Aït-Sadoune and Y Aït-Ameur. A proof based approach for modelling and verifying web
services compositions. In Proc. 14th IEEE Intl. Conf. on Engineering of Complex Computer
Systems, June 2009.

4. Elisabeth Ball and Michael Butler. Event-B Patterns for Specifying Fault-Tolerance in Multi-
agent Interaction. In Michael Butler, Cliff B. Jones, Alexander Romanovsky, and Elena
Troubitsyna, editors, Methods, Models and Tools for Fault Tolerance, volume 5454 of Lec-
ture Notes in Computer Science, pages 104–129. 2009.

5. J. Bryans, J. Fitzgerald, A. Romanovsky, and A. Roth. Formal Modelling and Analysis of
Business Information Applications with Fault Tolerant Middleware. In Proc. 14th IEEE Intl.
Conf. Conference on Engineering of Complex Computer Systems, pages 68–77, June 2009.

6. Dominique Cansell, Dominique Méry, and Joris Rehm. Time Constraint Patterns for Event
B Development. In Jacques Julliand and Olga Kouchnarenko, editors, B 2007: Formal Spec-
ification and Development in B, 7th Intl. Conf. of B Users, Besançon, France, January 17-19,
2007, volume 4355 of Lecture Notes in Computer Science, pages 140–154. Springer, 2007.

7. Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. Specification and validation of the
business process execution language for web services. In Wolf Zimmermann and Bernhard
Thalheim, editors, Abstract State Machines 2004. Advances in Theory and Practice, 11th
International Workshop, ASM 2004, Lutherstadt Wittenberg, Germany, May 24-28, 2004.
Proceedings, volume 3052 of Lecture Notes in Computer Science, pages 78–94. Springer-
Verlag, 2004.

8. Howard Foster, Wolfgang Emmerich, Jeff Kramer, Jeff Magee, David S. Rosenblum, and Se-
bastián Uchitel. Model checking service compositions under resource constraints. In Ivica
Crnkovic and Antonia Bertolino, editors, Proceedings of the 6th joint meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2007, Dubrovnik, Croatia, September 3-7, 2007,
pages 225–234. ACM, 2007.

9. Andreas Fürst. Design patterns in event-B and their tool support. Masters thesis, ETH,
Eidgenössische Technische Hochschule Zürich, Department of Computer Science, Chair of
Information Security, Information Security Group, 2009.

10. Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming BPEL to Petri Nets. In
Wil M. P. van der Aalst, Boualem Benatallah, Fabio Casati, and Francisco Curbera, editors,
Business Process Management, 3rd International Conference, BPM 2005, Nancy, France,

188

September 5-8, 2005, Proceedings, volume 3649 of Lecture Notes in Computer Science,
pages 220–235. Springer-Verlag, 2005.

11. Alexei Iliasov. Refinement patterns for rapid development of dependable systems. In Nico-
las Guelfi, Henry Muccini, Patrizio Pelliccione, and Alexander Romanovsky, editors, Proc.
2007 Workshop on Engineering Fault Tolerant Systems. ACM, 2007.

12. Alexei Iliasov. Design Components. PhD thesis, School of Computing Science, Newcastle
University, Newcastle upon Tyne NE1 7RU, United Kingdom, 2008.

13. Stefan Kätker and Susanne Patig. Model-driven development of serviceoriented business
application systems. In Hans Robert Hansen, Dimitris Karagiannis, and Hans-Georg Fill,
editors, Wirtschaftsinformatik (1), volume 246 of books@ocg.at, pages 171–180. Österre-
ichische Computer Gesellschaft, 2009.

14. Linas Laibinis and Elena Troubitsyna. Fault Tolerance in a Layered Architecture: A Gen-
eral Specification Pattern in B. In 2nd International Conference on Software Engineering
and Formal Methods (SEFM 2004), 28-30 September 2004, Beijing, China, pages 346–355.
IEEE Computer Society, 2004.

15. Shin Nakajima. Model-checking behavioral specification of bpel applications. Electronic
Notes in Theoretical Computer Science, 151(2):89–105, 2006. Proceedings of the Interna-
tional Workshop on Web Languages and Formal Methods (WLFM 2005).

16. Miloud Rached, Jean-Paul Bodeveix, Mamoun Filili, and Odile Nasr. A Timed B method
for modelling Real time Reactive Systems. In Proc. 2nd South-East European Workshop on
Formal Methods, pages 181–195, Nov 2005.

17. Brian Randell. Recursively Structured Distributed Computing Systems. In Symposium on
Reliability in Distributed Software and Database Systems, pages 3–11, 1983.

18. Joris Rehm. A Duration Pattern for Event-B Method. In Proc. 2nd Junior Workshop on
Real-Time computing, 2008.

19. Joris Rehm. From absolute-time to relative-countdown: Patterns for model-checking. Hy-
perarticles en Ligne, Article hal-00319104 at hal.archives-ouvertes.fr, May 2008.

20. Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and Reasoning on Web
Services using Process Algebra. In Proceedings of the IEEE International Conference on
Web Services (ICWS’04), June 6-9, 2004, San Diego, California, USA, pages 43–50. IEEE
Computer Society, 2004.

21. As’ad Michael Salkham. Fault Detection, Isolation and Recovery (FDIR) in On-Board Soft-
ware. Master’s thesis, Chalmers University of Technology, 2005.

22. Jim Hagemann Snabe, Ann Rosenberg, Charles Moller, and Mark Scavillo. Business Process
Management: The SAP Roadmap. SAP PRESS, 2008.

23. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes using Petri Nets. In
D. Marinescu, editor, Proceedings of the Second International Workshop on Applications of
Petri Nets to Coordination, Workflow and Business Process Management, Florida Interna-
tional University, Miami, Florida, USA, 2005, pages 59–78, 2005.

189

190

Part VI

Short Papers

First Models of a Safe System

Colin Snook

Southampton university, UK
cfs@ecs.soton.ac.uk

1 Extended Abstract

The most important requirements of a safety-critical system are the safety
ones. It is crucial that these requirements are complete and correct and
that the system is developed to satisfy them. Hence it makes sense to start
with the safety requirements before adding more detailed functionality.
Abstraction allows us to specify these requirements in the clearest possi-
ble way so that we are less likely to make mistakes. Refinement can then
be used to ensure the system meets them. Starting from a list of identified
hazards, we show by example how to develop safety requirements in the
formal notation UML-B. We start by modelling an unsafe system, then
identify hazards that are outside the scope of the proposed system before
finally specifying those safety properties that are required to be imple-
mented. Train Interlocking systems control railway signals and points
so that trains travelling upon a rail network are controlled to reach their
destinations without collision. The fact that the interlocking system has
the responsibility for avoiding collisions means it is a safety-critical con-
trol component. It is usual for a hazard analysis to be performed when
a safety-critical control component is about to be designed. The purpose
of a hazard analysis is to examine all the possible kinds of accidents that
could result in injury to humans, analyse the scenarios that could lead to
those accidents and thereby identify hazards which must be avoided. It
is possible that some of the identified hazards may be outside the scope
of the proposed control component. Others are hazards that the control
component must avoid and lead to ’safety requirements’. In the first case
it is important to precisely define the limitations, assumptions and scope
of the control component and in the second it is important to identify
the safety requirements. We illustrate how a hazard analysis could be
used to drive abstract formal modelling that segregates these two impor-
tant goals. The model could then be used via refinement to elaborate a

specification and design of the control component that is proven to be
safe according to the safety requirements. The model uses the UML-B
notation which is a graphical front-end for the Event-B language and
tools. The Rodin tool set includes a prover which automatically attempts
to prove properties about a model whenever it is saved. The properties
that are proved include invariant preservation (which may include the
safety invariants we are interested in as well as simple typing proper-
ties) and that a refinement behaves in a way that was permitted by the
model it refines. Proofs might not succeed either because the model is
incorrect or because the proof is too difficult for the automatic prover.
The Rodin toolset includes an interactive prover where the user can at-
tempt to guide the automatic prover. The model is intended as an illus-
tration and may require revision to make it more realistic. For example
the model does not consider the possibility of track being bi- directional.
The model illustrates how some example hazards can be used to derive
safety requirements. To derive safety requirements it was first necessary
to introduce some concepts that are present in the domain. We also made
explicit which hazards are not covered by an interlocking system. The
invariants are a formalisation of the relevant safety requirements in terms
of these domain concepts. In addition, we introduced some very abstract
behaviour and proved that this behaviour satisfies the formalized safety
requirements. By modelling the safety requirements and a behaviour that
is safe, and proving this to be true, we gain confidence that the safety
requirements are consistent. By keeping the model simple and abstract
we gain confidence that the safety requirements are correct. We should
also validate the model by animation. Using refinement (according to the
Rodin tools upon which UML-B is based) it would be possible to make
this abstract model more detailed until it describes an interlocking sys-
tem. The Rodin tools force us to prove that the more detailed model is
a proper refinement of this abstract one and hence that the interlocking
system also satisfies these safety requirements 1.

1 Due to the stringent approval process of the INESS project we are only allowed to report here
an extended abstract of this contribution

194

Event-B Model Decomposition

Carine Pascal1 and Renato Silva2

1 Systerel, France
carine.pascal@systerel.fr

2 University of Southampton,UK
ras07r@ecs.soton.ac.uk

Abstract. Two methods have been identified in the DEPLOY3 project for Event-
B model decomposition: the shared variable decomposition (called A-style de-
composition), and the shared event decomposition (or B-style decomposition).
Both allow the decomposition of a (concrete) model into several independent
sub-models which may then be refined separately. The purpose of this paper is
to introduce the Event-B model decomposition, from theory (A-style vs. B-style,
differences and similarities) to practice (decomposition plug-in of the Rodin [10]
platform).

