UNIVERSITY OF

Southampton

Mastering design complexity
through formal modelling and
verification

Michael Butler
users.ecs.soton.ac.uk/mjb

Dependable Systems and
Software Engineering Group (DSSE)

School of Electronics and Computer Science

Contents

Motivation <|:

— cost of fixing errors
— difficulty of discovering errors

Formal methods overview
— impact on lifecycle
— some industrial experiences

Our approach with formal methods
— abstraction

— refinement

— automated analysis

Rodin toolset
Current industrial collaboration

Cost of error fixes

Cost
of fix

Reqs Spec Design Impl Test Accept Deploy
& fix testing

v

Time of error discovery

Rate of error discovery

Error

discovery
rate

Reqs Spec Design Impl Test Accept Deploy
& fix testing

v

Time of error discovery

Invert error identification rate?

Error

discovery
rate

Reqs Spec Design Impl Test Accept Deploy
& fix testing

b
Ll

Time of error discovery

What’s wrong with the V model?

Gpeciﬁcat—ion D PP Validation testing

Preliminary design 4.

Detailed design

Coding

Integration testing

- Unit testing

What’s wrong with the V model?

Qeciﬁcation D PR Validation testing

Many specification errors are detected only P
after a lot of development has been
undertaken

Coding

Why is it difficult to identify errors?

* Lack of precision
— ambiguities

— Inconsistencies

* Too much complexity
— complexity of requirements

— complexity of operating environment

— complexity of designs

Need for precise models/blueprints

e Early stage analysis
— Precise descriptions of intent
— Amenable to analysis by tools

— ldentify and fix ambiguities and inconsistencies as
early as possible

* Mastering complexity
— Encourage abstraction
— Focus on what a system does
— Early focus on key / critical features
— Incremental analysis and design

Contents

Motivation

— cost of fixing errors
— difficulty of discovering errors

Formal methods overview
— impact on lifecycle
— some industrial experiences

Our approach with formal methods
— abstraction

— refinement

— automated analysis

Rodin toolset
Current industrial collaboration

Formal Methods

 Mathematical techniques for formulation and analysis of
systems

 Formal methods facilitate:
— Clear specifications (contract)
— Rigorous validation and verification

Validation: does the contract specify the right system?
— answered informally

Verification: does the finished product satisfy the contract?
— can be answered formally

Early stage analysis

3 Validation testing

Validation

Validation

Specification

Veriﬁcatio&
Architectural design

Va idation
Verification

Verification

Integration testing

Detailed de5|gn Unit testing

Coding

B Method

Model using set theory and logic
Analyse using proof, model checking, animation

Refinement:

— verify conformance between
higher-level and lower-level models

— chain of refinements

Code generation from low-level models

Commercial tools (Atelier-B, B-Toolkit)

¥4 . \eteor: Paris Line 14 - Driverless
— 117 kloB
— 29 K proofs

— 87 kloc (auto generated Ada)

e Canarsie: New York Line L — Mixed mode
— 273 kloB
— 83 K proofs
— 110 kloc (auto generated Ada)

' Source: Siemens Transportation Systems (STS)

STS development cycle with B

tegration
tests

@ No unit testing
Reduced integration testing

Reduced corrective maintenance

Source: STS

Contents

Motivation

— cost of fixing errors

— difficulty of discovering errors
Formal methods overview

— impact on lifecycle
— some industrial experiences

Our approach with formal methods ¢«

— abstraction
— refinement
— automated analysis

Rodin toolset
Current industrial collaboration

Example: authorisation system

 Example intended to give a feeling for:
— modelling language
— abstraction and refinement
— mathematical analysis

Access control system

Users are authorised to engage in activities
User authorisation may be added or revoked
Activities take place in rooms

Users gain access to a room using a one-time
token provided they have authority to engage in
the room activities

Tokens are issued by a central authority
Tokens are time stamped

A room gateway allows access with a token
provided the token is valid

Class diagram

USER

authorised

holder

TOKEN

ROOM

‘ reac

AUTHORITY

mapage

st

ACTIVITY

GATEKEEPER

Class diagram

authorised
USER ACTIVITY
. t ce
loca
ROOM
holder
ro
. . . ds
toki This model is unnecessarily complex to N
specify the main access control policy
T—
\TEKEEPER

N AUTHORITY £—tOSt

mm—

Extracting the essence

* Access Control Policy: Users may be in a room
only if they are authorised to engage in all
activities that may take place in that room

* To express this we only require Users, Rooms,
Activities and relationships between them

