Proposals for Mathematical Extensions for
Event-B

J.-R. Abrial, M. Butler, S. Hallerstede, M. Leuschel, M. Schmalz, L.

Voisin

21 April 2009

Mathematical Extensions

1 Introduction

In this document we propose an approach to support user-defined extension of the
mathematical language and theory of Event-B.
The proposal consists of considering three kinds of extension:

(1) Extensions of set-theoretic expressions or predicates: example extensions of this
kind consist of adding the transitive closure of relations or various ordered rela-
tions.

(2) Extensions of the rule library for predicates and operators.

(3) Extensions of the Set Theory itself through the definition of algebraic types such
as lists or ordered trees using new set constructors.

2 Brief Overview of Mathematical Language Structure

A full definition of the mathematical language of Event-B may be found in [2]. Here
we give a very brief overview of the structure of the mathematical language to help
motivate the remaining sections.

Event-B distinguishes predicates and expressions as separate syntactic categories.
Predicates are defined in term of the usual basic predicates (T, L, A = B, x € S,
y < z, etc), predicate combinators (—, A, V, etc) and quantifiers (V, 3). Expressions
are defined in terms of constants (0, @, etc), (logical) variables (z, y, etc) and operators
(+, U, etc).

Basic predicates have expressions as arguments. For example in the predicate
E € S, both E and S are expressions. Expression operators may have expressions
as arguments. For example, the set union operator has two expressions as arguments,
i.e., SUT. Expression operators may also have predicates as arguments. For example,
set comprehension is defined in terms of a predicate P, i.e., { z | P }.

2.1 Typing rules

All expressions have a type which is one of three forms:

e a basic set, that is a predefined set (Z or BOOL) or a carrier set provided by the
user (i.e., an identifier);

e a power set of another type, P(«);
e a cartesian product of two types, a x [3

This are the types currently built-in to the Rodin tool. In Section 7 we will see a
proposal for how new types could be defined by a user. An expression E has a type
type(E) provided F satisfies typing rules. Each expression operator has a typing rule

which we write in the form of an inference rule. For example, the following typing rule
for the set union operator specifies that S U T has type P(«) provided both S and T
have type P(a):

type(S) = P(a), type(T) = P(«a)

type(SUT) =P(«)

This rule is polymorphic on the type variable o which means that union is a polymor-
phic operator.

The following table shows examples of typing rules for the intersection and addition
operators:

Expression operators Type rules

type(S) = P(a), type(T) = P(a)

type(SNT) =P(a)

SNnT

type(E) = Z, type(F) =17

type(E + F) =Z

E+F

The arguments of a basic predicate must satisfy typing rules. The following table
shows typing rules for set membership and inequality predicates:

Basic Predicates Type rules
E=F type(E) = «, type(F) =«
EeS type(E) = o, type(S) =P(«)
E<F type(E) =7, type(F)=7Z

Note that the rules for £ = F and F € S are polymorphic on the type variable o
which means that equality and set membership are polymorphic predicates.

It should be noted that an expression of type BOOL is not a predicate. The type
BOOL consists of the values TRUE and FALSE, both of which are expressions. These
are different to the basic predicates T and L. The bool operator is used to convert
a predicate into a boolean expression, i.e., bool(x > y). A boolean expression E is
converted to a predicate by writing E = TRUE. We have that bool(T) = TRUE.

2.2 Function application

It is instructive to consider the relationship between operators and function application
in Event-B. An Event-B function f € A - B is a special case of a set of pairs so the
type of f is P(type(A) x type(B)). The functionality of f is an additional property
defined by a predicate specifying a uniqueness condition:

Ve,y,y cx—yef ANe—yef = y=y

The domain of f, written dom(f), isthe set { | Jy -« — y € f }. Application of f
to x is written f(x) which is well-defined provided = € dom(f).

It is important to note that f is not itself an operator, it is simply an expression. The
operator involved here is implicit — it is the function application operator that takes
two arguments, f and x. To make the operator explicit, function application could
have been written as apply(f,z), where apply is the operator and f and = are the
arguments. However, in the Rodin tool, the shorthand f(z) must be used.

Variables in the mathematical language are typed by set expressions. This means,
for example, that a variable may represent a function since a function is a special case
of a set (of pairs). Variables may not represent expression operators or predicates in the
mathematical language. This means that, while we can quantify over sets (including
functions), we cannot quantify over operators or predicates.

2.3 Well-definedness

Our consideration of function application just now has referred to the well-definedness
of expressions. Along with typing rules as defined above, all expression operators come
with well-definedness predicates. We write WD(E) for the well-definedness predicate
of expression E. The following table gives examples of well-definedness conditions
for several operators, including the function application operator:

Expression operators Well-definedness
WD(F(E)) WD(F), WD(E), Fea-f, Ecdom(F)
WD(E/F) WD(E), WD(F), F#0
WD(card(E)) WD(E), finite(E)
WD(SUT) WD(S), WD(T)

Thus, an expression F(E) is well-defined provided both F' and F are well-defined,
that F' is a partial function and that F is in the domain of F'. In the Rodin tool, well-

definedness conditions give rise to proof obligations for expressions that appear in
models. The well-definedness conditions are themselves written as predicates in the
Event-B mathematical language.

3 Specifying Basic Predicates

In Section 2 we saw how basic predicates come with typing rules and how expression
operators come with typing rules and well-definedness rules. In the current version of
Rodin these rules are embedded in the implementation rather than being defined in a
library of rules. Our aim is to migrate towards having rule libraries which can be easily
extended by users in order to add new basic predicates and operators. In this section
we outline the form that the rules for introducing new basic predicates should take. We
will address expression operators in Section 5. We avoid defining a concrete syntax for
the form of the rule libraries and focus on the structure.