1 Introduction

The “top-down” style of development used in Event-B[2] allows the in-
troduction of new events and data-refinement of variables during refine-
ment steps. A consequence of this development style is an increasing
complexity of the refinement process when having to deal with many
events and many state variables. The main purpose of the model de-
composition is precisely to address such difficulty by cutting a large
model into smaller components. Decomposition cuts a model MC into
sub-models MC1, ...,MCn, which can be refined independently and more
comfortably than the whole. This solution gives an interesting perspec-
tive for the team development of a model: the possibility for several de-
velopers to share parts of a model and to work independently and possi-
bly in parallel, on them.

3 DEPLOY - Industrial deployment of system engineering methods providing high dependabil-
ity and productivity - FP7 Integrated Project supported by the European Commission (Grant
214158), under Strategic Objective IST-2007.1.2.
See http://www.deploy-project.eu.

1.1 Definition and constraints

A model contains contexts, machines or both. The notion of model de-
composition covers machine and context decomposition.

Fig. 1. Event model decomposition

The entry point for the decomposition of a model is a machine M and
its whole hierarchy of seen contexts as illustrated in Fig. 1. The resulting
sub-models are independent of the non-decomposed model and the par-
tition of the models includes the splitting of variables, invariants, events
and even context elements like sets, constants and axioms. The main con-
straint is that if these refined models are recomposed into a model MR,
it is guaranteed that MR refines MC as depicted in Fig. 2 (monotonicity).
Decomposition does not generate new proof obligations (POs).

Fig. 2. Model decomposition, refinement, and re-composition

196

2 Decomposition Styles

This section concretely explains how to decompose a given machine M in
sub-machines M1, ...,Mn, depending on the chosen decomposition style:
shared variable or shared event. The shared event approach seems par-
ticularly suitable for message-passing distributed programs, while the
shared variable approach seems more suitable when designing concur-
rent programs [4].

2.1 Shared Variable (A-style) Decomposition

Figure 3 illustrates the shared variable decomposition proposed by Abrial
[1], Metayer et. al [8] and Abrial and Hallerstede [3]. Machine M has
events e1 to e4 and variables v1 to v3. The solid lines connect vari-
ables used by the events. Events of the non-decomposed component (ma-
chine M) are partition among the sub-components (Machine M1:e1 and
e2; Machine M2:e3 and e4). After the event partition it is necessary to
split the variables. The sub-components can be refined independently re-
specting some restrictions and the re-composition of the sub-components
should always be a refinement of the non-decomposed component.

Fig. 3. Shared Variable Decomposition of machine M into machines M1 and M2 with shared
variable v2

The following sequence must be observed to decompose M [9]:

1. The events of M are first partitioned over M1, ...,Mn.

197

2. The variables of M are distributed according to the event partition.
Variables accessed (i.e. read or written) by events of distinct sub-
machines, are called shared variables like v2 (in opposition to private
variables like v1 and v3).

3. The invariants of M are distributed according to the variable distribu-
tion. An invariant based on a predicate P(v1, ...,vm) is copied to Mi if
and only if Mi contains all the v1, ...,vm variables.

4. External events are built in M1, ...,Mn. If e2 is an event of Mi that
modifies a shared variable v2, then an external event is built from e2
in each sub-machine M j where v2 is accessed. An external event of
Mi must always be present and be strictly identical in any refinement
of Mi.

2.2 Shared Event (B-style) Decomposition

The B-style decomposition is achieved with the partition of synchronized
events among the sub-models. Figure 4 depicts the shared event decom-
position proposed by Butler [5]. The state variables are refined so they
may be partitioned amongst the subsystems, introducing internal events
representing interaction between subsystems. More details about this ap-
proach can be found in [6, 7].

