Summary of the Mathematical Notation

Jean-Raymond Abrial (edited by Thai Son Hoang)

Department of Computer Science Swiss Federal Institute of Technology Zürich (ETH Zürich)

Bucharest DEPLOY 2-day course, 14-16/07/10, ETH Zurich

Outline

- Foundation for Deductive and Formal Proofs
 - Concept of Sequent and Inference Rule
 - Backward and Forward Reasoning
 - Basic Inference Rules
- 2 A Quick Review of Propositional Calculus
- 3 A Quick Review of First Order Predicate Calculus
- A Refresher on Set Theory
 - Basic Constructs
 - Extensions

Foundation for Deductive and Formal Proofs

- Reason: We want to understand how proofs can be mechanized.
- Topics:
 - Concepts of Sequent and Inference Rule.
 - Backward and Forward reasoning
 - Basic Inference Rules.

Sequent

- Sequent is the generic name for "something we want to prove"
- We shall be more precise later

Inference Rule

- An inference rule is a tool to perform a formal proof
- It is denoted by:

- A is a (possibly empty) collection of sequents: the antecedents
- C is a sequent: the consequent

The proofs of each sequent of A

together give you

a proof of sequent C

Backward and Forward Reasoning

Given an inference rule $\frac{A}{C}$ with antecedents A and consequent C

- Forward reasoning: $\frac{A}{C} \downarrow$ Proofs of each sequent in A give you a proof of the consequent C
- Backward reasoning: $\frac{A}{C}$ ↑ In order to get a proof of C, it is sufficient to have proofs of each sequent in A

Proofs are usually done using backward reasoning

"Executing" the Proof of a Sequent S (backward reasoning)

We are given:

- a collection $\mathcal T$ of inference rules of the form $\frac{A}{C}$
- a sequent container K, containing S initially

```
while K is not empty
```

choose a rule $\frac{A}{C}$ in \mathcal{T} whose consequent C is in K; replace C in K by the antecedents A (if any)

This proof method is said to be goal oriented.

- The proof is a tree
- We have shown here a depth-first strategy

- The proof is a tree
- We have shown here a depth-first strategy

- The proof is a tree
- We have shown here a depth-first strategy

- The proof is a tree
- We have shown here a depth-first strategy

- The proof is a tree
- We have shown here a depth-first strategy

- The proof is a tree
- We have shown here a depth-first strategy

- The proof is a tree
- We have shown here a depth-first strategy

- The proof is a tree
- We have shown here a depth-first strategy

- The proof is a tree
- We have shown here a depth-first strategy

Alternate Representation of the Proof Tree

A vertical representation of the proof tree:

r3
r1
r5
r4
r6
r2
r7

$$r1_{\overline{52}}$$
 $r2_{\overline{54}}^{57}$ $r3_{\overline{51}}^{52}$ $r4_{\overline{55}}$ $r5_{\overline{53}}^{55}$ $r6_{\overline{56}}$ $r7_{\overline{57}}$

More on Sequent

- We supposedly have a Predicate Language (not defined yet)
- A sequent is denoted by:

- H is a (possibly empty) collection of predicates: the hypotheses
- G is a predicate: the goal

Meaning ...

Under the hypotheses of collection H, prove the goal G

Basic Inference Rules of Mathematical Reasoning

- HYPOTHESIS: If the goal belongs to the hypotheses of a sequent, then the sequent is proved,
- MONOTONICITY: Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved,
- CUT: If you succeed in proving P under H, then P can be added to the collection H for proving a goal G.

Basic Inference Rules of Mathematical Reasoning

- HYPOTHESIS: If the goal belongs to the hypotheses of a sequent, then the sequent is proved,
- MONOTONICITY: Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved,
- CUT: If you succeed in proving P under H, then P can be added to the collection H for proving a goal G.

Basic Inference Rules of Mathematical Reasoning

- HYPOTHESIS: If the goal belongs to the hypotheses of a sequent, then the sequent is proved,
- MONOTONICITY: Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved,
- CUT: If you succeed in proving *P* under H, then *P* can be added to the collection H for proving a goal *G*.

Basic Inference Rules

HYP

$$\frac{\mathsf{H} \; \vdash \; \mathsf{Q}}{\mathsf{H}, \; \mathsf{P} \; \vdash \; \mathsf{Q}}$$

MON

Basic Constructs of Propositional Calculus

Given predicates P and Q, we can construct:

- CONJUNCTION: $P \wedge Q$
- IMPLICATION: $P \Rightarrow Q$
- NEGATION: ¬ P

Syntax

$$\begin{array}{cccc} \textit{Predicate} & ::= & \textit{Predicate} & \land & \textit{Predicate} \\ & \textit{Predicate} & \Rightarrow & \textit{Predicate} \\ & \neg & \textit{Predicate} \end{array}$$

• This syntax is ambiguous.

More on Syntax

- Pairs of matching parentheses can be added freely.
- Operator ∧ is associative.
- Operator \Rightarrow is not associative: $P \Rightarrow Q \Rightarrow R$ is not allowed.
- Write explicitly $(P \Rightarrow Q) \Rightarrow R$ or $P \Rightarrow (Q \Rightarrow R)$.
- Operators have precedence in this decreasing order: \neg , \wedge , \Rightarrow .

Extensions: Truth, Falsity, Disjunction and Equivalence

■ TRUTH: T

FALSITY:

• DISJUNCTION: P \(\text{Q} \)

• EQUIVALENCE: $P \Leftrightarrow Q$

Syntax

More on Syntax

- Pairs of matching parentheses can be added freely.
- Operators ∧ and ∨ are associative.
- Operator \Rightarrow and \Leftrightarrow are not associative.
- Precedence decreasing order: \neg , \wedge and \vee , \Rightarrow and \Leftrightarrow .