A basic predicate has a name and a list of arguments and is introduced by rules for
typing those arguments. The general form is shown in the following table:

Basic Predicate Type rule

pred(zy,...,Ty) type(z1) =y -+ type(z,) = o,

Along with the typing rules, the basic predicate is defined in terms of existing
predicates as shown in the following table:

Basic Predicate Definition

pred(z1,...,Ty) P(zy,...,z,)

Here P(z1,...,x,) stands for any predicate term with z1,...,z, as free variables.
The defining predicate P(z1, ..., x,) cannot refer to the newly introduced basic pred-
icate pred.

As an example, we introduce two basic predicates for symmetry (sym) and asym-
metry (asym) of relations. We first define the typing rules:

Basic Predicate Type rule

sym(R) type(R) = a3

asym(R) type(R) = a—f3

We then specify the definitions of these predicates:

Basic Predicate Definition
sym(R) R=R"!
asym(R) RNR'=g

4 Rule libraries derived from axioms and theorems

Having introduced new predicates, such as those in the previous section, we may wish
to specify and prove theorems about these. For example, the following theorem shows
that union preserves symmetry of relations:

VR,S-Rea—f NSca—=FA

Theorem [a, 3] thml sym(R) A sym(S) = sym(RUS)

Since the the basic predicates are polymorphic on the types « and 3, the theorem is also
polymorphic on these types. The polymorphic type parameters are indicted explicitly in
square brackets on the left-hand side. The theorem also has a label (thm1) for reference.

The following proof of Theorem thml shows how the definition of sym, introduced
in the previous section, is used:

sym(R) A sym(S)

<= “Definition of sym”
R=R1'AS=5"
— “Leibnitz”

RuUS=R1'us!

“Theorem: (RUS)™ 1 = R71uS~1»
RUS=(RUS)™!

“Definition of sym”
sym(RUS)

!

!

This proof also illustrates the use of an existing theorem.

Currently many theorems about basic predicates (and expression operators) are di-
rectly implemented in the Rodin provers [?]. The aim is to migrate towards libraries
of rules derived from polymorphic theorems. The libraries should be extendable by
users. It should be possible both to prove any newly introduced theorem and to use
those theorems in rule form

sym(R), sym(S)

sym(RUS)

in proofs. Before being proved, however, newly introduced theorems need to be checked
for type correctness. A type checker will need to use the typing rules for newly intro-
duced basic predicates in order to type check theorems involving those predicates. In
our example, the typing rule for sym(R) required R to be a polymorphic relation. In
the case of Theorem thml, the antecedent is sufficient to check this.

This approach works in the same way for theorems as it does for axioms [?, ?]. For
definitions more automation is possible as described below.

Rule libraries should be organised according to a taxonomy based on structures,
e.g., theories about sets, relations, integers, etc.

5 Defining New Operators

In this section we outline the way in which new operators may be introduced. Along
with typing and well-definedness rules, operator definitions should be provided. We
identify four different forms by which an operator may be defined. We assume an
operator has the form op(x1,...,x,) where op is the operator name and z1,...,x,
are expression arguments. We envisage a syntactic layer where, for example, binary
operators could be written in infix form with a special symbol representing an operator
(as already supported by Rodin for the pre-defined opertors, e.g., S U T"). We will not
address this syntactic layer here. Note we require that operators are never overloaded.
The general form of a typing rule for a new operator is as follows:

Expression operator Type rule

type(z1) = a1, ..., type(z,)=ay

op(T1,...,Ty)
type(op(z1,...,2,)) =

A rule such as this will be used by a type checker for expressions involving op. We
have already seen examples of typing rules for operators in Section 2.1.
The general form of a well-definedness rule for a new operator is as follows:

Expression operator Well-definedness

WD(op(z1,...,2n)) | WD(x1), ..., WD(x,), P(z1,...,2,)

Well-definedness of op(x1, ... ,x,) depends on the well-definedness of its arguments
along with a possible additional condition P(x1,...,x,) which is a predicate in the
mathematical language. For example, in Section 2.3 we saw that well-definedness of
function application F'(F) requires that the first argument F' is functional and that the
second argumnent F is in the domain of F'. The additional condition P(z1,...,z,)
must itself be well-defined:

WD(z1),...,WD(z,,) = WD(P(z1,...,2,))

Many operators have no additional condition, i.e, their well-definedness depends only
on the well-definedness of their arguments.

As described for basic predicates in Section 4, we may specify theorems about
polymorphic operators with the intention that these would be added to an appropriate
theory library. Proofs of these theorems would rely on the operator definitions. We
now consider the four different forms that definitions may take.

5.1 Direct Definition

A direct definition defines op(x1, . .., x,) directly in terms of an expression E. It has
the following form:

Expression operator Direct definition

op(x1, ..., x,) op(z1,...,x,) = E(x1,...,2T5)

The defining expression F should not refer to the newly defined operator op. In Sec-
tion 7 we will introduce a recursive form of definition. The type of the defining expres-
sion should be the same as the declared type of the operator:

type(E(z1,...,2,)) = type(op(xi,...,25))

Furthermore, the defining expression should itself be well-defined under the well-
definedness conditions of the operator:

WD(op(z1,...,2,)) = WD(E(xy,...,2,))

For example, let us introduce the symmetric difference operator on sets, symdiff.
The typing rule is as follows:

Expression operator Type rule

type(S) = P(a), type(T) = P(a)

type(symdiff(S,T)) = P(a)

symdiff(S,T')

Well-definedness has no additional condition:

Expression operator Well-definedness

WD(symdiff(S,T)) | WD(S), WD(T)

The operator is defined directly in terms of subtraction and union:

Expression operator Direct definition

symdiff(S, T) symdiff(S,T) = (S\T) U (T\S)

5.2 Conditional Direct Definition

A conditional direct definition defines op(x1, ..., x,) with several distinct cases and
each case is guarded by a predicate. It has the following form:

