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Preface 

This volume contains t he proceedings of the 3rd Workshop on Model-based Testing 
in Practice (M oTiP) held on  16 June 2010 in Paris, Fran ce, in  conjunction with the  
6th E uropean C onference on M odelling Fo undations and Applications (EC MFA 
2010).  

The obj ective o f th e M oTiP 20 10 work shop is to  bring  tog ether i ndustry an d 
academia by providi ng a platform for inte raction and c ollaboration. The continuing 
industry tren d to  raise so ftware co mplexity b y in creasing th e functionality an d 
accessibility of software and electronic components leads to an ever-growing demand 
for techniques to ensure software quality. At th e same time, software companies are 
shortening development cyc les to  r espond to  th e cu stomers d emand f or f ast an d 
flexible solutions. In order to remain competitive, early and con tinuous consideration 
and assu rance of system q uality b ecomes a n asset of ev er-increasing i mportance in  
industrial software development.  

Model-based approaches are not only ab le to provide effective quality assurance, 
but also help to evaluate and control the coverage, costs, and risks related to testin g 
efforts. Bot h – the e ffectiveness an d t he e fficiency o f t esting – ca n be handled by  
model-based approaches within integrated system and test development for software-
intensive system s. Wh ile th e software i ndustry starts t o ad opt m odel-based testing 
techniques on a la rge scale, prom ising research idea s a re em erging t hat have the  
potential to answer many of today’s industrial challenges. Therefore the MoTiP 2010 
workshop bring s tog ether practitio ners a nd research ers t o in itiate a d ialog m uch-
needed. 

The papers a nd t ool descriptions i n t his vol ume are represe ntative of c urrent 
industrial and research activities on Model-based Testing. All selected papers are of 
high qu ality, th anks t o th e professionalism o f t he au thors, rev iewers, an d program 
committee members. 

We would like to take this opportunity to thank the people who have contributed to 
the MoTiP 20 10 wo rkshop. We wa nt to thank all authors a nd reviewers for t heir 
valuable contributions, and we wis h them a successful continuation of their work in  
this area. Finally, we thank the organization of the ECMFA 2010 conference in which 
this workshop has been embedded. Special thanks go to Axel Rennoch who was one 
of the co-founders of the MoTiP workshop series. 

 
June 2010 

Thomas Bauer 
Hajo Eichler 

Marc-Florian Wendland  
Sebastian Wieczorek 
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Introducing Model-Based Testing in Industrial
Context – An Experience Report
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Abstract. Model-based testing is an important quality measurement
technique. There are several theoretical advantages of model-based test-
ing and experience reports to support them. Model-based testing, how-
ever, is not applicable “out-of-the-box”. Each environment requires spe-
cific adaptations. Thus, there are serious acceptance thresholds in in-
dustry. In this paper, we present a report on our efforts to introduce
model-based testing as a testing technique in an industrial context.

1 Introduction

Testing is one of the most important system validation techniques. In model-
based testing (MBT), the system under test (SUT) is compared to a system
specification in the form of a model. Several languages are used to create system
models. We focus on UML state machines. A common approach to model-based
testing is to generate a test suite based on the system model, to execute the test
suite, and to compare the observed behavior of the SUT to the expected one.

Although model-based testing has a high potential for reducing test costs
and increasing test quality, this technique is adopted slowly in industrial prac-
tice. In our opinion, the major reason for this is that model-based testing is not
applicable “out-of-the-box”, but requires training and adaptation. This results
in costs, e.g. for learning modeling languages, for using model-based test gener-
ators, and for integrating model-based testing into the existing testing process.
In this paper, we as Fraunhofer FIRST engineers report on our efforts to intro-
duce model-based testing as a new testing technique to Thales Rail Signalling
Solutions GmbH during a pilot project.

The paper is structured as follows. In the following section, we present the
initial project situation. In Section 3, we present the used toolchains. We describe
the course of the cooperation in Section 4 (adaptation and formalization of the
system model) and Section 5 (implementation of the test adapter). We evaluate
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2 Lackner, Svacina, Weißleder, Aigner, and Kresse

the used test generation approaches in Section 6. In Section 7, we summarize
our results and experiences. Finally, we present related work in Section 8 and
conclude in Section 9.