More on Syntax (cont'd)

- The mixing of \wedge and \vee without parentheses is not allowed.
- You have to write either $P \wedge (Q \vee R)$ or $(P \wedge Q) \vee R$
- The mixing of \Rightarrow and \Leftrightarrow without parentheses is not allowed.
- You have to write either $P \Rightarrow (Q \Leftrightarrow R)$ or $(P \Rightarrow Q) \Leftrightarrow R$

Propositional Calculus Rules of Inference (1)

Rules about conjunction

$$\frac{\mathbf{H}, \mathbf{P}, \mathbf{Q} \; \vdash \; \mathbf{R}}{\mathbf{H}, \; \mathbf{P} \land \mathbf{Q} \; \vdash \; \mathbf{R}} \quad \mathsf{AND_L}$$

Rules about implication

$$\frac{\mathbf{H},\mathbf{P} \;\vdash\; \mathbf{Q}}{\mathbf{H} \;\vdash\; \mathbf{P} \Rightarrow \mathbf{Q}} \quad \mathsf{IMP}_{\mathsf{R}}$$

Rules with a double horizontal line can be applied in both directions.

Eidgenössische Technische Hochschule Zürle

Propositional Calculus Rules of Inference (2)

Rules about disjunction

$$\frac{ \textbf{H}, \textbf{P} \; \vdash \; \textbf{R} \qquad \quad \textbf{H}, \textbf{Q} \; \vdash \; \textbf{R} }{ \quad \textbf{H}, \; \textbf{P} \lor \textbf{Q} \; \vdash \; \textbf{R} } \quad \text{OR_L}$$

$$\frac{\mathbf{H}, \neg P \vdash \mathbf{Q}}{\mathbf{H} \vdash \mathbf{P} \lor \mathbf{Q}} \quad \mathsf{OR}_{\mathbf{R}}$$

Propositional Calculus Rules of Inference (3)

Rules about negation

$$\frac{\mathbf{H}, \neg \mathbf{Q} \vdash \mathbf{P}}{\mathbf{H}, \neg \mathbf{P} \vdash \mathbf{Q}} \quad \mathsf{NOT_L}$$

$$\begin{array}{c|c} \hline \textbf{H}, \textbf{P} \; \vdash \; \bot \\ \hline \textbf{H} \; \vdash \; \neg \textbf{P} \end{array} \quad \mathsf{NOT}_\mathsf{R}$$

$$\overline{\hspace{1cm} \hspace{1cm} \hspace{1cm$$

Propositional Calculus Rules of Inference (4)

Deriving rules:

$$\frac{\mathsf{H},\ Q\ \vdash\ P\qquad \mathsf{H},\ \neg\ Q\ \vdash\ P}{\mathsf{H}\ \vdash\ P}\quad \mathsf{CASE}$$

$$\frac{\text{H.} \neg Q \vdash \neg P}{\text{H, } P \vdash Q} \quad \text{CT_L}$$

$$\frac{\mathsf{H} \; \vdash \; P}{\mathsf{H} \; \vdash \; P \lor Q} \quad \mathsf{OR_R1}$$

$$\frac{\mathsf{H} \; \vdash \; \mathsf{Q}}{\mathsf{H} \; \vdash \; \mathsf{P} \lor \mathsf{Q}} \quad \mathsf{OR}_{\mathsf{R}}\mathsf{2}$$

Propositional Calculus Rules of Inference (4)

Rewriting rules:

Predicate	Rewritten	
Т	¬⊥	
P ⇔ Q	$(P \Rightarrow Q) \land (Q \Rightarrow P)$	

More derived rules:

$$\frac{\mathsf{H} \; \vdash \; P}{\mathsf{H}, \; \top \; \vdash \; P} \; \mathsf{TRUE_L}$$

CLASSICAL RESULTS (1)

commutativity	$\begin{array}{cccc} P \lor Q & \Leftrightarrow & Q \lor P \\ P \land Q & \Leftrightarrow & Q \land P \\ (P \Leftrightarrow Q) & \Leftrightarrow & (Q \Leftrightarrow P) \end{array}$
associativity	$ \begin{array}{cccc} (P \lor Q) \lor R & \Leftrightarrow & P \lor (Q \lor R) \\ (P \land Q) \land R & \Leftrightarrow & P \land (Q \land R) \\ ((P \Leftrightarrow Q) \Leftrightarrow R) & \Leftrightarrow & (P \Leftrightarrow (Q \Leftrightarrow R)) \end{array} $
distributivity	$\begin{array}{cccc} R \wedge (P \vee Q) & \Leftrightarrow & (R \wedge P) \vee (R \wedge Q) \\ R \vee (P \wedge Q) & \Leftrightarrow & (R \vee P) \wedge (R \vee Q) \\ R \Rightarrow (P \wedge Q) & \Leftrightarrow & (R \Rightarrow P) \wedge (R \Rightarrow Q) \\ (P \vee Q) \Rightarrow R & \Leftrightarrow & (P \Rightarrow R) \wedge (Q \Rightarrow R) \end{array}$

Eidgenössische Technische Hochschule Zürlich Swiss Federal Institute of Technology Zurich

CLASSICAL RESULTS (2)

excluded middle	$P \vee \neg P$
idempotence	$P \lor P \Leftrightarrow P$ $P \land P \Leftrightarrow P$
absorbtion	$ \begin{array}{ccc} (P \lor Q) \land P \Leftrightarrow P \\ (P \land Q) \lor P \Leftrightarrow P \end{array} $
truth	$(P \Leftrightarrow \top) \Leftrightarrow P$
falsity	$(P \Leftrightarrow \bot) \Leftrightarrow \neg P$

Bucharest, 14-16/07/10

CLASSICAL RESULTS (3)

de Morgan	$ \neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q) \neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q) \neg (P \land Q) \Leftrightarrow (P \Rightarrow \neg Q) \neg (P \Rightarrow Q) \Leftrightarrow (P \land \neg Q) $
contraposition	$ \begin{array}{ccc} (P \Rightarrow Q) & \Leftrightarrow & (\neg Q \Rightarrow \neg P) \\ (\neg P \Rightarrow Q) & \Leftrightarrow & (\neg Q \Rightarrow P) \\ (P \Rightarrow \neg Q) & \Leftrightarrow & (Q \Rightarrow \neg P) \end{array} $
double negation	$P \Leftrightarrow \neg \neg P$

