
Mathematical Extension in Event-B through the

Rodin Theory Component

Michael Butler, Issam Maamria

DRAFT: 8 June 2010

1 Introduction

This paper outlines how some of the concepts proposed in [1] to deal with math-
ematical extension in Event-B will be realised in Rodin from a user perspective.
We show the theory component, currently defined by the rule-based prover plug-
in, will be extended to allow for new basic predicate definitions, new operator
definitions and new inductive data type definitions. The theory component will
also support the definition of rewrite rules and inference rules to be used by the
rule-based prover.

Mostly the document reflects the outcome of the WP9 meeting in Southamp-
ton on 6 May 2010. Various people contributed to the discussion, including Ste-
fan Hallerstede, Alexei Iliasov, Michael Leuschel, Matthias Schmalz and Laurent
Voisin.

The first version of mathematical extension will not support the declaration
of user defined binders nor will it support rules that require substitution for
variables. These will be added later. These proposals do not include support
for dependant types nor predicate sub-typing.

2 Theory component

A theory component has a name, a list of global type parameters (global to the
theory), and an arbitrary number of definitions and rules:

theory name
type parameters T1, . . . , Tn

{ 〈Basic Predicate Definition〉
| 〈 Operator Definition〉
| 〈 Data Type Definition〉
| 〈 Rewrite Rule〉
| 〈 Inference Rule〉 }

1

We look at each form of definition and rule in turn in the following sections.
In the following it is important to recall that the mathematical language has
two syntactic categories, expressions and predicates.

3 Defining new basic predicates

A basic predicate is a property on one or more expressions. For example, the
predicate x divides y holds when x is an integer divisor of y. This predicate is
defined in the following way:

predicate divides
infix
args x,y
condition x ∈ N ∧ y ∈ N
definition ∃a · y = a× x

This declares a new basic predicate divides. It is declared as infix with
two argments x and y. This declaration makes the predicate E divides F
syntactically valid for integer expressions E and F . The condition specifies a
well-definedness condition – in this case that x and y must be naturals. The
argument types are inferred from the condition – in this case it is inferred that
x and y are of type Z. The final clause provides the definition of x divides y.
That is, we have

x divides y ⇐⇒ ∃a · y = a× x

A new basic predicate can be infix or prefix. For example, if divides had
been declared as prefix, then divides(E,F) would become syntactically valid.
An infix predicate must have exactly two arguments.

Though in this case the arguents are typed with the predefined type Z, in
general arguments may be typed using some of the type parameters defined for
the theory which makes the predicate polymorphic on those type parameters.

The general structure of a basic predicate definition is as follows:

predicate Identifier
(prefix | infix)
args x1, . . . , xn

condition P (x1, . . . , xn)
definition Q(x1, . . . , xn)

4 Defining new operators

While a basic predicate forms a predicate from a number of expressions, an
operator forms an expression from a number of expressions. We consider an
example involving the representation of sequences as functions whose domains
are contiguous ranges of naturals starting at 1, i.e., functions from (1..n)→ T .
The seq operator takes a set s and yields all sequences whose members are in s:

2

operator seq
prefix
args s
condition s ⊆ T
definition { f, n · f ∈ (1..n)→ s | f }

Here seq is declared to be a prefix operator with a single argument represented
by s. The well-definedness condition declares s to be a subset of a global type
parameter T . Since T is a type parameter, this means that seq is polymorphic
on type T . The final clause defines the expression seq(T) in terms of the existing
expression language. The definition means we have that:

seq(s) = { f, n · f ∈ (1..n)→ s | f }

Here is an example of another prefix operator size that yields the size of a
sequence:

operator size
prefix
args m
condition m ∈ seq(T)
definition card(m)

Proof obligations are generated to verify the well-definedness of definitions.
For example, the definition of size leads to a proof obligation requiring that
card(m) is well-defined whenever m ∈ seq(T). This is provable from the condi-
tion that m is a sequence since any element of seq(T) has a finite domain and
card(m) is well-defined when m is finite (in Section 6 this is expressed as in
inference rule).