2 Initial Project Situation

In this section, we describe the initial situation of our pilot project. In the
project, we focused on testing components of the European Train Control System
(ETCS). ETCS is a stationary signaling and train protection system, which is
developed as part of the European Rail Traffic Management System (ERTMS).
The functionality of the ETCS software components are safety-critical need to
be certified (see EN 50128 [1]). Thus, significant effort is applied on quality
measurement methods like verification, validation, and test.

According to the regulations resulting from the EN 50128 norm for safety-
critical systems, the development process of Thales consists of systematic require-
ments engineering, functional and design specification, implementation, static
analysis methods, and different levels of software testing.

The engineers at Thales use different types of models to specify critical parts
of the system: The structure of the system is modeled using class diagrams
and the behavior is described using state machines. The models are not used
for automatic code generation and several parts of the models are described
in an informal way, e.g. using pseudocode and prose. The intention of creating
these models was to provide an intuitive semi-formal description of the system
behavior and to allow for a common understanding of critical system parts.

At the start of the project, we decided to apply MBT for conformance testing
of the system models and the implemented components. The system models were
already present but they were not used for code generation. Thus, we chose to
reuse them as test models instead of creating new test models from scratch.

3 MBT Toolchains

For automatically generating test suites with MBT, we used one industrial
and one academic test tool. In this section, we present the two correspond-
ing toolchains that integrate these tools in the test generation process. Figure 1
depicts both toolchains in an activity diagram: The main element is the sys-
tem model as the input for both toolchains – the left part shows the industrial
toolchain, and the right part shows the academic toolchain.

Both toolchains use the same system model as input and generate test code
that is compatible to the test adapter provided by Thales engineers. The follow-
ing two subsections describe both toolchains in more detail.

3.1 Commercial Toolchain

The commercial toolchain uses two tools and a text transformation program
based on Prolog: We used Borland Together [2] for formalizing and concretiz-
ing the existing system model. Afterwards, we imported the formalized model to
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Eclipse EMF

Model [informal]

Formalizing the Model

Borland Together

Leirios TestDesigner

ParTeG

Completing the Model

Export Model for 

TestDesigner

Test Case Generation
Connect to SUT

Formalizing the Model

Completing the Model

Test Case Generation

Test Case Execution

Test Model

Prolog Transformation

Test Cases [XML]

Model [context class]

Model [formal]

Test Cases [CppUnit]

Model [with context]

Model [formal]

Fig. 1. The two toolchains.

TestDesigner [3] from Leirios (the company name has been changed to Smartest-
ing) and generated abstract test cases. TestDesigner creates test cases in the form
of XML documents. We used the Prolog transformation program to transform
these XML files to CppUnit [4] tests.

3.2 Research Tool ParTeG

As an alternative to using the industrial toolchain, we also used and adapted
the free model-based test generation tool ParTeG [5], which is based on the
Eclipse Modeling Framework [6]. The input models for ParTeG are UML state
machines in the context of UML classes that are both modeled using the UML 2.1
plugins [7]. Possible output formats are JUnit 3.8 and 4.3 [8].

We had access to the sources of ParTeG. Thus, we see the advantages of using
ParTeG in the possibility of adapting the necessary test output format and in
implementing unexpected features and interpretations of the system model. An
anticipated disadvantage of using ParTeG was its prototype-related immaturity.

4 Adaptation and Formalization of the Model

In this section, we describe the necessary model adaptations and formalizations
to automate the test case creation. The original system models were provided by
the engineers at Thales. The formalization using OCL/UML was done in coop-
eration with the engineers at the Fraunhofer FIRST based on the requirements.
The system models consist of four UML state machines, which describe the com-
munication behavior of several train modules. There is one main machine that
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references the other three. These referenced state machines are subcontrollers
that describe the failure handling of the train modules. All of these system
models have several flaws that are caused by insufficient formalization. In the
following, we describe these flaws and how we removed them.