CLASSICAL RESULTS (4)

transitivity	$(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$
monotonicity	$(P \Rightarrow Q) \Rightarrow ((P \land R) \Rightarrow (Q \land R))$ $(P \Rightarrow Q) \Rightarrow ((P \lor R) \Rightarrow (Q \lor R))$ $(P \Rightarrow Q) \Rightarrow ((R \Rightarrow P) \Rightarrow (R \Rightarrow Q))$ $(P \Rightarrow Q) \Rightarrow ((Q \Rightarrow R) \Rightarrow (P \Rightarrow R))$ $(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$
equivalence	$(P \Leftrightarrow Q) \Rightarrow ((P \land R) \Leftrightarrow (Q \land R))$ $(P \Leftrightarrow Q) \Rightarrow ((P \lor R) \Leftrightarrow (Q \lor R))$ $(P \Leftrightarrow Q) \Rightarrow ((R \Rightarrow P) \Leftrightarrow (R \Rightarrow Q))$ $(P \Leftrightarrow Q) \Rightarrow ((P \Rightarrow R) \Leftrightarrow (Q \Rightarrow R))$ $(P \Leftrightarrow Q) \Rightarrow (\neg P \Leftrightarrow \neg Q)$

: Hochschule Zürich .ef Technology Zurich

Syntax of our Predicate Language so far

```
predicate ::= \perp
                ¬ predicate
                predicate ∧ predicate
                predicate ∨ predicate
                predicate ⇒ predicate
                predicate ⇔ predicate
```

- The letter P, Q, etc. we have used are generic variables.
- Each of them stands for a *predicate*.
- All our proofs were thus also generic (able to be instantiated).

Refining our Language: Predicate Calculus

```
predicate
                   \neg predicate
                   predicate \( \) predicate
                   predicate ∨ predicate
                   predicate ⇒ predicate
                   predicate ⇔ predicate
                   \forall var \ list \cdot predicate
                   [var list := exp list] predicate
expression ::= variable
                   [var list := exp list] expression
                   expression \mapsto expression
variable ::= identifier
```


On Predicates and Expressions

- A Predicate is a formal text that can be PROVED.
- An Expression DENOTES AN OBJECT.
- A Predicate denotes NOTHING.
- An Expression CANNOT BE PROVED
- Predicates and Expressions are INCOMPATIBLE.

Predicate Calculus: Linguistic Concepts.

- Substitution and Universal Quantification.
- Free/Bound Occurrences.
- Inference rules.
- Extension

VARIABLES, PROPOSITIONS AND PREDICATES

- A Proposition: $8 \in \mathbb{N} \Rightarrow 8 \ge 0$
- A Predicate (*n* is a variable): $n \in \mathbb{N} \Rightarrow n \geq 0$

WHAT CAN WE DO WITH A PREDICATE?

Specialize it: Substitution

$$[n := 8] (n \in \mathbb{N} \Rightarrow n \ge 0)$$

$$\downarrow$$

$$8 \in \mathbb{N} \Rightarrow 8 > 0$$

• Generalize it: Universal Quantification

$$\forall n \cdot (n \in \mathbb{N} \Rightarrow n \geq 0)$$

SUBSTITUTION

Simple Substitution

$$[x := E]P$$

- x is a VARIABLE,
- E is an EXPRESSION.
- P is a PREDICATE,
- Denotes the predicate obtained by replacing all FREE OCCURRENCES of x by E in P.

UNIVERSAL QUANTIFICATION

Universal Quantification

$$\forall x \cdot P$$

- x is said to be the QUANTIFIED VARIABLE
- P forms the SCOPE of x
- To say that such a predicate is proved, is the same as saying that all predicates of the following form are proved:

$$[x := E]P$$

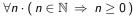
Free and Bound Occurrences

Occurrences of the variable n are FREE (substitutable) in:

$$n \in \mathbb{N} \Rightarrow n \ge 0$$

• Occurrences of the variable *n* are BOUND (not substitutable) in:

$$[n := 8] (n \in \mathbb{N} \Rightarrow n \ge 0)$$



Inference Rules for Predicate Calculus

$$\frac{ H, \ \forall x \cdot P, \ [x := E]P \ \vdash \ Q}{ H, \ \forall x \cdot P \ \vdash \ Q} \qquad \textbf{ALL_L}$$

where **E** is an expression

$$\frac{\mathsf{H} \; \vdash \; \mathsf{P}}{\mathsf{H} \; \vdash \; \forall \mathsf{x} \cdot \mathsf{P}} \quad \mathsf{ALL}_{\mathsf{R}}$$

In rule ALL_R, variable x is not free in H

Extending the language: Existential Quantification

```
predicate
                    ¬ predicate
                    predicate ∧ predicate
                    predicate ∨ predicate
                    predicate \Rightarrow predicate
                    predicate ⇔ predicate
                    ∀var list · predicate
                    \exists var \ list \cdot predicate
                    [var list := exp list] predicate
            ::= variable
expression
                    [var list := exp list] expression
                    expression \mapsto expression
variable ::= identifier
```


Rules of Inference for Existential Quantification

$$\frac{\mathsf{H},\ P\ \vdash\ Q}{\mathsf{H},\ \exists x\cdot P\ \vdash\ Q}\qquad \mathsf{XST_L}$$

• In rule XST L, variable x is not free in H and Q

$$\frac{\mathsf{H} \; \vdash \; [x := E]P}{\mathsf{H} \; \vdash \; \exists x \cdot P} \qquad \mathsf{XST_R}$$

where **E** is an expression

Comparing the Quantification Rules

$$\frac{\mathsf{H},\ \forall x \cdot P,\ [x := E]P \ \vdash \ Q}{\mathsf{H},\ \forall x \cdot P \ \vdash \ Q} \quad \mathsf{ALL_L}$$

$$\frac{H \vdash [x := E]P}{H \vdash \exists x \cdot P} \qquad XST_R$$

$$\frac{\mathsf{H} \; \vdash \; \mathsf{P}}{\mathsf{H} \; \vdash \; \forall \mathsf{x} \cdot \mathsf{P}} \quad \mathsf{ALL}_{\mathsf{R}}$$

$$\frac{\mathsf{H},\ P\ \vdash\ Q}{\mathsf{H},\ \exists x\cdot P\ \vdash\ Q}$$

XST_L

CLASSICAL RESULTS (1)

commutativity	$\forall x \cdot \forall y \cdot P \iff \forall y \cdot \forall x \cdot P$ $\exists x \cdot \exists y \cdot P \iff \exists y \cdot \exists x \cdot P$
distributivity	$\forall x \cdot (P \land Q) \Leftrightarrow \forall x \cdot P \land \forall x \cdot Q$ $\exists x \cdot (P \lor Q) \Leftrightarrow \exists x \cdot P \lor \exists x \cdot Q$
associativity	if x not free in P $P \lor \forall x \cdot Q \Leftrightarrow \forall x \cdot (P \lor Q)$ $P \land \exists x \cdot Q \Leftrightarrow \exists x \cdot (P \land Q)$ $P \Rightarrow \forall x \cdot Q \Leftrightarrow \forall x \cdot (P \Rightarrow Q)$

