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Abstract. In this paper we describe our ongoing research on Event-B 

specification metrics. We focus on the physical features of specification, such 

as its vocabulary or length for the Event-B machines. We base our metrics on 

the syntactic properties of the Event-B language, namely operators and 

operands that we consider meaningful for our measurement model. Presented 

metrics are applied for a number of Event-B machines. Obtained results can be 

analysed in a perspective of an abstract machine and its refinements. 
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1 Introduction 

Measurements for software systems and their development process are nowadays a 

good practice in the computer world [1] [2]. They are a part of software projects in 

order to assure certain quality [3] or even for standardisation purposes. They have 

been evolved for many years, extended for particular development methods like 

Object-Oriented programming [4] [5] or narrowed down to meet the needs of specific 

programming languages, like Java Programming Language [6]. Quality measurements 

are done not only at the end-product stage, but much earlier, for the requirements [7] 

or (formal) model of the system [8]. Early quality assessment has major influence on 

the final product, as there is a thorough control over the whole development process. 

Research on metrics for formal specifications has already been done for the Z 

language. In [9] authors perform static analysis of Z specification notation, whereas in 

[10] the focus is on the linguistic properties of the notation and predicting erroneous 

parts of specifications created in Z. There has also been done an assessment for B 

language [11], where existing metrics concerned mostly traceability and safety 

analyses, proof related metrics and direct statistics, like number of LOC (lines of 

code), variables in a component or imported components. However, it has been 

observed that there is still a need for metrics in the early phase of the development 

[12]. The primary users of our metrics are anticipated to be managers, who would be 

able to analyse the project in its initial stage. Obtained information would then serve 

as a benchmark of how the current approach influences the specification statistics and, 
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ideally, allow gathering experience on process of developing such specification. The 

development team could also benefit from metrics, which could be present already 

when creating a specification and assist developers with specification’s analysis later 

on. To the best of our knowledge only direct statistics, like numbers of LOC, 

automatic and interactive proofs, invariants, theorems, refinement steps and the like, 

are gathered. It would be valuable to provide more elaborated metrics that would help 

specification analysis and assessment and in the future possibly deal with more 

involved characteristics, e.g. complexity of the specification or effort prediction. 

Event-B is a formal method and a specification language, which is used for system-

level modelling and analysis [13]. It is supported by a tool called Rodin Platform, 

which is an Integrated Development Environment based on Eclipse framework. An 

Event-B specification consists of a machine and its context that depict the dynamic 

and the static part of the specification, respectively. The dynamic model defines the 

state variables, as well as the operations on these. The context, on the other hand, 

contains the sets and constants of the model with their properties and is accessed by 

the machine through the SEES relationship [14]. At this point of our research on 

metrics we concentrate on the machine only, because we consider machine 

measurements as a first step towards establishing global Event-B specification metrics.  

Since Rodin Platform enables users to obtain LaTeX version of the Event-B 

specifications, herein machines, we can process each of such files in an automated 

way. We have implemented a script [15], which parses each of the machine LaTeX 

file and gathers the statistics about its contents. We perform data collection from the 

variables and events sections of the machine, as these are crucial for obtaining the 

information for our metrics. When the metrics are fully developed, they will be 

incorporated in a Rodin metrics plugin.  

In our work we focus on the syntactical properties of the specification at the source 

code level. We benefit from the existing code metrics and incorporate them to our 

early stage development measurements. We derive from Halstead’s metrics [16], 

which describe a program as a collection of tokens that can be classified as either 

operators or operands. These metrics are used to determine a quantitative measure, 

e.g. program length, vocabulary size, program volume or complexity directly from the 

source code [17]. Empirical studies show that standard Halstead metric is a good 

estimate for program length, provided that the data needed for the equations are 

available. This means that the program should be (almost) completed, which seems to 

be a downside of this metric that we are aware of. However, it can be useful in 

gathering the information about a size of a program after the coding process as well. It 

should also be mentioned that there have been strong debates and criticism on the 

methodology and the derivations of equations [18]. We think that with certain degree 

of modification this metric is worth conducting experiments and could demonstrate to 

be useful in the domain of (formal) specifications. To our knowledge, no 

experimentation with Halstead metrics for formal specifications has been done yet. 