4.1 Formalization

Here, we present the individual steps to formalize the given models.

Removing Syntactical Errors. The first thing we discovered is a violation
of the UML syntax: Outgoing transitions of the system model’s initial states
contain triggers although the UML specifies that such transitions must not have
triggers. We solved this violation by transforming the initial state into a state
named Initializing and creating a new initial state that is connected to the state
Initializing via an additional transition.

After this transformation, the model was syntactically correct. However, state
information is used in the test oracle and the SUT has no state called Initializing.
Thus, the model does not represent the SUT’s behavior anymore, and every
generated test case would fail. As a solution, we removed all test steps that
check for the state Initializing.

Observing Finalization Behavior in Subcontrollers. Observing the suc-
cessful termination of a subcontroller and returning a corresponding verdict is im-
portant for test generation. Thus, it was necessary for us to observe states whose
outgoing transitions lead to a subcontroller’s final state. We call the states with
the outgoing transitions of interest Finalize states. The original models contained
untriggered completion transitions to model these state changes. Consequently,
the test adapter was not able to trigger the entry of the final state.

As a solution, we added a trigger notification to the completion transitions.
The result of this is that the test adapter could explicitly trigger these transitions
to reach the final state. Since this new trigger is not part of the SUT’s behavior,
this solution also needs adaptation of the test adapter.

Flattening Hierarchical State Machines. One effect of the previous model
transformation is that outgoing transitions of a subcontroller may lead to leaving
the subcontroller while a Finalize state is active. This behavior is not intended
by the Thales engineers. Instead, the SUT has to finalize and terminate the
subcontroller after a Finalize state has been reached. A model transformation
for compensating for this unintended effect consists of creating explicit outgoing
transitions for all states of the subcontroller but the Finalize states. This corre-
sponds to flattening a part of the system model. Since this introduces additional
elements in the model, it increases the coverage of the SUT [9].
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Formalizing Conditions. The guard expressions in the model contain no
typed variables or constants. Instead, expressions are written in an informal style
like prose. We derived a list of all used identifiers (variables and constants). The
engineers at Thales provided the corresponding C++ data types and initial val-
ues for them. With this type information, we added formalized expressions to
the system model using the Object Constraint Language [10].

4.2 Adding A Context

Based on the formal identifiers of the previous formalization step, we created a
structural context for the state machine. This context consists of a class diagram
and an optional object diagram. TestDesigner needs both of them. For ParTeG,
providing the class diagram for the state machine is sufficient for test generation.

In the context class, we defined all formal identifiers as class attributes. In
most cases, the mapping of simple C++ data types into the class diagram was
straightforward. As an exception, we had to map unsigned integers to the UML
data type integer and constrain it in a later step to non-negative values. The
context class also contains setter methods for changing values of class attributes
and operations to map triggers from the state machine to the test adapter.

The object diagram represents an instance of the context class. For automatic
test generation with TestDesigner, the object diagram defines the initial system
attribute value assignment.

4.3 Toolchain-Specific Model Transformations

In this subsection, we present toolchain-specific model transformations that were
used to overcome restrictions of modeling tools and to keep the compatibility of
test cases and the test adapter that is already in use at Thales.

Disjoint Triggers. First, we experienced problems with transitions that con-
tain two or more triggers. In contrast to the UML standard, Together is not
able to create transitions with two or more triggers. We solved this problem by
splitting the transition into two or more parallel transitions, each handling a
single trigger.

This transformation preserves the semantics, but changes the structure. This
has an impact on the generated test suite. For instance, the satisfaction of All-
Transitions on a system model with split transitions forces the test generator to
traverse more transitions and, thus, to create larger test suites. Likewise, this
also has an impact on the fault detection capability of the generated test suite [9].

Timed Triggers. Prior to our project, the engineers at Thales established an
interface for the test driver to control system time. Due to restrictions of the test
generation tools, we use function call events instead of using standard UML time
events. A unique name scheme enables the test adapter to map these function
calls to time information of the SUT.