* Abstraction: focus on key entities in the
problem domain

Diagrammatic representation of an
abstract model

authorised
USER ' - ACTIVITY

location
takeplace

'~ ROOM |

Variables and invariants of Event-B
model

Variables of Event-B model
authorised € User < Activity
takeplace € Room < Activity

location € User + Room

Access control invariant:
if useruisinroomr,

then u must be authorised to engaged in all activities that can take
placeinr

Vu,r. uEdom(location) A location(u)=r =
takeplace[r] & authorised[u]

State snhapshot as tables

User Activity

ul al
ul a2
u2 a2

authorised

Room Activity

rl al
rl a2
r2 al
takeplace

User Room

ul ri
u2 r2
u3

location

Event for entering a room

Enter =
when
grdl : u € User
grd2 : r € Room
grd3 : takeplace[r] & authorised[u]
then
actl : location(u) = r
end

Does this event maintain the security invariant?

Role of invariants and guards

* |Invariants: specify properties of model variables
that should also remain true
— violation of invariant is undesirable
— use (automated) proof to verify invariant preservation

* Guards: specify conditions under which events
may occur

— should be strong enough to ensure invariants are
maintained

— but not so strong that they prevent desirable
behaviour

Remove authorisation

RemoveAuth(u,a) =
when
grdl : u € User
grd2 : a € Activity
grd3 : u=a € authorised
then
actl : authorised := authorised \ {u~a}
end

Does this event maintain the security invariant?

Rodin demo

* |llustrate interplay between modelling and
verification

Now we construct a new model

(refinement)
authorised
USER ACTIVITY
location
holder takeplace
ROOM
m

TOKEN

Abstract guard on a user and room for entering
grd3: takeplace[r] & authorised[u]

is replaced by a guard on a token

grd3b: t €valid A room(t)=r A holder(t) =u

Failing refinement proof

OO0 Proving - Rooms1/M2.bps - Rodin Platform - /Users/mjb/Rodin/workspacel.0 ()
IS E o | QU | 47~ | B8~ | |1+ G+ orar | @ 5 [(JResource [s4ProB ¢ Proving B Event-B
T Proof T 2 N\ (@ Proofl} = 8)(@ M1 f@ M2 ({D *M2 22 = g|(¢” Progr fl::‘ Event 82 . ;7 Searc} =g
6 | mEHEY Enter/grd3/GRD SRR RN
7 simplification rewrites o
E 7) type rewrites J edé$n J J JO
() takeplace[{r}]cauthi ot ueUser \ dom(location) = Meida Channel3 g
=* mondex
ot tetok & OwikiGries
ot r=rtok(t) =% Records
=% Rooms1
ot u=utok(t) 0 c1
(C Mo
State| g? M1
s =" W, M2)
v Goal 2 v -G © Variables
ct takeplace[{r}]cauthorised[{u}] < Invariants
%, Events
{ Proof Obligations
@" CreateToken/grd5 /WD
" CreateToken/grd6 /WD
= = @" Enter/grd3/WD
% Proof Cont 52 [Statistics] 2. Rodin Proq =8 @" Enter/grd4 /WD
® @ Enter/grd3/GRD T
_ = T @" RemAuth/grd5 /WD
%P @~ p0v dc ah e o P | Dot | B @' RemAuth/ard6 /WD
D @" RemAuth/grd4 /GRD
@ =* Rules P
a I=* SecureDB v
(), J4lr o | pe———_—)< >

| fv

T W e == Frev | e o [

Gluing invariant

authorised
USER ACTIVITY

location
holder takeplace

ROOM

TOKEN

To ensure consistency of the refinement we need invariant:
inv6: te€ valid
—

takeplace [room(t)] & authorised[holder(t)]

Rational desigh — what, how, why

e What does it achieve?

if user uisin room r,

then u must be authorised to engaged in all activities that can take
placeinr

e How does it work?
Check that a user has a valid token

 Why does it work?

For any valid token t, the holder of t must be authorised to
engage in all activities that can take place in that room

What, how, why written in B

* What does it achieve?
invd: uEdom(location) A location(u)=r
=

takeplace[r] < authorised[u]

 How does it work?
grd3b: t € valid A r=room(t) A u=holder(t)

 Why does it work?

invh: t € valid
—

takeplace [room(t)] & authorised[holder(t)]

Abstraction

* Abstraction can be viewed as a process of
simplifying our understanding of a system.

* The simplification should

— focus on the intended purpose of the system
— ignore details of how that purpose is achieved.

* The modeller should make judgements about
what they believe to be the key features of the
system.