CLASSICAL RESULTS (2)

de Morgan laws	$ \neg \forall x \cdot P \Leftrightarrow \exists x \cdot \neg P \neg \exists x \cdot P \Leftrightarrow \forall x \cdot \neg P \neg \forall x \cdot (P \Rightarrow Q) \Leftrightarrow \exists x \cdot (P \land \neg Q) \neg \exists x \cdot (P \land Q) \Leftrightarrow \forall x \cdot (P \Rightarrow \neg Q) $
monotonicity	$\forall x \cdot (P \Rightarrow Q) \Rightarrow (\forall x \cdot P \Rightarrow \forall x \cdot Q) \forall x \cdot (P \Rightarrow Q) \Rightarrow (\exists x \cdot P \Rightarrow \exists x \cdot Q)$
equivalence	$\forall x \cdot (P \Leftrightarrow Q) \Rightarrow (\forall x \cdot P \Leftrightarrow \forall x \cdot Q)$ $\forall x \cdot (P \Leftrightarrow Q) \Rightarrow (\exists x \cdot P \Leftrightarrow \exists x \cdot Q)$

Summary of Logical Operators

$P \wedge Q$	¬P
$P \lor Q$	$\forall x \cdot P$
$P \Rightarrow Q$	$\exists x \cdot P$

Refining our Language: Equality

```
predicate
                  \neg predicate
                  predicate ∧ predicate
                  predicate ∨ predicate
                  predicate ⇒ predicate
                  predicate ⇔ predicate
                  ∀variable · predicate
                  ∃variable · predicate
                  [variable := expression] predicate
                  expression = expression
expression
variable
```


Equality Rules of Inference

$$\frac{[x := E]H, E = F \vdash [x := E]P}{[x := F]H, E = F \vdash [x := F]P}$$
EQ_RL

Rewriting rules:

Operator	Predicate	Rewritten
Equality	E = E	Т
Equality of pairs	$E \mapsto F = G \mapsto H$	$E = G \wedge F = H$

Classical Results for Equality

symmetry	$E = F \Leftrightarrow F = E$
transitivity	$E = F \wedge F = G \Rightarrow E = G$
One-point rules	if x not free in E $\forall x \cdot (x = E \Rightarrow P) \Leftrightarrow [x := E]P$ $\exists x \cdot (x = E \land P) \Leftrightarrow [x := E]P$

Refining our Language: Set Theory (1)

```
predicate ::= \perp
                  ¬ predicate
                  predicate ∧ predicate
                  predicate ∨ predicate
                  predicate ⇒ predicate
                  predicate ⇔ predicate
                  \forall var list · predicate
                  \exists var list · predicate
                  [var list := exp list] predicate
                  expression = expression
                  expression \in set
```


Refining our Language: Set Theory (2)

```
expression ::= variable
                    [var list := exp list] expression
                    expression \mapsto expression
                    set
variable ::= identifier
            := set \times set
set
                   \mathbb{P}(set)
                    { var | list · predicate | expression }
```

• When expression is the same as var list, the last construct can be written { var list | predicate }

Jean-Raymond Abrial (ETH-Zürich)

Set Theory

- Basis
 - Basic operators
- Extensions
 - Elementary operators
 - Generalization of elementary operators
 - Binary relation operators
 - Function operators

Set Theory: Membership

• Set theory deals with a new predicate: the membership predicate

$$E \in S$$

where E is an expression and S is a set

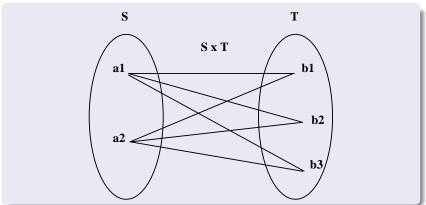
Set Theory: Basic Constructs

There are three basic constructs in set theory:

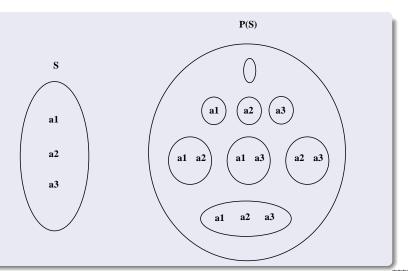
Cartesian product	$S \times T$
Power set	$\mathbb{P}(S)$
Comprehension 1	$\{x \cdot P \mid F\}$
Comprehension 2	{x P}

where S and T are sets, x is a variable and P is a predicate.

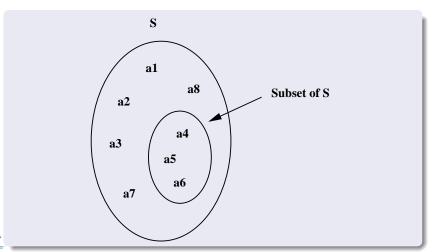
Cartesian Product



Power Set



Set Comprehension



Basic Set Operator Memberships (Axioms)

These axioms are defined by equivalences.