15



6 Lackner, Svacina, Weißleder, Aigner, and Kresse

Output Format Transformation. The Thales test framework, for which we
had to generate test cases, requires test cases to be written in CppUnit. Test-
Designer, as a general purpose test case generator, generates XML files but no
CppUnit test files. Thus, we provided a text transformation program based on
Prolog to convert the XML files into CppUnit files. After this transformation,
the test cases from TestDesigner are executable in the test framework.

We integrated CppUnit test code generation for the Thales test framework
directly into ParTeG. Thus, the test suite created by ParTeG did not need any
further transformation.

5 Test Adaptation

The following section describes the used test adapter. We used the system model
for automatic test generation. Since the system model is comparatively close to
the implementation, the gap between the abstraction level of the model and the
implementation is likewise small. Nevertheless, adaptation is required to execute
the abstract test cases. There are several approaches to implement this adapta-
tion, such as the concretion of the test cases by a model-to-text transformation
or the use of an additional test adapter that maps from system models to SUT.
We used a mixed approach [11, page 285] to bridge the gap.

The corresponding test adapter defines a test interface that is used to execute
the partly transformed test cases. It transforms abstract trigger information of
the test cases into concrete events and function calls that are forwarded to the
controller within the test framework. Furthermore, information about the states
of the system model are not explicitly present in the implementation and the
test adapter maps them to system attributes in order to check state invariants of
the system model. In general, we simplified complex data and represented them
in an abstract way in the system model according to the recommendations for
building test models by Utting and Legeard [11]. The task of the test adapter
was to reinsert this complexity in the test cases.

6 Evaluation

In this section, we evaluate the different approaches to test case creation by
comparing the code coverage and the size of the corresponding test suites. Line
and branch coverage of the tests are demanded by the certification authorities.
Other measures for a test suite’s quality are mentioned in Section 8.

In Table 1, we describe four different test suites: the manually created test
suite, the test suite generated by TestDesigner to satisfy All-Transitions, and two
test suites generated by ParTeG. The first ParTeG test suite (ParTeG 1 ) just
satisfies Multiple Condition Coverage on the system model, whereas the second
one (ParTeG 2 ) additionally satisfies Multi-Dimensional [12] and contains sneak
path analysis and model transformations like flattening the model or splitting
choice pseudostates [9].
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Test Suite Line Coverage Branch Coverage Number of Test Cases

Manually Created 92.98 % 92.86 % 26

TestDesigner 87.19 % 83.33 % 141

ParTeG 1 91.32 % 91.67 % 252

ParTeG 2 94.63 % 92.86 % 2280
Table 1. Code coverage and size of the test suites.

Both test generation tools were restricted to use the given system models
for test generation. In contrast, the human testers were able to use the models
and also additional information like the source code of the controller or abstract
information about the system environment like railroad track information. Cor-
respondingly, the achieved coverage of the manually created test suite is higher
than most of the automatically generated test suites. The only exception is the
test suite for ParTeG 2 : It is several times larger than the manually created
test suite but covers a higher percentage of the source code. Since ParTeG 2 was
generated automatically from the system model, the costs for test generation of
this comparatively large test suite are neglectable.

None of the existing test suites covered 100% of lines or branches. The major
reason for this is that some of the required test information, such as a model of
a railroad track, are not included in the system model and, thus, could not be
used for testing.

Since the SUT is already in use, the main objective of our project was not to
detect undetected failures, but to improve the existing test process using MBT
technologies. Thus, we compared the failure detection capabilities of the test
suites using code coverage. Reasons for detected differences were found in the
models and requirements.

7 Results and Lessons Learned

In this section, we present the results and lessons learned during the pilot project.
Before the start of the project, the engineers at Thales used models as pic-

tures to support system development. Using these pictures, system designers
could communicate their designs to the company’s developers. Both knew about
the informal style of the models and communicated directly with each other when
something was unclear. Since the designers do not have to take care of precise
syntax and semantics, this type of imprecise modeling is easier than designing
formal models. For automatic test generation, however, precise and formal mod-
els are needed. As presented in the following, creating these formal models for
automatic test generation caused more problems than expected.