Expression operator Conditional direct definition

op(x1,...,x,) =
case C; : Fy(xy,...,x
op(z1,. .., Ty) 1 B n)
case Cy, : B (21, ..., 20)

Each defining expression E; should not refer to the newly defined operator op. The
type of each defining expression should be the same as the declared type of the operator
(each ¢ € 1..m):
type(Ei(x1,...,2,)) = type(op(x1,...,2,))
Each guard and each defining expression should be well-defined as follows (each i €
1..m):
WD(op(z1,...,2,)) = WD(C;)

WD(op(z1,...,2,)) AN C; = WD(Ei(z1,...,2,))
Furthermore, the case guards should be pairwise distinct and should cover the well-
definedness condition of the operator:

C;NC; = 1, eachi,jel.m,i#]

WD(op(z1,...,2,)) = C1V---VCp

For example, let us introduce the max operator on two integers. The typing rule is
as follows:

Expression operator Type rule

type(z) =Z, type(y) =2

max(x,y)
type(max(z,y)) = Z

Well-definedness has no additional condition:

Expression operator Well-definedness

WD(max(x,y)) WD(z), WD(y)

The operator is defined in terms of two cases:

Expression operator Conditional direct definition

max(z,y) =
max(z,y) caser > y: x
casex <y: Yy

5.3 Extensional Definition

When introducing a set operator, it can be convenient to define it in terms of the mem-
bership conditions for the resulting set. Such an extensional definition takes the follow-
ing form:

Expression operator Extensional definition

op(x1,...,x,) y€op(xy,...,xn) <= Py,x1,...,2pn)

Here P(y,x1,...,%,) is a predicate term with y, 1, ..., 2, as free variables. The
extensional form can only be used when the type of the operator is P(«).

P(y,z1,...,x,) cannot refer to the newly defined operator op and should be well-
typed under the typing rules for operator arguments. The defining predicate should be
well-defined under the well-definedness condition for the operator:

WD(op(z1,...,2,)) = WD(P(y,z1,...,2,))

For example, set union is defined in terms of disjunction in this way:

Expression operator Extensional definition

union(S,T) y € union(S,T) <— yeSVyeT

5.4 Functional Predicate Definition

The functional predicate definition has a similar shape to the extensional form of def-
inition except that instead of defining a condition for when y € op(z1,...,z,) we
define a condition for when y = op(z1, . .., x,). It takes the following form:

10

Expression operator Functional predicate definition

op(z1,...,%y,) y=op(x1,...,xn) <= Py,x1,...,25)

The defining predicate must be type consistent and well-defined as for the extensional
form of definition. While the extensional form was only applicable when the type of
op is P(«), the functional predicate definition is applicable for any type.

We need to ensure that the definition is consistent, i.e., that a value for y exists. We
also need to ensure that the value for y is unique, hence the name ‘functional predicate’.
Consistency is shown by associating the following proof obligation with the functional
predicate form:

WD(op(x1,...,2,)) = Jy-Py,z1,...,2Tn)
Uniqueness is shown by the following proof obligation:
WD(op(z1,...,a0)) A Py, 1, w0) A Py 21, 00) = y=y

For example, function application is defined using a functional predicate definition:

Expression operator Functional predicate definition

apply(f, x) y=apply(f,r) <= z—yef

Here, we have made the application operator explicit for clarity. The consistency and
uniqueness proof obligations can be discharged directly from the well-definedness con-
dition for function application:

feaw»pBANzedom(f) = Fy-xz—yef
feawBANzedom(f)y Ne—yefhao—yef = y=yvy

6 Axiomatic Extension
In some cases it is pragmatic not to define an operator using one of the methods of
Section 5. Instead we postulate some axioms expressing properties that we require

an operator or set of operators to satisfy. In this case we provide typing and well-
definedness rules as before. The axiomatic extension then takes the following form:

11

Expression operators Axioms

op1(z1,...) label; : Pi(zf,....27,...)

opm (27, ...) labely, : Pp(2i,...,27,...)

The axioms must be type consistent and well-defined under the well-definedness condi-
tions for the introduced operators and those already existing. Except for well-definedness
nothing is to be proved about the axioms. As usual, the risk of using axiomatic exten-
sion is that it can make a theory inconsistent. The guideline is that wherever possible
we should use a definition when introducing an operator as this preserves consistency
of the logic. We resort to an axiomatic definition when it is too inconvenient to do
otherwise.

As an example of an axiomatic extension, consider the addition and multiplication
operators on integers. They are typed as follows:

Expression operator Type rules

type(z) =Z, type(y) =2

plus(z,y)
type(plus(z,y)) = Z

type(z) =Z, type(y) =2

mult(z,y)
type(mult(z,y)) = Z

Here we present distribution axioms for these operators that are intended to be illustra-
tive rather than in any way comprehensive:

Expression operators Axiomatic definition

plus(zx,y) axl: plus(z, mult(y, z)) mult(plus(z,y), plus(z, z))
mult(z,y) ax2: mult(z, plus(y, z)) = plus(mult(z,y), mult(z, 2))

12

6.1 The Axiomatic Basis of Event-B

Event-B is based on a typed polymorphic first-order logic (TPFL) that includes an
axiomatisation for a typed set theory and number theory. These axioms are added by
axiomatic extension to the TPFL. For set theory this includes axioms for the empty
set, extensionality, union, power set, separation, and infinity. For number theory this is
essentially an axiomatisation of integer numbers plus natural number induction.

These axioms cover the existence and uniqueness of the terms defined in the core
of Event-B.

7 Extending Set Theory with Algebraic Types

Before proposing an extension mechanism to it (section 7.2), let us review how our
current Set Theory has been built (section 7.1).

7.1 A Review of the Basic Set-theoretic Constructs

The Set Theory used in Event-B is based on two constructors: the set comprehension
constructor and the pair constructor.