Left Part	Right Part
$E \mapsto F \in S \times T$	$E \in S \land F \in T$
$S \in \mathbb{P}(T)$	$\forall x \cdot (x \in S \Rightarrow x \in T)$ (x is not free in S and T)
$E \in \{x \cdot P \mid F\}$	$\exists x \cdot P \land E = F$ (x is not free in E)
$E \in \{x \mid P\}$	[x := E]P (x is not free in E)

Set Inclusion and Extensionality Axiom

Left Part	Right Part	
$S\subseteq T$	$S\in \mathbb{P}(T)$	
S = T	$S \subseteq T \land T \subseteq S$	

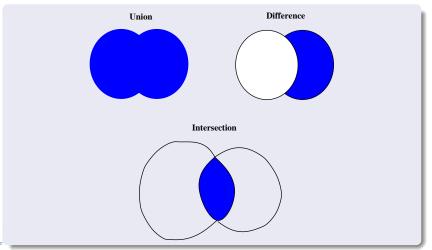
The first rule is just a syntactic extension

The second rule is the Extensionality Axiom

Elementary Set Operators

Union	S∪T
Intersection	<i>S</i> ∩ <i>T</i>
Difference	S\T
Extension	$\{a,\ldots,b\}$
Empty set	Ø

Union, Difference, Intersection



Elementary Set Operator Memberships

$E \in S \cup T$	$E \in S \ \lor \ E \in T$
$E \in S \cap T$	$E \in S \land E \in T$
$E \in S \setminus T$	$E \in S \land E \notin T$
$E \in \{a, \ldots, b\}$	$E = a \lor \ldots \lor E = b$
$E \in \emptyset$	Т

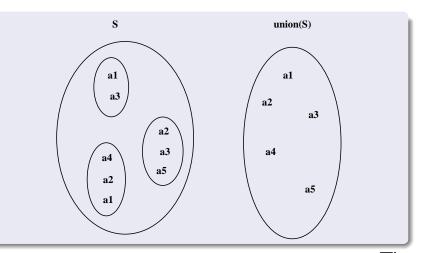
Summary of Basic and Elementary Operators

$S \times T$	$S \cup T$
$\mathbb{P}(S)$	$S\cap T$
$\{x \cdot P \mid F\}$	$S \setminus T$
$S\subseteq T$	$\{a,\ldots,b\}$
S = T	Ø

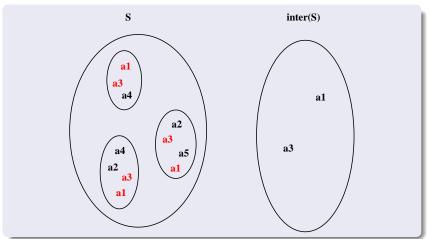
Generalizations of Elementary Operators

Generalized Union	union (S)
Union Quantifier	$\bigcup x \cdot (P \mid T)$
Generalized Intersection	inter(S)
Intersection Quantifier	$\bigcap x \cdot (P \mid T)$

Generalized Union

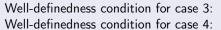


Generalized Intersection



Generalizations of Elementary Operator Memberships

$E \in \text{union}(S)$	$\exists s \cdot s \in S \land E \in s$ (s is not free in S and E)
$E \in (\bigcup x \cdot P \mid T)$	$\exists x \cdot P \land E \in T$ (x is not free in E)
$E \in inter(S)$	$\forall s \cdot s \in S \Rightarrow E \in s$ (s is not free in S and E)
$E \in (\bigcap x \cdot P \mid T)$	$\forall x \cdot P \Rightarrow E \in T$ (x is not free in E)



 $S \neq \emptyset$

Well-definedness condition for case 4: $\exists x \cdot P$

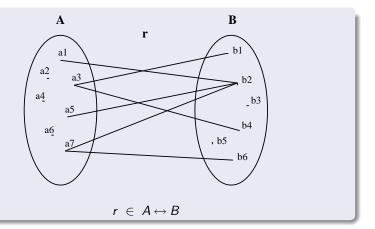
Summary of Generalizations of Elementary Operators

union (S) $\bigcup x \cdot P \mid T$ inter (S) $\bigcap x \cdot P \mid T$

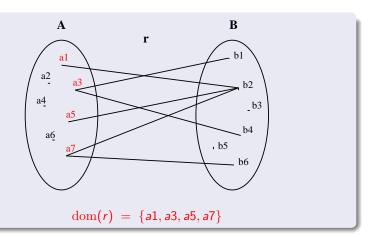
Binary Relation Operators (1)

Binary relations	$S \leftrightarrow T$
Domain	dom (<i>r</i>)
Range	ran (r)
Converse	r^{-1}

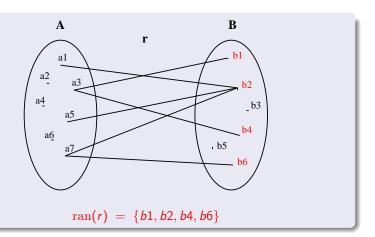
A Binary Relation r from a Set A to a Set B



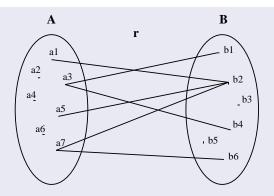
Domain of Binary Relation r



Range of Binary Relation r



Converse of Binary Relation r



$$r^{-1} = \{b1 \mapsto a3, b2 \mapsto a1, b2 \mapsto a5, b2 \mapsto a7, b4 \mapsto a3, b6 \mapsto a7\}$$

Binary Relation Operator Memberships (1)

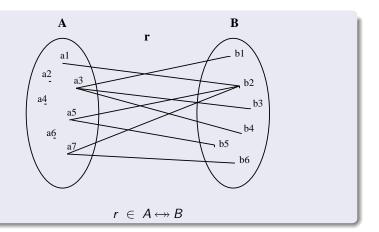
Left Part	Right Part
$r \in S \leftrightarrow T$	$r \subseteq S \times T$
$E \in dom(r)$	$\exists y \cdot E \mapsto y \in r$ (y is not free in E and r)
$F \in \operatorname{ran}(r)$	$\exists x \cdot x \mapsto F \in r$ (x is not free in F and r)
$E \mapsto F \in r^{-1}$	$F \mapsto E \in r$

73 / 120

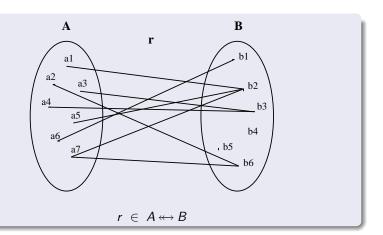
Binary Relation Operators (2)

Partial surjective binary relations	S ↔ T
Total binary relations	S ↔ T
Total surjective binary relations	S ↔ T