First, as the applied transformations show, the designers of the system models
interpreted the UML in a different way than the test tools do. This kind of
semantic error was much harder to fix than the syntax errors. The reason for this
is that removing semantic errors needed a detailed investigation and a higher
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8 Lackner, Svacina, Weißleder, Aigner, and Kresse

cooperation effort. Most time was spent on understanding why the design is
wrong and how to correct it.

Second, some of the generated test cases are not reasonable. This was caused
by missing environment information in the system models. We created no model
of the environment and the test adapter did not check for a corresponding con-
sistency of the test data. A solution to this problem is to provide a model of
the environment to the test case generators, e.g. by adding information about
railroad tracks like turnouts or the current train position.

Furthermore, we consider the repeatability of our actions. The concrete ac-
tions for removing syntactic and semantic issues cannot be reused in other
projects or on other models because they differ from case to case. For instance,
guidelines for designing models may vary for each project. The automatic trans-
formations for adapting the test cases to the test adapter, however, can be re-
peated. Some transformations (see [9]) are applied to models and can be per-
formed automatically. Transformations like the presented test design tool- and
test adapter-specific ones can also be automatically reused in other projects.

Part of our evaluation was also the comparison of manually created test suites
and automatically created ones. The large number of test cases generated by
ParTeG tests the SUT extensively. One drawback is the execution time of some
of the automatically generated test suites. ParTeG 2 designed roughly a hundred
times more test cases than the human test designer, resulting in an increased
execution time. However, the larger ones of the automatically generated test
suites also covered a higher percentage of the SUT than the manually created
test suite, and the test design is done automatically.

We also compared the two applied test generation tools. ParTeG generated
the test cases in less than ten seconds. TestDesigner needed 25 minutes to gener-
ate a test suite. ParTeG reached at least the same or even a higher code coverage
than the manual test cases when the strongest generation criteria (ParTeG 2)
are applied. In general, test generation is undecidable and each applied test gen-
eration algorithm fits only to certain kinds of models. Thus, this is no general
comparison of both tools but only an additional measurement of our project.

In retrospective, we encountered many unforeseen obstacles. Although we
knew that MBT is not applicable “out-of-the-box” and we were prepared to
customize our toolchains, we were surprised by the number of issues. Using
even the latest version of the tools did help reducing costs, e.g. for creating the
additional test adapter. On the other side, the use of automatic test design also
helped saving costs. In contrast to one person week for manually updating the
test suites, automatic test generation requires only a few minutes for updating
the model and generating the test suite again.

8 Related Work

Several books provide surveys of conventional testing [13–15] and model-based
testing [11, 16]. Many modeling languages have been used to create system mod-
els. The UML [17] is a popular representative that has been used by many authors
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to demonstrate test generation techniques [18, 19]. In this paper, we used UML
state machines.

Complete testing of all aspects is usually impossible – especially for reac-
tive systems. Coverage criteria are widely adopted means to measure test suite
quality. There are many kinds of coverage criteria (e.g. focussed on data flow or
control flow) [11, 20]. Test generation can be stopped if a selected coverage cri-
terion is satisfied. During our cooperation, we used different structural coverage
criteria on UML state machines as a test generation stopping criterion.

There are several publications that present experience reports of model-based
testing. For instance, Pretschner et al. [21] present an experience report on
model-based testing. They include many aspects of model-based testing such as
comparing coverage with error detection and model coverage with code coverage.
In [11], Utting and Legeard present several reports on model-based testing. Their
focus, however, is on the test generation technique and not on the acceptance
thresholds when introducing model-based testing as a new testing technique.

There are many commercial model-based test generators for UML state ma-
chines available. For instance, the Smartesting Test Designer [3] supports the
satisfaction of All-Transitions. Rhapsody ATG [22] is capable of creating test
suites to satisfy MC/DC. Further commercial test generators are listed and com-
pared in [23]. In this report, we applied the free test generation tool ParTeG [5]
and the commercial test generator TestDesigner [3].