The set comprehension constructor, { | }, constructs a set from a predicate. The
pairing constructor, —, constructs a pair from two expressions. The set of all possible
set comprehensions is denoted by means of the power set operator P and the set of
all pairs is denoted by means of the cartesian product operator x. The two operators
P and x are operators in the mathematical language so they can be used to form set
expresions, e.g., P(1..10). These operators also have a special status in that they are
lifted to form type operators.

The power set IP and set comprehension operators { | } are linked in following
way: [P can be used to construct a new type while { | } can be used to construct
elements of that new type. Similarly for the cartesian product and pairing operators.

Associated with the constructors are some destructors. The set comprehension con-
structor is associated with the set destruction operator € transforming a set into a pred-
icate. Likewise the pair constructing operator is associated with the two destructors
prj; and prj,.

This can be extended to the set of integers Z were the constructor is succ the de-
structor is pred and the corresponding set and type are Z.

All this is summarized in the following table:

13

Constructor Destructor Set operator Type operator

{1} € P P
— Priy, PIis X X
succ pred Z Y/

Constructors and destructors relationship are made more explicit in the following
table:

Component Construction Destruction

P(z) {z | P(z)} zefz|P(z)} & P(z)

prj; (0l — 02) = ol

ol, 02 ol — 02 priy (01 1 02) = 02

n succ(n) pred(succ(n)) =n

The following tables show the typing rules for the type construction operators and
the corrsponding element construction operators:

14

Expression operator Type rules
type(S) = P(a)
P(5)
type(P(5)) = P(P(a))
ST type(S) = P(a), type(T) =P(p)
type(S xT) = Plaxpf)
Z type(Z) = P(2)
Expression operator Type rules
P(z) = type(z) =«
{z | P(x)}
type({z | P(x)}) = P(e)
type(ol) = «, type(o2) =
0l — 02
type(ol — 02) = ax 3
type(n) = Z
suce(n)
type(succ(n)) = Z

Extensionality relates equality of constructions to equality (or equivalence) of cor-
responding destructions. It is summarized in the following table. It essentially says
that constructions as well as destructions are injective.

15

Equality of Construction Equality of Destruction

{z[P(2)} = {2|Q(z)} P(z) < Q(x)
0l — 02 = pl— p2 ol =pl A 02 =p2
succ(n) = succ(m) n=m

7.2 Defining new Algebraic Types

The Set Theory is extended with a new algebraic type theory in a straightforward fash-
ion by defining a type construction operator (such as x) and one or more element
construction operators (such as —). The constructors for a new type may take argu-
ments of that same type thus yielding an inductive type. For example the cons(z,t)
constructor for the inductive list type takes a list ¢ as an argument. The inductive list
type also has nil as a constructor and nil and cons(x, t) are distinct. In the case of an
inductive type, induction axioms can be provided.

Stated more explicitly, defining a new algebraic type (such as inductive lists) re-
quires the following:

1. a single type construction operator that can be used both as a set expression
operator and a type operators (like x),

2. several new element constructors (like —),

3. extensionality axioms ensuring that constructed elements are uniquely deter-
mined by their constituents,

4. disjointness axioms ensuring that distinct constructors yield distinct elements,
5. induction axioms in the case of inductive types.

It is convenient (and conventional) to use a syntactic sugar to group the constructors
together into a single definition of a new type. We illustrate such a syntactic sugar for
lists and binary trees:

list(a) == nil

| cons(a, list(a))

tree(a) == empty

node(tree(a), a, tree(a))

16

The sugared definition for lists gives rise to three operators (list, nil and cons)
and the sugared definition for trees also gives rise to three operators (tree, empty and
node). The list and tree operators can be used as type constructors as well as set
operators. The nil and cons operators are used as constructors for elements of type
list, while the empty and node operators are used as constructors for elements of type

tree.

The syntactic sugar gives rise to the following typing rules for these operators:

Expression operator Type rules

list(S)

type(S) = P(«)
type(list(S)) = P(list(«))

tree(S)

type(5) = P()

type(tree(S)) = P(tree(a))

Expression operator

Type rules

nil type(nil,) = list(a)
type(z) = «, type(l) = list(«)
cons(z,1)
type(cons(z,l)) = list(a)
empty type(empty,) = tree(a)

node(ty, x,ts)

type(t1) = tree(a), type(z) = «, type(ts) = tree(«)

type(node(t1,x,t2)) = tree(a)

In the case of lists, cons is an inductive constructor since it takes an argument of
type list(a), while nil is a base constructor since it does not take an argument of
type list(a). Similary empty is a base constructor for trees and node is an inductive

constructor for trees.

17

The type and element constructors are well-defined for all well-defined arguments
so have no additional well-definedness conditions. This is shown for the list construc-

tors in the following well-definedness table:

Expression operator

Well-definedness

WD(list(S))

WD(S)

WD(nil)

WD(cons(z,1))

WD(z), WD(l)

The syntactic sugar also gives rise to extensionality, distinctness and induction ar-
guments. These are shown for lists in the following table of axioms:

Axioms

Extensionality | con(z,l) = cons(z',l') = x=a' ANl=T

Distinctness nil # cons(x,1)
P(nil) A
Induction (Va,l- P(l) = P(cons(z,l)))
= (VL-P(l))

A definition of a new algebraic type must contain at least one base constructor. It
does not need to contain any inductive constructors. Examples of non-inductive alge-
braic types include a type constructor sumtype that forms the discriminated union of
two types and an enumerated type direction that contains exactly four distinct values:

sumtype(a, 3)

direction

18

inji(a)

injz()

north
south
east

west

7.3 Pattern-based Recursive Definitions

In Section 35, five different forms of operator definition were presented. The algebraic
construction of types allows us to add a pattern-based recursive form of definition for
operators where one or more arguments is an algebraic type. This is a special case of
the conditional direct definition where each constructor of an algebraic type gives rise
to a case and the constructor is used as a pattern. We illustrate a pattern-based recursive
definition with the examples of size and ap operators for lists:

Expression operator Recursive direct definition

0
1+ size(l)

size(mil)
size(cons(z,l))

I 1

size(l)

nil

map(f, nil)
map(f,1) cons(f(x), map(f,1))

map(f,cons(x,1))

1

Expression operator Type rules
type(l) = list(a)
size(l)
type(size(l)) =7
type(f) = a < B, type(l) = list(a)
map(f,1)
type(map(f,1)) = list(B)
Expression operator Well-definedness
WD(size(l)) WD(I)
WD(map(f,1)) WD(f), WD(l), fea-+g, [clist(dom(f))

19

7.4 Type Constructors as Set Operators

We have already stated that type constructors (such as P, x, list, tree) are also set
expression operators. We have already seen the typing rules for these operators and
we stated that their well-definedness depends only on the well-definedness of their
arguments. We also need to provide a set theory definition of these operators. The
power set and cartesian product operators are defined extensionally in the following
table:

Expression operator Extensional definition
P(S) TeP(S) < TCS
SxT 01— 00 E€SXT <= 0,€S No0€eT

We use an extensional variant of the recursive definition form to define the inductive
type constructors as follows:

Expression operator Recursive extensional definition

nil € list(S)

list(S) cons(z,t) € list(S) < xz € SAtelist(S)

empty € tree(S)

tree(S) node(t1x,t3) € tree(S) <= x € SNty € tree(S) Aty € tree(S)

Monotonicity of the powerset and cartesian product operators follows directly from
properties of sets:

SCS — P©S) C P
SCS ANTCT = SxT C SxT

Monotonicity of the inductive type constructors is proved using the induction schemas
for those types:

list(S")

-
C tree(S")

20

For example, consider the inductive case in the proof for lists:

cons(z,1) € list(S)

= “Definition of [ist(S)”
x €S N lelist(S)

= “SCs
xe S Alelist(S)

= “Induction hypothesis”
xe S Alelist(S)

= “Definition of list(S)”

cons(x,l) € list(S’)

8 Binders

We have shown how n-ary basic predicates and n-ary operators may be added to the
language. The ability to add binders should also be explored. For example, it should
be possible to add a summation binder such as

SUMx - P(x) | E(x)

where P is a predicate constraining the values of bound variable x and F is an expres-
sion. A common technique for doing this uses the lambda notation

Sum(Az - P(z) | E(x))

Then a binder SUM could be introduced so that the first formula is interpreted as the
second. The lambda notation of the Event-B mathematical notation would already
suggest the syntax to be used, in general:

BBz - P|E

where BB is the introduce binder. It would also be possible to base a binder on set
comprehension. But it must be based on a binding concept already present in the
notation so that introducing a binder is only syntactic sugar to improve readability.
The syntax could also be different than that of lambda, but it should be fixed. Note
that sum and SUM are operators in the above. They cannot be set-theoretic concepts
because they introduce new syntax to the logic.

9 Further considerations

We have avoided making the syntax of predicate and operator delcarations precise.
This needs to be explored further, including an exploration of succinct syntactic sugars.
We already saw and example of a syntactic sugar for algebraic type declarations in
Section 7.2. This is very similar to the approach taken in PVS [7]. PVS includes

21

a syntactic sugar for destructors for algebraic types. For example, the head and tail
destructors for lists are included as follows:

list(a) == nil

| cons(head : a, tail : list(a))

This syntax is simultaneously defining five operators (list, nil, cons, head, tail).
The typing rules for operators may also benefit from a syntactic sugar such as the
following:
symdiff(P(a), P(a)) @ P(a)
in place of
type(S) = P(a), type(T) =P(a)

type(symdiff(S,T)) = P(«)

The unconstrained axiomatic form of operator definition can results on inconsistent
definitions. A consitency proof obligation for axiomatic definitions coould be enforced
but in many cases that may be difficult to prove. More schematic forms of axiomatic
definition, such as the scheme for defining algebraic types, should be explored that may
help to avoid incontencies.

10 Record Types

10.1 Field access syntax

A second syntax for function application could make record types easier to read:
v.f = fl@)

10.2 Explicit Record Types
see VDM

10.3 Algebraic Record Types

see Butler/Evans

10.4 Free Types as Record Types

A simple way to introduce record types without extending the notation is to use free
type like record types based on the idea of destructors of Section ??.

msg(A) == empty
| req(code: A)
| body(code: A, block : BLOCK)
| ack(code: A)

22

This approach would permit easily to deal with related record types. It gives without
extra effort the sum type of several record types. Also recursion is already catered
for. The different subsets of the sum type could be conveniently marked to permit
lightweight use in formulas (e.g., + € Body would determine that « fits the schema
body(c, b) for some ¢ and b):

msg(A) == empty
| Req:req(code: A)
| Body : body(code : A, block : BLOCK)
| Ack:ack(code: A)

Assignment to record types would be done in the following way (let x € Req and
bb € BLOCK):

x := body(x.code, bb)

Note that the parameter A in the declaration of msg can be any set. (The corre-
sponding type is constructed using the type P(«) of A. This is the simplest way to
get a restriction on the values of a type. More restrictions could be added by defining
subsets of msg. This holds also for recursive types. The following example is adapted
from [?]:

Tree == Leaf:leaf(N)
| Node :node(lt:Tree, mv:N, rt:Tree)

Define a function values € Tree — P(N) by

values(leaf(n)) = {n}
values(node(tl,n,tr)) = wvalues(tl) U {n} Uvalues(tr)

Define Ordered_Tree by:

Ordered_Tree = LeafU
{node(tl,n,tr)|
(Vv - lv € values(tl) = lv < mv) A
(Vrv - rv € values(tr) = lv > mo)}