We use the objectives of the Halstead model and carefully adjust them to Event-B 

language specifics. Our motivation is that the Event-B syntax is appropriate to be 

experimented with in terms of Halstead metrics, as it contains all primitives needed 

for further computations. We believe that experimenting with syntactical metrics 
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originating from a programming language will occur to be successful in Event-B case 

and the results of this investigation will be meaningful.  

Our paper is structured as follows. In Section 2, we describe our concept of metrics 

for Event-B machines. Then we illustrate it with an example in Section 3. We 

conclude and present plans for the continuation our work in Section 4.  

2 Metrics for Event-B specification 

We derive our metric for Event-B machines from the Halstead model [16], which we 

now shortly depict. The model is constructed based on a collection of tokens: 

operators and operands, where four primitive measures can be distinguished: 

n1 – number of distinct operators in a program, 

n2 - number of distinct operands in a program, 

N1 – number of operator occurrences, 

N2 - number of operand occurrences. 

These primitive measures are a foundation of Halstead model, which consists of 

equations expressing the vocabulary, overall program length, potential minimum 

volume for an algorithm and the difficulty level, which indicates software complexity. 

Moreover, program difficulty, as well as other features like development effort can be 

specified with given primitive measures. One needs to take into account that accuracy 

and behaviour of this model varied between its application domains.   

At this point of our research we consider only the machine part of the Event-B 

specification, focusing on variables and events blocks. Although we presume that 

refinement has an impact on the qualitative and quantitative aspects of the 

specification, currently, for the simplicity reasons, we do not take it into 

consideration. It is planned as a part of our future work.  

In order to be able to adjust Halstead model to Event-B environment we have to 

make several assumptions. Firstly, we decide upon meaningfulness of operators [19] 

[20]. As an operator we consider unary operators, binary operators except functions, 

range operator (symbol ..), forward composition (symbol ;), parallel product (symbol 

||) and direct product (symbol ). We also consider quantifiers, except separators for 

set comprehension and bounded qualification (symbols | and . respectively), to be 

operators in our model. The full list of language operators can be found in the 

language description [21]. We gather the data about the number of distinct operators 

(n1), as well as the number of their occurrences (N1).  

Secondly, we determine the operands, which we chose to be witnesses and variables 

[21]. We count the number of unique operands (n2) and the number of their appearances 

(N2) respecting their visibility rules. If a witness name appears in several events in a 

single machine, each of such occurrences is distinct due to the scope. Witnesses are 

visible only inside a single event, whereas variables are global for the machine.  

Having defined primitive measures, we identify several metrics for specification’s 

machine measurements and list them after their description. It is worth mentioning 

that these metrics do not depend on text formatting, like in a case of using LOC as a 

machine size metric. They are more credible, as the primitive measures are clearly 
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defined. For comparison in case of LOC it might not be obvious whether to include 

comments or data definitions to the size computations [22] [23], unless well defined.  

We find the metrics of Halstead [16] suitable for our case. The size of a machine’s 

vocabulary (n) is defined as a sum of distinct operators and operands (1). A machine’s 

size (N) is a sum of operator and operand occurrences (2). Next metric, a machine’s 

volume (V), represents the information contents of the program, i.e. the size of the 

code of a machine. The calculation of V is based on the number of operations and 

operands present in the machine (3). Another metric, difficulty level D, representing 

the difficulty experienced during writing a specification, is proportional to the number 

of distinct operators n1 and occurrences of operands N2, and inversely proportional to 

the number of distinct operands n2 (4). Other Halstead metrics are anticipated in our 

future work. 