Operators may be infix in which case they may be declared to be associa-
tive and commutative. For example, the concatenation operator on sequences,
declared as follows, is associative:

operator _

infix assoc
args m, n
condition m ∈ seq(T) ∧ n ∈ seq(T)
definition m ∪ { i, x · i 7→ x ∈ n | size(m) + i 7→ x }

The general form of an operator definition is as follows:

operator Identifier
(prefix | infix) [assoc] [commut]
args x1, . . . , xn

condition P (x1, . . . , xn)
definition E(x1, . . . , xn)

The core mathematical language will be extended with conditional expres-
sions for use in operator definitions. For example, the max operator, that yields
the maximum of two integers, is defined using a conditional expression as fol-
lows:

3

operator max
infix assoc commut // declare max to be associative and commutative
type parameters T
args x, y
condition x ∈ Z ∧ y ∈ Z
definition if x ≥ y then x else y

Declaring an operator to be associative and commutative gives rise to proof
obligations to verify these properties. Since the Rodin provers automatically
make use of commutativity and associativity properties of operators, to avoid
circular proofs, the proof obligations must be specified in terms of the operator
definition rather than the operator itself, e.g., the above declaration of max will
give rise to the following commutativity proof obligation:

if x ≥ y then x else y = if y ≥ x then y else x

5 Rewrite Rules

A rewrite rule is used in automatic or interactive proof to rewrite an expression
or predicate in order to faciliate proof. A rewrite involves a left hand pattern
and one or more right hands. Each right hand may be guarded by some condi-
tion. For example, the following rewrite rule defines two ways of rewriting the
expression card(i..j) depending on a condition on i and j:

rewrite CardIntegerRange
auto manual complete
vars i, j
condition i ∈ Z ∧ j ∈ Z
lhs card(i..j)
rhs

i ≤ j j − i + 1
i > j 0

This declaration allows the rewrite to be deployed by the rule-based prover
plug-in. The above declaration means that the rewrite rule can be used in
automatic and interactive proof modes. The ‘complete’ declaration means that
the disjunction of the guards must be true. The variables of the rule (i and
j) serve as meta variables that can be matched with any expression of the
appropriate type. The condition clause is used to type the variables of rule. For
details of the proof obligations associated with rewrites and details of how the
rule-based prover applies rewrite rules see [2].

The general form of a rewrite rule for expressions is as follows:

rewrite Name
[auto] [manual] [complete]
vars x1, . . . , xn

condition P (x1, . . . , xn)

4

lhs E(x1, . . . , xn)
rhs

Q1(x1, . . . , xn) E1(x1, . . . , xn)
...

...
Qm(x1, . . . , xn) Em(x1, . . . , xn)

The general form for predicates is as follows:

rewrite Name
[auto] [manual] [complete]
vars x1, . . . , xn

condition P (x1, . . . , xn)
lhs R(x1, . . . , xn)
rhs

Q1(x1, . . . , xn) R1(x1, . . . , xn)
...

...
Qm(x1, . . . , xn) Rm(x1, . . . , xn)

Currently the predicates may not contain predicate variables though this
will be addressed in the future.

6 Inference Rules

An inference rule has a list of hypothesis and a consequent. It is parameterised
by one or more variables. For example, the following inference rule has two
hypotheses and a consequent that may be inferred from the hypotheses:

rule FiniteSeq
vars s, m
given

s ⊆ T
m ∈ seq(s)

infer
finite(m)

The rule declaration gives rise to a soundness proof obligation.
Here is another inference rule showing that sequence concatenation is closed

for elements of seq(s):

rule Concat1
vars s, m, n
given s ⊆ T

m ∈ seq(s)
n ∈ seq(s)

infer m _ n ∈ seq(s)

The general form of an inference rule is as follows:

5

rule Name
vars x1, . . . , xn

given
P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn)

infer
Q(x1, . . . , xn)

7 Defining new datatypes

A new datatype declaration defines a new type constructor together with con-
structor and destructor functions for elements of the new type. For example the
usual inductive list type constructor is defined as follows:

datatype List
type args T
constructors

nil
cons(head : T, tail : List(T))

This defines

• A new type constructor List : List(T) becomes a type for any type T .