From the structure of the definition of set Ordered_Tree one could derive a suitable
induction scheme to prove membership of a tree ¢ in Ordered_T'ree.
Define a second subset Balanced_T'ree by

Balanced_Tree = LeafU
{node(tl,n,tr)|
height(tr) — height(tl) € {—1,0,1}}

23

where height € Tree — N is defined by:

height(leaf(n)) = 0
height(node(tl,n,tr)) = 1+ max(height(tl), height(tr))

Balanced ordered Trees are characterised by the intersection

Ordered_Tree N Balanced_Tree

10.5 On Predicate Restrictions

todo: compare how the three variants would address this

11 Polymorphism

The standard way to extend first-order logic with typing and polymorphism is polymor-
phic many sorted first order logic (e.g., [4] or the appendix of [5]) also just called many
sorted first order logic by mathematicians. It is the foundation of logic programming
languages Godel [5] and Mercury [9], and quite similar to the core of the Haskell type
system.

Note that polymorphic many sorted first order logic is not a higher-order extension
of FOL. It is actually a restriction of FOL, only accepting well-typed formulas. The
model theoretic semantics is very similar to FOL, it just respects the type signatures.
The inference rules from FOL are taken over.

Event-B deviates from this standard way by:

1. not giving a type signature to predicates

2. requiring that the type inference algorithm produces ground types for all expres-
sions.

The first point probably has little implications, as implicitly the type inference al-
gorithm is given the types of the built-in predicates (e.g., POW () x POW («) for C)
and the type inference will actually compute the concrete types for the various predicate
calls.!

The motivation for the second point are (also) unclear to the authors. For the mo-
ment this aspect is hard-wired into the Rodin platform. Its purpose was probably to
simplify the implementation of a typed abstract syntax tree in an imperative language
such as Java, as no type variables need to be stored.

The drawbacks, however, are more numerous:

1. use of a non-standard formalism;

2. loss of referential transparency for users and refactoring tools, as the substitutiv-
ity of equals for equals does not hold in the untyped source language;

IGiven the fact that Rodin accepts, e.g., the expression {x +— y |t CyAy Ca} ={vw|v C
BOOL A v = w}, it would seem that the tool actually does compute the types for the various predicates.

24

3. a more complicated formalisation of the type inference;
4. no polymorphic theorems.

Point 4 makes mathematical extension more cumbersome. We elaborate on the
points 2—4 below.

11.1 Loss of Referential Transparency

In Haskell the empty list [] is a polymorphic constructor; it can be used as the base
case for lists of integers or lists of any other datatype. In that respect it is similar to
Event-B’s empty set, which can be used as the base case for sets of integers or any other
B datatype. In contrast to Haskell, however, Event-B does not allow the expression
& = . The reason is that the type inference cannot determine a ground type for the
two appearances of @ in the predicate. Contrast this with a transcript of a Haskell
session:

$ ghci
GHCi, version 6.10.1: http://www.haskell.org/ghc/ :? for help

Prelude> let ¢ = if []==[] then 1 else 0
Prelude> c
1

Note that this restriction of Event-B can also be found in Atelier-B.?

The ramifications of this restriction is that we, e.g., cannot substitute t = FAy = &
in the predicate * = y as the result is an incorrectly typed (according to Event-B)
predicate expression.

In the internal “machinery” of Rodin this is not (or less of)® a problem: here all
values are eplicitly typed. But for users, refactoring or automatic code generation tools
this means a loss of referential transparency. For example, the standard rules for weak-
est precondition calculation [1, 8] cannot be applied as is:

o [z := @] (x# D = card(zx) >1) = (& # & = card(@) > 1), giving
rise to a type error in Event-B.

o [z,y := 9,{0}] {z} Ccy=2=1) = ({9} Cc {9} = 2z=1) again
giving rise to a type error in Event-B.

With the current input syntax of Rodin, refactoring or automatic code generation
tools would need to capture predicates like @ # @, @ C @, {0} = &, {g} C &,
UG =0,8 € — &, ..oreven {1 — &} #{2— S}U{3 — 2} and
{1—~2}C ({1~ 2,2~ @};{@ > 2}) and filter them out to either true or false.

Expressions can also be problematic, if an expression drops a part of the argument,
such as the projection functions. The current projection functions in Rodin are not yet

%It is unclear to the authors whether this is intentional or a side-effect of a limited type inference proce-
dure.

3This problem occurred in earlier versions of Rodin. The static checker now generates an ex-
tended output of Event-B strings. It translates x/={} => card(x)>1tox/=({}::typeof (x)) =>
card (x) >1. The corresponding syntax is not allowed in the input notation.

25

problematic, as the user has to explicitly provide types: prj1(Nx POW (N))(1 — @).
This is going to change, however, at which point the expression prjl(l — &) and
thus also the substitution x := prjl(1 — @) will give rise to a type error. Here, a
refactoring tool will have to catch expressions such as prjl(1 — &) or prjl(l —
(2 — ©)) and insert artificial constructs such as prj1(1 — @NN) or prjl(l — (2 —
g NN)).4

11.2 More Contrived Type Inference

Type inference and checking in standard polymorphism can be done efficiently using
the Hindley-Milner type inference [6]. This can also be viewed as using resolution (i.e.,
unification) on a type theory expressed in the style of the following rule, defining a type
rule for the intersection operator. Here, e : 7 expresses the fact that the expression e
can be of type 7.

FS:POW(r) FV:POW(T)
FSNV:POW(T)

In Prolog this can be encoded as the following clause:

type (inter (S, V),pow(T)) :- type(S,pow(T)),type(V,pow(T)).

Prolog execution can be used to perform type inference or type checking. See, e.g.,
a Prolog formalisation of a larger subset of Event-B in Appendix A. As can be seen,
this results in full polymorphic type inference. ProB as of version 1.3 uses such a type
inference and checking approach for classical B.