(1) n = n1 + n2 

(2) N = N1 + N2 

(3) V = N * log2(n) 

(4) D = (n1/2) * (N2/n2) 

3 Experimental setup and preliminary results  

We apply presented metrics to an abstract machine and its subsequent refinements in 

order to perform comparative study and evaluation of the obtained results. This 

enables us to quantitatively assess the machine development from its physical 

characteristics point of view. 

Our methodology was applied to a number of specifications created by Space 

Systems Finland within the European Project DEPLOY. We performed a single 

domain experiment, with the same type of the development and the same staff. This 

made the investigation more credible, as we reduced the number of experiment 

variables that could skew the overall results.  

Table 1. SSF BepiColombo Specification, Version 5.0 – measurements 

Metric M00 M01 M02 M03 M04 M05 M06 M07 

n1 2 5 0 3 4 0 5 9 

N1 7 69 0 7 11 0 44 22 

n2 19 48 13 21 21 18 85 31 

N2 89 360 30 104 61 28 419 116 

n 21 53 13 24 25 18 90 40 

N 96 429 30 111 72 28 463 138 

V 422 2457 111 509 334 117 3006 734 

D 5 19 - 7 6 - 12 17 

LOC 231 758 455 599 538 477 1132 783 

Table 1 presents the data obtained from BepiColombo specification Version 5.0, 
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uploaded by SSF to the BSCW repository on the 2
nd

 May, 2009. The analysis of 

gathered statistics considers also the number of lines of code (LOC), which we 

defined as non empty and non-comment LOC. The hyphen in the D row indicates that 

there were only skip events in the corresponding machine, which arithmetically 

means that the result of the computation was not a number.  

There is a strong correlation between the vocabulary size n and length N of each 

machine, where n is always less or equal than N. This is a direct consequence of the n 

and N definitions. Moreover, a positive relationship of n and N concerning other 

statistics, like number of events (also actions) can be observed. There is a strong 

correlation between volume and formerly mentioned machine size metrics (N, n, 

LOC), which is particularly visible when logarithmic scale is used in the diagrams. 

Therefore V could be used as a meaningful size metric. 

The difficulty level characteristic is proportional to the number of unique operators 

in the program, so also to vocabulary size. There seems to be a correlation between D 

and Interactive Proof Obligations, however it is not strong enough to be a complete 

basis for a quality prediction model. Therefore, it needs to be further investigated. 

The Halstead metrics for Event-B specifications have to be verified on more 

examples. We will pursue the search for possible relations with other indicators, e.g. 

number of requirements covered. 

4 Conclusions and future work directions 

Our metrics for Event-B should provide better understanding of specifications’ 

physical features. They could facilitate early-stage development analysis of an 

abstract specification and its consecutive refinements. Such metrics could be used as a 

basis for further, indirect measurements, like predictions of time and human resources 

necessary for a development.  

In our paper we proposed a quantitative approach to assess Event-B specifications. 

We described several metrics for the machine part of a specification adjusted to the 

specifics of the Event-B language. Moreover, we have implemented a script for 

automatic data collection and ran it against existing specification.  

As a continuation of our research we plan to check the validity of presented metrics 

on a bigger number of machines (specifications) and discuss the obtained results with 

the designers. We want to modify the models of the machine metrics if needed, i.e. 

when not fully expressing the results or not entirely reflecting the developer’s 

intuition. We also need to create metrics for the context part of the specification. This 

would enable us to create a set of global metrics, which take under consideration 

complete Event-B specification, i.e. both context and machine, so that it can be 

analysed as a whole. We also need to incorporate refinement into our model in order 

to analyse the accumulated Event-B developments, which can be done e.g. using the 

Breiman’s random forest theory [24]. 

Since software is becoming larger and more complex nowadays, the metrics we 

proposed could be used for building a complexity model for Event-B specification. 

Handling complexity already at the beginning of the project would benefit not only 
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the design process as such, but also later on, e.g. in programming or maintenance 

phases. It would also serve as early development data to managers. 
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