Fig. 4. Shared Event Decomposition of Machine M in Machines M1 and M2 with shared event e2

The several steps for the shared event decomposition are given below:

1. The variables of M are first partitioned among M1, ...,Mn.

198

2. The events of M are distributed among M1, ...,Mn, according to the
variable partition. There is no notion of shared variables. Events us-
ing variables allocated to different sub-components (e2 shares v1 and
v2) must be split. The part corresponding to each variable (e2_1 and
e2_2) is used to create partial versions of the non-decomposed event.
The sub-components can be refined independently without constraints

3. The invariants of M are distributed similarly to A-style.

3 Tool Specification

Both decomposition styles are implemented in the same Rodin platform
plug-in. The decomposition input is a machine of a given Rodin project
selected by the end-user. The next step of the decomposition (i.e. the
event partition for A-style or the variable partition for B-style) requires
the intervention of the end-user. Afterwards the sub-components result-
ing from the decomposition are defined. All other steps are automatically
performed by the plug-in. Summarising these are the steps to be followed
in order to decompose (we decompose M in Fig. 5(a)):

Fig. 5. Decomposition tool diagram for machine M

1. End-user selects a machine M to decompose.
2. End-user defines sub-components to be generated: M1, M2, . . . Mn.
3. End-user selects the decomposition style to use:

199

Shared Variable: end-user selects the events to be allocated to sub-
components. The tool automatically decomposes the rest of the
model according to the event partition (shared/private variables,
external events).

Shared Event: the end-user selects the variables to be allocated for
each sub-component. The rest is done automatically.

4. The end-user can opt to decompose the seen contexts. The contexts
seen by M1, ...,Mn, are built from the hierarchy of contexts associated
to M and are built following the sequence:
(a) A constant in this hierarchy is copied to a sub-context Ci asso-

ciated to Mi if and only if it appears in a predicate (invariant or
guard) or in an assignment (action) of Mi.

(b) A carrier set in this hierarchy is copied to Ci if and only if it ap-
pears in a predicate or in an assignment of Mi, or if it types a
constant previously copied to Ci.

(c) An axiom is copied to Mi if and only if Mi contains the referenced
constants and sets.

5. Sub-components are fulfilled according to the decomposition config-
uration.

6. The decomposition configuration is stored.
7. Sub-components M1, M2, . . . Mn can be further refined.

The generated sub-components can be created in the same project as
the non-decomposed model or created as new projects, according to the
user’s decision. Moreover, the following requirements have been identi-
fied for the decomposition plug-in:

1. The configuration (i.e. input machine, decomposition style selection,
identification of sub-components to be generated and respective par-
tition) shall be performed through the Graphical User Interface (GUI)
of the Rodin platform. It is indeed more suitable for the end-user to
visualise the configuration. In the future the option of using GMF
(Graphical Modelling Framework) for the decomposition visualiza-
tion will be explored.

2. The decomposition configuration shall be stored persistently. Since
there is no direct relation between the non-decomposed model and
the decomposed sub-models, the possibility of saving, editing and
replaying a model decomposition seems suitable.

200

3. A Decompose action shall be added. It shall be available from the
toolbar and from the popup menu of the Event-B explorer (right-
clicking on a machine).

4. The created projects and components (machines and contexts) shall
be tagged as “automatically generated”.

4 Conclusion

This paper presents a preliminary study about the decomposition of Event-
B models. The Event-B model decomposition can advantageously be
used if the motivation is to decrease the complexity and increase the mod-
ularity of large systems, especially after several layers of refinements.
The main benefits are the distribution of POs into several sub-models,
which is expected to be easier to discharge, and the further refinement of
independent sub-models in parallel. Moreover the possibility of team de-
velopment seems a very attractive option for the industry. This paper pro-
pose the reuse of sub-components in Event-B through the shared variable
(A-style) or shared event (B-style) decompositon. The shared event ap-
proach seems particularly suitable for message-passing distributed pro-
grams, while the shared variable approach seems more suitable when
designing concurrent programs. However the end-user will choose a de-
composition style depending on the specific system and on their mod-
elling preferences.

References

1. Jean-Raymond Abrial. Event model decomposition. Technical report, ETH Zurich, 2009,
Private communication.

2. Jean-Raymond Abrial. Mathematical models for refinement and decomposition. http:
//www.event-b.org/abook.html, 2009, To be published.

3. Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition, and Instantiation
of Discrete Models: Application to Event-B. Fundam. Inf., 77(1-2):1–28, 2007.

4. Michael Butler. An Approach to the Design of Distributed Systems with B AMN. In Proc.
10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM), LNCS 1212, pages
221–241, 1997.

5. Michael Butler. Synchronisation-based Decomposition for Event-B. In RODIN Deliverable
D19 Intermediate report on methodology, 2006.

6. Michael Butler. Incremental Design of Distributed Systems with Event-B. Marktoberdorf
Summer School 2008 Lecture Notes, November 2008.

201

7. Michael Butler. Decomposition Structures for Event-B. Integrated Formal Methods
iFM2009, February 2009.

8. C. Métayer, J.-R. Abrial, and L. Voisin. Event-B Language. Technical report, Deliverable
3.2, EU Project IST-511599 - RODIN, May 2005.

9. Carine Pascal. Event Model Decomposition. http://wiki.event-b.org/index.php/
Event_Model_Decomposition, 2009.

10. Rodin. RODIN project Homepage. http://rodin.cs.ncl.ac.uk, September 2008.

202