Moving to limited polymorphism In order to encode the limited polymorphism of
Event-B, the mathematical formalisation of the type system needs to be adapted. The
Prolog code also needs to be adapted to pass type parameters up, which can then be
checked for groundess at the end (see, Appendix B). The outermost predicate of the
Prolog type checker now becomes:

type_inference (X,0OneSol) :- findall(T,type(X,T),AllTypes),
(AllTypes=[OneSol] ->
(ground (OneSol) -> true ; print (' ### Type not completely determined!’),nl)
; print (’ ### Mutliple typings allowed: ’),print (AllTypes),nl,fail).

In Prolog this is still relatively straightforward. Note, however, that we use the
Prolog built-in predicate ground/ 1. Formalising ground in pure logic is a bit more
complicated and requires the addition of an additional virtual base type. If a type can
create an instance containing this virtual base type, then the type is not ground. In
Prolog one could formalise the negation of a non-ground type as follows:

non_ground_type (err) .
non_ground_type (pow (X)) :— non_ground_type (X) .
non_ground_type (AxB) :— non_ground_type (A) ; non_ground_type (B).

4When instantiating a bound variable = with & it is not possible to type check @ by itself but it is
necessary to bind it in a term with a variable x freed, e.g., in an equation x = &. With an earlier version of
the Rodin proving interface the user also sometimes had to enter & N N, say, instead of &.

26

In the Rodin reference on the Mathematical language type inference is formalised
in terms of attribute grammars with inherited and synthesised attributes (see [3]). We
would argue that this is a very implementation oriented description, not so easily com-
prehensible to many formal methods users. We believe “classical” typing inference
rules to be more comprehensible. Also, possibly due to the more complicated nature
of the type inference algorithm, the current Rodin type error messages can be incom-
prehensible to a normal user (and failing to locate the source of the type error in the
formula):

& @ [m . = {x » X A YIX A (Vz- 7eRoom A X £ Z A ZIX S 7 = 2

Types Room and P('8) do not match
Types Room and P("9x'10) do not match
Types Room and P('12) do not match
Types Room and P('13) do not match

& Types P('10x'11) and RoomxRoom do not match (I

Types P('11x'11) and RoomxRoom do not match

The unification-based type inference checker of ProB gives four type errors on
the corresponding example in classical B, highlighting the exact locations of the type
eITOrS:

CONSTANTS ¢

PROPERTIES
e = {X,¥ | X<ty & (y¥:X) <: y & (l2z.(2:Room & x<:2 & (2;X) <: 2 => y<:z))}

The error associated with the first underlined occurence of z is as follows (i.e., the
type checker was expecting a relation of type POW (« x «/) but obtained an expression
of type Room):

type mismatch: Expected POW((_Ax_A)), but was Room
/Users/leuschel/svn_root/TEX/rodin_papers/Test .mch
Line: 6, Column: 49

11.3 No polymorphic theorems

We cannot prove S U @ = S in Rodin, let alone state it as an axiom, because the
type of S, POW (), is not ground. Especially in light of mathematical extensions
such as sequences, trees, etc., this is potentially problematic. It will not be possible to
generate generic proof rules — as used by the Rodin provers — in the language of the
mathematical extensions, e.g., - EF = Fisarulebut VE - £ = F is not a well-
formed formula. This will eventually make it necessary to have two notations, one for
expressing mathematical extensions and one for adding rules.
In Haskell we can define a predicate checking for an empty list

Prelude> let empty x = x == []

If this was not polymorphic it would have to give some type to [], say 7. So it
would not be possible to use it with some other type S. A non-polymorphic approach
seems not reasonable. In Haskell,

27

Prelude> empty []
True

In Event-B this would currently be impossible?

11.4 Solutions

In summary, we believe that the restriction of standard polymorphism in Event-B en-
genders a whole series of subtle problems, while providing no apparent benefit.

e Live with the existing Event-B de-facto standard, and formulate mathematical
extensions using limited polymorphism.

We believe this solution will hinder the Rodin tool’s long term prospects. Also,
solutions for refactoring tools will have to be found. One is to provide a sim-
plifier procedure, which eliminates type-problematic tautologies (&, = J,),
contradictions (&, # @,) and expressions (prjl(1 — &)) from Event-B for-
mulas before a refactoring tool generates the user-readable and editable textual
representation. Another solution is to allow users to add type annotations to con-
stants, which the refactoring tool can make use of. Another solution is to extend
the Rodin type inferencer to perform “defaulting”, see below.

e Rewrite Rodin for full polymorphism, e.g,. based on polymorphic many sorted
FOL.

This may mean a large amount of implementation work. Note that for mathe-
matical extensions, the AST needs to be extended (and thus probably rewritten)
anyway. It should be examined to what extent such an extension of Rodin for
full polymorphism can be done simultaneously with mathematical extensions
and how much additional effort it would engender. Some of the current issues
with the AST could also be cleaned up at the same time (hardwiring of some
of the internal Rodin tools’ procedures/intermediate datastructures into the AST,
having the AST mutable, ...). An easy interface to functional/logic languages
should also be provided (maybe Scala?).’

e Formulate the mathematical extensions using full polymorphism, while keepig
the current Rodin core tool’s limited polymorphism as is.

When the mathematical extension tools need to generate legacy Rodin formu-
las, then Haskell-style defaulting can be used. Defaulting in Haskell replaces
type variables by the unit type, in case a concrete type is needed (e.g., for the
compiler).® In our case, we would need to introduce a family of default types

SSome of the aspects of Rodin are ideally suited for such languages, e.g., type inference, POG generation,
static analysis, rule-based provers. The code for these in a functional/logic language would both be more
succinct, maintainable and probably more efficient. E.g., a generic AST traversal can be written in 4 lines
of Prolog; equivalent type-safe versions can also be written extremely succinctly in Haskell. The Rodin
equivalent traversal of the AST takes several hundred lines of code, with ensuing difficulties for maintenance
and comprehension. Our translator from the Rodin AST to Prolog requires1700 lines of Java code (that is
with the new more succinct visitor of Rodin).