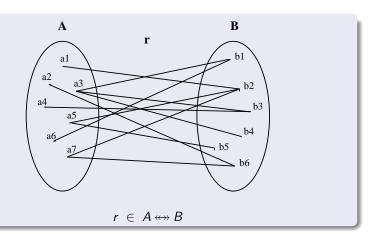
A Partial Surjective Relation



A Total Relation



A Total Surjective Relation



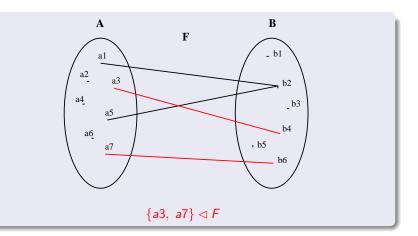
Binary Relation Operator Memberships (2)

Left Part	Right Part
$r \in S \leftrightarrow\!$	$r \in S \leftrightarrow T \wedge \operatorname{ran}(r) = T$
$r \in S \leftrightarrow T$	$r \in S \leftrightarrow T \wedge \mathrm{dom}(r) = S$
$r \in S \Leftrightarrow T$	$r \in S \leftrightarrow T \land r \in S \leftrightarrow T$

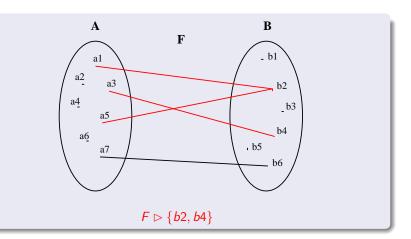
Binary Relation Operators (3)

Domain restriction	<i>S</i> ⊲ <i>r</i>
Range restriction	<i>r</i> ⊳ <i>T</i>
Domain subtraction	<i>S</i> ⊲ <i>r</i>
Range subtraction	<i>r</i> ⊳ <i>T</i>

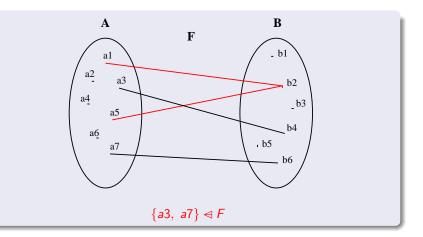
The Domain Restriction Operator



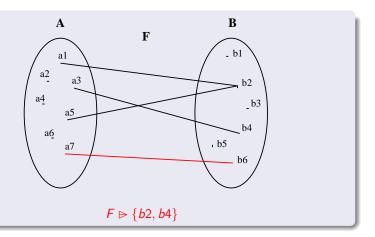
The Range Restriction Operator



The Domain Substraction Operator



The Range Substraction Operator



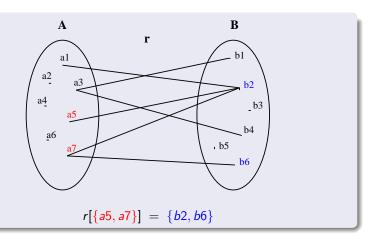
Binary Relation Operator Memberships (3)

Left Part	Right Part
$E \mapsto F \in S \triangleleft r$	$E \in S \land E \mapsto F \in r$
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \land F \in T$
$E \mapsto F \in S \triangleleft r$	$E \notin S \land E \mapsto F \in r$
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \land F \notin T$

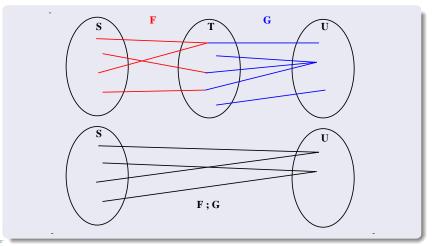
Binary Relation Operators (4)

Image	r[w]
Composition	p; q
Overriding	<i>p</i>
Identity	id (<i>S</i>)

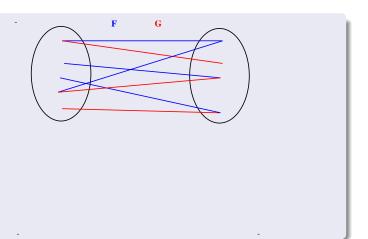
Image of $\{a5, a7\}$ under r



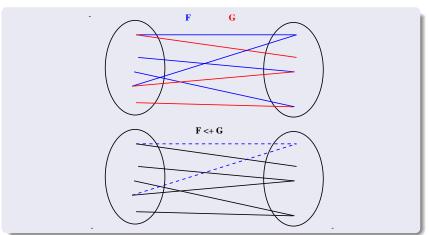
Forward Composition



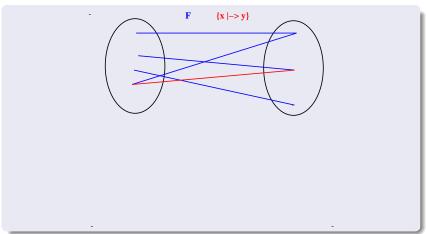
The Overriding Operator



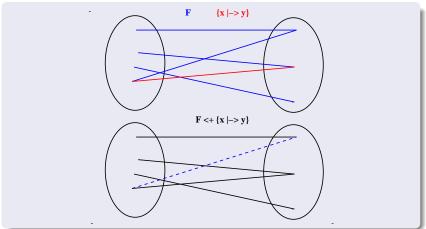
The Overriding Operator



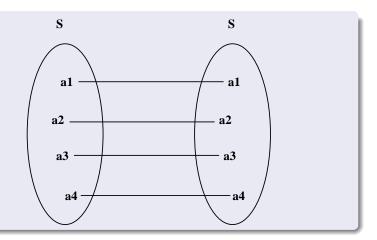
Special Case



Special Case



The Identity Relation



Binary Relation Operator Memberships (4)

$F \in r[w]$	$\exists x \cdot x \in w \land x \mapsto F \in r$ (x is not free in F, r and w)
$E \mapsto F \in (p;q)$	$\exists x \cdot E \mapsto x \in p \land x \mapsto F \in q$ (x is not free in E, F, p and q)
$E \mapsto F \in p \Leftrightarrow q$	$E \mapsto F \in (dom(q) \triangleleft p) \cup q$
$E \mapsto F \in id(S)$	$E \in S \land F = E$

Binary Relation Operators (5)