9 Summary

In this paper, we reported on our efforts to introduce model-based testing as
a new testing technique in an industrial context. The results of the presented
pilot project are that the introduction of MBT causes costs in the beginning.
After establishing the necessary basis, however, MBT provides many advantages
like automatic test design or reduced maintenance costs by fast response to
requirements changes. Finally, we experienced that the customer’s main point
of interest for applying MBT is not the set of features (e.g., supported coverage
criteria) provided by the test generator, but integrating MBT in the test process
at all. Thus, it seems to us like the industry may already be aware of the possible
benefits of MBT but fears the issues and costs of its integration.
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Abstract. In this paper, we present a Model-Based Testing (MBT) approach in
which statistical data contained in Unified Modeling Language (UML) models
are used to prioritize test cases. The models are used by a test derivation tool for
automatic generation of test cases. The statistical data included in the models is
used by the tool to determine the order of the resulting test cases before being
implemented and executed. The test outputs are analyzed and information about
requirement coverage is gathered. Based on the gathered statistics, the results
are automatically fed back to the UML models to prioritize those sections of the
system where failures are frequent.

1 Introduction

The complexity of software systems is constantly increasing. Hence, the amount of
tests needed to properly test a software system is also increasing. Software companies
usually do not have enough time to run all their test cases, and are therefore forced
to prioritize them in such a way that the test cases cover as much functionality of the
system as possible [1].

Especially in the telecommunications domain, which we target in this paper, the
amount of test cases needed to be executed against the System Under Test (SUT) is
rather large, and in practice only a part of these tests can be executed. Thus, there is a
need to be able to order the test cases based on their importance. By determining the
priority-specific paths within the system, it is possible to order the test cases in such
a way that test cases of statistically higher priority are executed before others. In this
way, specific sections of the system can be given higher priority, resulting in earlier
execution of test cases running the highest prioritized paths of the system.

There are several benefits with using statistical testing [2, 3]. One of the main ben-
efits is that more testing effort can be put into the most important sections of SUT,
while less important section can be left less tested. Another benefit of conducting sta-
tistical testing is that statistical data from previous iterations of the testing process can
be included in latter iterations, in order to target the test execution towards the system
sections that are more important or yielded more failures.

Model-Based Testing (MBT) [4] is a testing approach that addresses some of the
shortcomings in traditional testing by using an abstract representation (a model) of the
system for automatic generation of test cases. The models can be implemented either
as program code representations or as graphical representations using graphical speci-
fication languages, such as the Unified Modeling Language (UML) [5] or various tool
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specific languages. The main idea with MBT techniques is to automatically generate
tests by applying algorithms that are able to explore paths through the model.

According to [1], statistical testing can be integrated into the development process
at the point when requirements have been gathered and approved. In other words, sta-
tistical testing can be initialized at the same phase as the model construction in MBT.
Combining this with the benefits of using models to prioritize certain sections of the
SUT, makes statistical testing beneficial when used in a MBT process.

There are several advantages of using MBT in a software development process.
One advantage is that large amounts of tests can be generated in a short amount of
time when there exists an appropriate model representation of the system. This adds
additional value especially to conducting regression testing in the end of the software
development project. Another advantage is that models are usually easier to modify
than manually created test cases, which especially benefits projects where requirements
are changing frequently. The third advantage is that the modeling of the system can
be initiated immediately when the requirements have been specified. This means that
a testing process using MBT can already be initiated in the design phase. Since the
test model in MBT is typically an abstract representation of the system, it is easier to
maintain it compared to manually written test cases.

2 Related Work

Previous research on combining statistical testing and MBT has been done under the
acronym Model-based Statistical Testing (MBST). For instance, Prowell [6] presents an
approach in which the transitions of a test (usage) model are annotated with probability
of occurrence information that is later used during test generation by the JUMBL tool.
A similar approach, targeted at telecommunication protocols, is presented in [7]. An
operational profile (a Markov process) is used to describe the usage and behavior of
the SUT. The probabilities included in the operational profile are later on used during
test generation. In our approach we will use a test model describing the behavior of
the system. The generated test cases will be ordered after test generation based on
the statistical information, and information resulted from test reporting will be used to
update the priorities for the generated test cases. In addition, requirements of the system
are modeled and traced throughout the testing process.