• A set operator List : List(s) is a set expression – the set of lists whose
members are in set s

• Two constructors nil and cons

• Two destructors head and tail

• An induction principle on List

Proof by induction will be supported though a special reasoner that will
generate an induction scheme for any particular hypothesis or goal of a proof.

The general form of an inductive data definition is as follows:

datatype Ident
type args T1 . . . Tn

constructors
c1(d1

1 : E1
1 , · · · , dj

1 : Ej
1)

...
cm(d1

m : E1
m, · · · , dk

m : Ek
m)

Here Ei
j is a type expression that may include occurrences of the type being

defined Ident(T1 . . . Tn). If Ei
j does include occurrences of Ident(T1 . . . Tn), then

Ei
j must be finitary, i.e., Ei

j is Ident(T1 . . . Tn) or is formed from a cartesian
product or an existing inductive data type.

6

8 Pattern matching with datatypes

When defining basic predicates and operators on inductive types, the usual
pattern matching may be used. For example the size function on inductive lists
is defined as follows:

operator size
prefix
args a
condition a ∈ List(T)
definition

match a
nil 0

cons(x, b) 1 + size(b)

Since a is of type List(T) the argument a may be matched against each of the
constructors for List.

Here is an example of an operator definition that removes duplicates in a
list. It is dfined using a conditional expression:

operator remdup
prefix
args a
condition a ∈ List(T)
definition

match a
nil nil

cons(x, b) if member(x, b) then remdup(b) else cons(x, remdup(b))

General definition: to be done.

9 Fixed Point definitions

The proposals in [1] suggests a functional predicate definition form where an
operator is defined as the solution of some predicate. Rather than supporting
this more general form initially, we propose a special case, namely a fixed point
definition (based on a suggestion by Laurent). For example, transitive closure
of a relation may be defined as follows:

operator tcl
prefix
type parameters T
args r
condition r ∈ T ↔ T
fixpoint y where

r ∪ r; y
order { a 7→ b | a ∈ T ↔ T ∧ a ⊆ b }

7

This defines tcl(r) to be the least (under the ⊆ ordering) relation satisfying

y = r ∪ r; y

The fixpoint definition will lead to the following rewrites and inference rules
being automatically declared:

rewrite tcl(r) r ∪ r; tcl(r)

rewrite r ∪ r; tcl(r) tcl(r)

rule
given r ∪ r; z ⊆ z
infer tcl(r) ⊆ z

The general definitions is as follows:

operator Ident
prefix
type parameters T1, . . . , Tn

args x1, . . . , xn

condition P (x1, . . . , xn)
fixpoint y where

E(y, x1, . . . , xn)
order O

The definition will lead to proof obligations as follows:

monotonicity : y 7→ y′ ∈ O ⇒ E(y, x1, . . . , xn) 7→ E(y′, x1, . . . , xn) ∈ O
partial order : O is a partial order

10 Records and Data Types

Data type definitions support the definition of variant records: the constructors
define the separate forms that a record might take while the destructors provide
a means of accessing the fields of a record. The essential difference between this
and the current records plug-in is that data types are polymorphic, e.g., we may
have lists of integers and lists of names co-existing in the same Event-B model,
whereas the records as defined by the records plug-in are not polymorphic. Also
the datatypes will come with an induction principle in the case of recursive data
types. Later we will explore whether a datatype declaration can be constructed
automatically by the records plug-in from the existing records syntax (in a way
that is syntactically backwards compatible with the existing records plug-in
syntax).

8

References

[1] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Michael Leuschel,
Matthias Schmalz, and Laurent Voisin. Proposals for Mathematical Exten-
sions for Event-B. http://deploy-eprints.ecs.soton.ac.uk/216/, 2009.

[2] Issam Maamria, Michael Butler, Andrew Edmunds, and Abdolbaghi Reza-
zadeh. On an Extensible Rule-based Prover for Event-B, November 2009.
http://eprints.ecs.soton.ac.uk/18273/.

9