Direct Product	p⊗ q
First Projection	$prj_1(S,T)$
Second Projection	$\operatorname{prj}_2(S,T)$
Parallel Product	р q

Binary Relation Operator Memberships (5)

$E \mapsto (F \mapsto G) \in p \otimes q$	$E \mapsto F \in p \land E \mapsto G \in q$
$(E \mapsto F) \mapsto G \in \operatorname{prj}_1(S, T)$	$E \in S \land F \in T \land G = E$
$(E \mapsto F) \mapsto G \in \operatorname{prj}_2(S, T)$	$E \in S \land F \in T \land G = F$
$(E \mapsto G) \mapsto (F \mapsto H) \in p \parallel q$	$E \mapsto F \in p \land G \mapsto H \in q$

Summary of Binary Relation Operators

$S \leftrightarrow T$	<i>S</i> ⊲ <i>r</i>	r[w]	$prj_1(S,T)$
dom (r)	r⊳T	p; q	$\operatorname{prj}_2(S,T)$
ran (<i>r</i>)	<i>S</i> ⊲ <i>r</i>	<i>p</i>	id (<i>S</i>)
r ⁻¹	r ⊳ T	p⊗q	p q

Classical Results with Relation Operators

$$r^{-1-1} = r$$

$$dom(r^{-1}) = ran(r)$$

$$(S \triangleleft r)^{-1} = r^{-1} \triangleright S$$

$$(p;q)^{-1} = q^{-1}; p^{-1}$$

$$(p;q); r = q; (p;r)$$

$$(p;q)[w] = q[p[w]]$$

$$p; (q \cup r) = (p;q) \cup (p;r)$$

$$r[a \cup b] = r[a] \cup r[b]$$

Hochschule Zürleh echnology Zurich

More classical Results

Given a relation r such that $r \in S \leftrightarrow S$

$$r = r^{-1}$$

r is symmetric

$$r \cap r^{-1} = \emptyset$$

r is asymmetric

$$r \cap r^{-1} \subseteq \mathrm{id}(S)$$

r is antisymmetric

$$id(S) \subseteq r$$

r is reflexive

$$r \cap id(S) = \emptyset$$

r is irreflexive

$$r; r \subseteq r$$

r is transitive

Translations into First Order Predicates

Given a relation r such that $r \in S \leftrightarrow S$

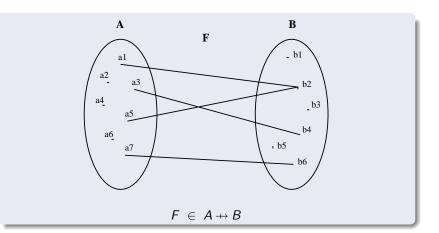
$$\begin{array}{ll} r = r^{-1} & \forall x, y \cdot x \in S \land y \in S \Rightarrow \left(x \mapsto y \in r \Leftrightarrow y \mapsto x \in r\right) \\ r \cap r^{-1} = \varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow y \mapsto x \notin r \\ r \cap r^{-1} \subseteq \operatorname{id}(S) & \forall x, y \cdot x \mapsto y \in r \land y \mapsto x \in r \Rightarrow x = y \\ \operatorname{id}(S) \subseteq r & \forall x \cdot x \in S \Rightarrow x \mapsto x \in r \\ r \cap \operatorname{id}(S) = \varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow x \neq y \\ r; r \subseteq r & \forall x, y, z \cdot x \mapsto y \in r \land y \mapsto z \in r \Rightarrow x \mapsto z \in r \end{array}$$

Set-theoretic statements are far more readable than predicate calculus statements

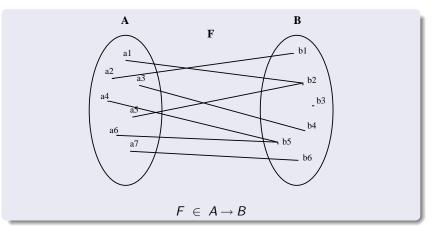
Function Operators (1)

Partial functions	$S \leftrightarrow T$
Total functions	S o T
Partial injections	$S \rightarrowtail T$
Total injections	$S \rightarrowtail T$

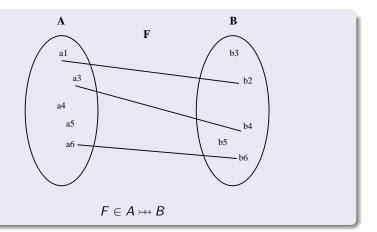
A Partial Function F from a Set A to a Set B



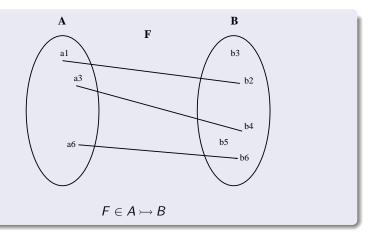
A Total Function F from a Set A to a Set B



A Partial Injection F from a Set A to a Set B



A Total Injection F from a Set A to a Set B



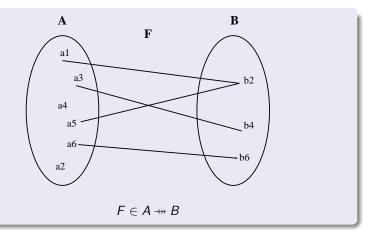
Function Operator Memberships (1)

Left Part	Right Part		
$f \in S \leftrightarrow T$	$f \in S \leftrightarrow T \land (f^{-1}; f) = id(ran(f))$		
$f \in S \rightarrow T$	$f \in S \rightarrow T \land s = dom(f)$		
$f \in S \rightarrowtail T$	$f \in S \rightarrow T \land f^{-1} \in T \rightarrow S$		
$f \in S \rightarrow T$	$f \in S \to T \land f^{-1} \in T \to S$		

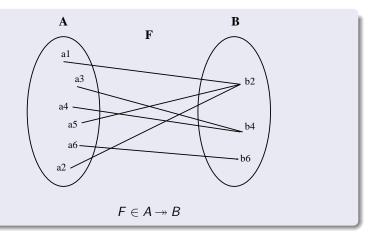
Function Operators (2)