Other similar work on MBST is presented in [8–10]. For instance, the author of [8]
uses UML activity diagrams to express high level requirements. The nodes and edges in
the activity diagram are assigned with weights indicating priority, based on complexity
and possibility of occurrence of defects. The activity diagram is later translated into a
tree structure, from which prioritized test scenarios are generated.

Work related to statistical testing has also been preformed in the context of the
MaTeLo tool [11, 12]. In MaTeLo, test cases are generated from statistical models of
the SUT expressed using Markov chains usage models. However, while MaTeLo-based
approaches utilize a usage model for describing the SUT, our approach utilizes a system
model to represent the SUT.

In [9] the author presents an approach for using MBST together with time durations
to test real-time embedded systems. The author’s approach differs slightly from ours,
since it uses statistical information to test the reliability of the system. In the approach,
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reliability is tested by generating test cases from a model that represents the actual use
of the system. In our approach, statistical information about the system is not used to
test the intended usage of the system, but rather to order test cases according to weighted
probabilities calculated from statistics of requirement priority and use case probability.

The most similar approach is presented in [10]. Here the authors take advantage of
an approach in which they go from a requirements document, via a statistical model, to
a statistical test report. Similarly to our approach, their approach benefits from a high
degree of automation in each phase of the testing process.

3 Overview of MATERA

MATERA

Requirements

Modeling

Validation

Transformation

Test generation

Test Report

Analysis

Test Execution

BackTracing

Fig. 1. MATERA process

MATERA (Modeling for Automated
TEst deRivation at Åbo Akademi) [13] is
an approach for integrating modeling in
UML and requirement traceability across
a custom MBT process (see Figure 1).
UML models are created from the sys-
tem requirements, using a UML mod-
eling tool. The models are validated by
checking that they are consistent and that
all the information required by the mod-
eling process is included. Consequently,
the models are transformed into input
for the test derivation tool. The resulting
test cases are executed (after being con-
cretized) using a test execution frame-
work. The results of the test execution are
analyzed and a report is generated. Re-
quirements are linked to artifacts at different levels of the testing process and finally
attached to the generated test cases. The approach enables requirements to be back-
traced to models in order to identify which test cases have covered different modeling
artifacts or from which part of the models a failed test case has originated.

4 Statistical Approach for MATERA

Our statistical approach relies on two sources of information: (1) that the functional-
ity of the system (use cases) has associated probability values, depicting the chances
for functionality to be invoked by the external user of the system during the use of the
SUT; (2) that the requirements of the system are classified based on their importance
(for testing) by associating them with priority values. The priorities and probabilities of
the system are considered to be given from external sources (e.g., system requirements
or stakeholder recommendations) and a priori to the first iteration of the testing process.
In latter test cycles, the priorities can be adjusted based on statistics of uncovered re-
quirements from previous test cycles for targeting the testing process towards a certain
part of the SUT.
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There is a slight difference between probability and priority. Even though they both
mean that specific sections of the SUT are prioritized, it is important to recognize that
probability is part of the model, while requirement priority is a property for ordering
system requirements according to importance. Hence, UML use case elements are given
a probability value indicating the chance of the use case to be executed, whereas require-
ments are given a priority value indicating their importance for testing. The values are
manually assigned to each use case in part. The two types of values are then combined
in the test model from where test cases are generated. Each resulting test case will have
a weighted priority calculated based on the cumulative probabilities and priorities of
the test path in the model. The weighted priority will be used for determining the test
execution order. In the following, we delve into more details related to each phase of
the process.

4.1 Requirements Modeling

The process starts with the analysis and structuring of the informal requirements into a
Requirements Model. The requirements diagrams of the Systems Modeling Language
(SysML) [14] are used for this purpose. Requirements are organized hierarchically in
a tree-like structure, starting from top-level abstract requirements down to concrete
testable requirements. Each requirement element contains a name field which specifies
the name of the requirement, an id field, and a text field. For the purpose of statistical
testing, requirements are also given a priority value (see Figure 2). The priority
value is a property describing the importance of the requirement. During the modeling
process the requirements are traced to different parts of the models to point out how
each requirement is addressed by the models. By doing this we ensure the traceability
of requirements and that priority information is propagated to other model artifacts.