6This is also sometimes considered to be an ugly corner of Haskell. See, for example,
http://neilmitchell.blogspot.com/2009/02/monomorphism—and-defaulting.html.

28

(deferred sets). If the maximum number of type variables inside the type of an
expression is n (e.g., for POW (a x) we have n = 2), we need n deferred
sets. One could then prove a meta-theorem that a polymorhpic formula is true
after defaulting the types in Event-B iff it can also be proven in polymorphic
many-sorted logic.

Similarly, to overcome the referential transparency issue, adding defaulting to

the type inference algorithm could be used. E.g., the type inference could either
add a new virtual type or always use BOOL for type variables.

e Live with the existing Event-B standard and formulate limited mathematical ex-
tensions for now.

The idea is to not change the AST for the moment. Mathematical extensions
would be implemented for the moment by using prefix-notation for new oper-
ators, thus not requiring changes (or only minimal changes) to the parser and
AST. We would also use a prototype extensible rule-based prover into which the
rules for the new extensions would be encoded.

At a later stage, when it becomes clear which approach should be used for math-
ematical extensions, one of solutions 1-3 above would be adopted.

References

[1] Jean-Raymond Abrial. The B-Book. Cambridge University Press, 1996.

[2] Jean-Raymond Abrial, Christophe Metayer, and Laurent Voisin. Rodin manual and
language definition. http://deploy-eprints.ecs.soton.ac.uk/11/, 2007.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers.
Principles, Techniques, and Tools (Second Edition). Addison Wesley, 2007.

[4] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[5] Patricia Hill and John W. Lloyd. The Godel Programming Language. MIT Press,
1994.

[6] Robin Milner. A theory of type polymorphism in programming. Jess, 17:348-375,
1978.

[71 S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748-752,
Saratoga, NY, jun 1992. Springer-Verlag.

[8] Steve Schneider. The B-Method: An introduction. Palgrave Macmillan, 2001.

[9] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algo-
rithm of Mercury: An efficient purely declarative logic programming language.
Journal of Logic Programming, 29(1-3):17-64, 1996.

29

A Type inference for standard polymorphism

type (X,int) :- integer (X).

type(’ |->" (A,B),TAxTB) :— type(A,TA), type(B,TB). % maplet

type (inter (S,V),pow(T)) :— type(S,pow(T)),type (V,pow(T)). % intersection
type (inv (R) ,pow (B*A)) :— type(R,pow (AxB)). % inverse of a relation
type([]l,pow(_)). % empty set

type ([H|Tail],pow (T)) :— type(H,T), type(Tail,pow(T)). % extension set
type (X+Y,int) :- type(X,int), type(Y,int). % addition

type (X=Y,pred) :- type(X,T),type(¥,T). % equality

type (X<Y,pred) :- type(X,int), type(Y,int). % less-than

type (in (X, S),pred) :— type(X,TIX), type(S,pow(TX)). % set membership
type("&" (X,Y),pred) :- type(X,pred(TX)), type(Y,pred(TY)).

type (sym(R),pred) :- type(R=inv(R),pred(TR)). % symmetric relation predicate
% or type(sym(R),pred) :- type(R,pow (AxA)).

| 2— type([1,R).

R = pow (_A) ?

yes

| ?— type(inter([], [3+7,4]),R).

R = pow(int) ?

yes

| 2= type([]1=[3],X)

X = pred ?

yes

| 2= type([1]=[[]],X)

no

| ?- type(inv([]),R).

R = pow (_Ax_B) *?

yes

| ?- type(sym([]),X).

X = pred ?

yes

| ?- type(inv(["|->"(1,[]1)]),R).

R = pow(pow (_A)*int) *?

yes

| ?— type(sym(inv ([’ |->"(1,[1)]1)),R).

no

Provided there are no non-deterministic rules in the style of

type (XxY,int) :- type(X,int), type(Y,int).
type (XxY,pow (TX*TY)) :— type (X,pow(TX)), type(Y,pow(TY)).

we always get exactly one or no solution.

B Type inference for controlled polymorphism

type (X,int) :- integer (X).

type (' |->' (A,B), TAxTB) :- type(A,TA), type(B,TB). % maplet

type (inter (S,V),pow(T)) :— type(S,pow(T)),type(V,pow(T)). % intersection
type (inv (R) ,pow (B*A)) :- type (R,pow (AxB)). % inverse of a relation

30

type([]l,pow(_)). % empty set

type ([H|Tail],pow (T)) :— type(H,T), type(Tail,pow(T)). % extension set
type (X+Y,int) :- type(X,int), type(Y,int). % addition

% arguments of pred are only there to pass inner type variables

to the top and detect if polymorphism persists in inner nodes

o

type (X=Y,pred(T)) :- type(X,T),type(Y,T). % equality

type (X<Y,pred(int)) :- type(X,int), type(Y,int). % less-than

type (in (X, 3) ,pred (TX)) :— type(X,TX), type(S,pow(TX)). % set membership

type (&’ (X,Y),pred(conj(TX,TY))) :— type(X,pred(TX)), type(Y,pred(TY)).

type (sym(R),pred(TR)) :- type(R=inv (R),pred(TR)). % symmetric relation predicate
type_inference (X,0OneSol) :- findall(T,type(X,T),AllTypes),

(AllTypes=[OneSol]
-> (ground(OneSol) -> true ; print (' ### Type not completely determined!’),nl)
; print (' ### Mutliple typings allowed: ’),print (AllTypes),nl,fail).

31