Partial surjections	S -+-> T
Total surjections	S → T
Bijections	S → * T

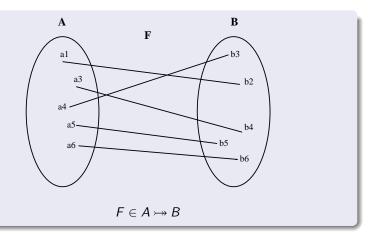
A Partial Surjection F from a Set A to a Set B



A Total Surjection F from a Set A to a Set B



A Bijection F from a Set A to a Set B



Function Operator Memberships (2)

Left Part	Right Part
$f \in S \twoheadrightarrow T$	$f \in S \rightarrow T \land T = \operatorname{ran}(f)$
$f \in S \twoheadrightarrow T$	$f \in S \to T \land T = \operatorname{ran}(f)$
$f \in S \rightarrowtail T$	$f \in S \rightarrow T \land f \in S \twoheadrightarrow T$

Summary of Function Operators

$S \leftrightarrow T$	S -+-> T
S o T	S → T
$S \rightarrowtail T$	<i>S</i> → <i>T</i>
$S \rightarrowtail T$	

Summary of all Set-theoretic Operators (40)

S × T	$S \setminus T$	r ⁻¹	r[w]	id (S)	$\{x \mid x \in S \land P\}$
$\mathbb{P}(S)$	$S \leftrightarrow T$ $S \leftrightarrow T$	5 ⊲ r 5 ⊲ r	p; q	$S \leftrightarrow T$ $S \to T$	$\{x \cdot x \in S \land P \mid E\}$
$S\subseteq T$	$S \leftrightarrow\!$	r ⊳ T r ∋ T	<i>p</i>	$S \rightarrowtail T$ $S \rightarrowtail T$	{ a, b,, n}
$S \cup T$	dom(r) $ran(r)$	prj ₁	p⊗q	S → T S → T	union U
$S \cap T$	Ø	prj ₂	p q	S >→ T	inter

Applying a Function

Given a partial function f, we have

Left Part	Right Part
F = f(E)	$E \mapsto F \in f$

Well-definedness condition: $E \in dom(f)$

Example: a Very Strict Society

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

Formal Representation

```
men ⊆ PERSON
```

 $women = PERSON \setminus men$

husband ∈ women → men

 $mother \in PERSON \rightarrow dom(husband)$

- Every person is either a man or a woman.
- But no person can be a man and a woman at the same time.
- Only women have husbands, who must be a man.
- Woman have at most one husband.
- Likewise, men have at most one wife.
- Moreover, mother are married women.

Formal Representation

```
men \subseteq PERSON
women = PERSON \setminus men
husband \in women \mapsto men
mother \in PERSON \rightarrow dom(husband)
```

- Every person is either a man or a woman.
- But no person can be a man and a woman at the same time.
- Only women have husbands, who must be a man.
- Woman have at most one husband.
- Likewise, men have at most one wife.
- Moreover, mother are married women.

Formal Representation

```
men \subseteq PERSON
women = PERSON \setminus men
husband \in women \mapsto men
mother \in PERSON \rightarrow dom(husband)
```

- Every person is either a man or a woman.
- But no person can be a man and a woman at the same time.
- Only women have husbands, who must be a man.
- Woman have at most one husband.
- Likewise, men have at most one wife.
- Moreover, mother are married women.


```
men ⊆ PERSON
```

$$husband \in women \rightarrowtail men$$

$$mother \in PERSON \rightarrow dom(husband)$$

$$wife = husband^{-1}$$

Bucharest, 14-16/07/10

```
men ⊆ PERSON
```

$$husband \in women \rightarrowtail men$$

$$mother \in PERSON \rightarrow dom(husband)$$

$$wife = husband^{-1}$$

Bucharest, 14-16/07/10

men ⊆ PERSON

women = PERSON \ men

 $husband \in women \rightarrowtail men$

 $mother \in PERSON \rightarrow dom(husband)$

 $wife = husband^{-1}$

 $spouse = husband \cup wife$

father = mother; husband

men ⊆ PERSON

women = PERSON \ men

 $husband \in women \rightarrowtail men$

 $mother \in PERSON \rightarrow dom(husband)$

 $wife = husband^{-1}$

 $spouse = husband \cup wife$

father = mother; husband


```
men \subseteq PERSON
women = PERSON \setminus men
husband \in women \mapsto men
mother \in PERSON \to dom(husband)
```

```
father = mother; husband
children = (mother \cup father)^{-1}
daughter = children \triangleright women
sibling = (children^{-1}; children) \setminus id(PERSON)
```


Hochschule Zürleh echnology Zurich

```
men ⊂ PERSON
```

women = PERSON \ men

husband ∈ women >→ men

 $mother \in PERSON \rightarrow dom(husband)$

```
father = mother: husband
```

$$children = (mother \cup father)^{-1}$$

daughter = children > women

 $sibling = (children^{-1}; children) \setminus id(PERSON)$

Bucharest, 14-16/07/10

```
men ⊂ PERSON
women = PERSON \ men
husband ∈ women >→ men
mother \in PERSON \rightarrow dom(husband)
```

```
father = mother: husband
children = (mother \cup father)^{-1}
daughter = children > women
sibling = (children^{-1}; children) \setminus id(PERSON)
```


Hochschule Zürleh

```
men \subseteq PERSON
women = PERSON \setminus men
husband \in women \mapsto men
mother \in PERSON \rightarrow dom(husband)
```

```
father = mother; husband children = (mother \cup father)^{-1} daughter = children \triangleright women sibling = (children^{-1}; children) \setminus id(PERSON)
```


Hochschule Zürleh echnology Zurich

Exercises. To be defined

$$brother = ?$$
 $sibling - in - law = ?$
 $nephew - or - niece = ?$
 $uncle - or - aunt = ?$
 $cousin = ?$

Exercises. To be proved

```
mother = father; wife
spouse = spouse^{-1}
sibling = sibling^{-1}
cousin = cousin^{-1}
father; father^{-1} = mother; mother^{-1}
father : mother^{-1} = \varnothing
mother; father^{-1} = \emptyset
father : children = mother : children
```


For Further Reading I

J-R. Abrial.

Modeling in Event-B: System and Software Engineering, Chapter 9 — Mathematical Language.

CUP, 2010.