Abstraction (continued)

* |f the purpose is to provide some service, then

— model what a system does from the perspective of the
service users

— ‘users’ might be computing agents as well as humans.
* If the purpose is to control, monitor or protect

some phenomenon, then

— the abstraction should focus on those phenomenon

— in what way should they be controlled or protected?
— why should they be monitored?

Refinement

 Refinement is a process of enriching or modifying
a model in order to

— augment the functionality being modelled, or
— explain how some purpose is achieved

* |n a refinement step we refine one model M1 to
another model M2:
— M2 is a refinement of M1
— M1 is an abstraction of M2
— Don’t throw M1 away

Refinement (contined)

 We can perform a series of refinement steps to
produce a series of models M1, M2, M3, ...

* Facilitates abstraction: we can postpone treatment of
some system features to later refinement steps

* Event-B provides a notion of consistency of a
refinement:

— We use proof to verify the consistency of a refinement
step

— Failing proof can help us identify inconsistencies in a
refinement step

Proof obligations in Event-B

Well-definedness

— e.g, avoid division by zero, out of bounds access

Invariant preservation
— each event maintains invariants

Guard strengthening

— Refined event only possible when abstract event
possible

Simulation

— update of abstract variable correctly simulated by
update of concrete variable

Proof and model checking

 Model checking: force the model to be finite
state and explore state space looking for invariant
violations
— completely automatic

— powerful debugging tool (counter-example)

* (Semi-)automated proof: based on logical
deduction rules
— no restrictions on state space

— |leads to discovery of invariants that deepen
understanding

— not completely automatic

Event-B is not the full solution

Event-B is a general purpose formalism

Particular domains/paradigms require additional guidelines,
patterns and language extensions

— some results on this in Deploy
Not tied to any specific requirements engineering approach
— possible to link with approaches, e.g., Problem Frames
Can use alternative syntax such as UML
— UML-B (class diagrams, state machine diagrams)
— Integration with SAP UML-like language and tool
Not tied to any specific programming language
— Classical B has automatic generation of Ada and C
— In Deploy working on code generation from Event-B (Ada and C)
No support for continuous or stochastic reasoning in Event-B
— some on-going work

Important Messages

Formal modelling can be applied to systems

Role of formal modelling:

— increase understanding

— decrease errors

Role of refinement:

— manage complexity through multiple levels of abstraction

Role of verification:
— improve quality of models (consistency, invariants)

Role of tools:

— make verification as automatic as possible, pin-pointing errors and
even suggesting improvements

Event-B can and should be linked with complementary
methods

Contents

Motivation

— cost of fixing errors
— difficulty of discovering errors

Formal methods overview
— impact on lifecycle
— some industrial experiences

Our approach with formal methods
— abstraction

— refinement

— automated analysis

Rodin toolset
Current industrial collaboration

Rodin Open Tool Platform

Extension of Eclipse IDE
Repository of structured modelling elements

Rodin Eclipse Builder manages:

— Well-formedness + type checker

— Consistency/refinement PO generator
— Proof manager

— Propagation of changes

Extension points

www.event-b.org

Rodin Plug-ins

Linking UML and Event-B

ProB model checker: animation, consistency
and refinement checking

Graphical model animation
Requirements management
Code generation

Contents

Motivation

— cost of fixing errors

— difficulty of discovering errors
Formal methods overview

— impact on lifecycle

— some industrial experiences

Our approach with formal methods
— abstraction

— refinement

— automated analysis

Rodin toolset
Current industrial collaboration ¢

DEPLQOY Integrated Project

Industrial deployment of advanced system
engineering methods for high productivity and
dependability

Strategic Objective ICT-2007.1.2:
Service and Software Architectures, Infrastructures and
Engineering

2008 to 2010
www.deploy-project.eu

Industrial deployment partners

The industrial deployment is in 4 major sectors

Bosch: automotive
* Siemens: rail transportation Q

* Space Systems Finland: space systems

SAP: business information

DEPLOY Goals

Understand and justify the role of formal engineering
methods in building dependable systems

Address the barriers to deploying formal engineering
methods in industry

Achieve deployment of formal engineering methods

Scale and professionalise Rodin technology

DEPLOY Associates

* AeS, Sao Paulo
— Rail system pilot

e Critical Software Technologies, Southampton
— Avionics display pilot

Concluding

* Mastering complexity through formal modelling
and analysis

— Encourage abstraction

— Focus on what a system does

— Focus on key / critical features
— Incremental analysis and design

* DEPLQOY + Rodin

— Industrial deployment of methods and tools
— focus on early stage design