Fig. 2. Requirement Diagram with priorities
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4.2 System Modeling

In this phase, the SUT is specified using UML. In our modeling process, we consider
that several perspectives of the SUT are required in order to enable a successful test
derivation process later on. A use case diagram is used to capture the main functional-
ity of the system. Sequence diagrams are used to show how the system communicates
with external components (in terms of sequence of messages) when carrying out differ-
ent functionality described in the use case diagram. A class diagram is used to specify
a domain model showing what domain components exist and how they are interrelated
through interfaces. A behavioral model describes the behavior of the system using state
machines. Data models are used to describe the message types exchanged between dif-
ferent domain components. Finally, domain configuration models are used to represent
specific test configurations using object diagrams. Each use case is given a probability
value which indicates the chance of the use case being executed (see Figure 3).

Fig. 3. Use case diagram with probability

The state model describing the expected behavior of the system is the pivotal artifact
for test generation. According to the MATERA approach, leaf requirements are linked
to transitions in the state machine to enable requirements traceability and requirements
coverage during test generation. Thus, the priority of each requirement will be asso-
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ciated to the corresponding transition. Similarly, use case probabilities are manually
linked to the state model, as use cases are related with one or several starting points in
the state machine diagram (see Figure 4). This enables the test generation tool to deter-
mine the weighted probability of certain paths through the state model. Before the tests
are generated, the consistency of the UML models is checked using custom defined
Object Constraint Language (OCL) rules [15].

Fig. 4. UML state machine diagram

4.3 Test Case Generation

In the MATERA approach, the UML models are translated into a representation under-
stood by a test generation tool, namely Qtronic [16], using the transformation described
in [17]. During the translation, the priority and probability values are propagated to the
new model representation. Test cases are generated by the tool based on the selected
structural coverage criteria (e.g., state, transition, and requirement coverage, respec-
tively), without taking into account priority and probability annotations.

4.4 Test Case Ordering

After the test cases have been generated, the test generation tool can determine the gen-
eration order of test cases based on the annotated probability and priority values. For
each generated test case, a weighted probability is calculated based on the algorithm
implemented by the test generation tool described in [18]. The weighted probability is
calculated from both the use case probability and the requirement priority and deter-
mines the sequence in which test cases are ordered (see Figure 6). Test cases are finally
rendered into executable test scripts using an adapter for concertizing test cases into
executable scripts.
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4.5 Test Execution

Test scripts are executed against the SUT using a test executor tool. The test scripts
are executed in the order determined by the test generation tool. If only a part of the
test suite can be executed, e.g. due to restricted testing time, ordering tests according
to probability and priority ensures that the most important tests are executed. The ex-
ecution of test scripts is monitored and the results are stored in log files. The log files
contain information about the test execution, e.g. messages sent and received by the
SUT, tested and untested requirements, used resources, etc. The log files together with
the test scripts serve as a source for the test results analysis.

4.6 Test Log Analysis

By parsing logs and scripts and comparing these against each other it is possible extract
statistical data from the test run. The extracted data describe requirements that have
been successfully tested, requirements that have been left uncovered, and during testing
of which requirements that failures have occurred.

The analysis of the test execution is presented in a HTML report (see Figure 5)
generated by the MATERA tool-set. The report consists of two sections, one for Gen-
eral Test Execution Statistics and one for Requirements Information. The General Test
Executions Statistics section contains information about the number of test cases that
passed and failed. The Requirements Information section contains information about
the requirement coverage. Finally, the test cases are presented in a Traceability Matrix.

4.7 Feedback Loop

In the feedback loop, the statistical information gathered in the test log analysis is used
to update priority of requirements that failed or were left uncovered during testing. The
feedback loop is implemented as a part of the MATERA tool-set and allows the modeler
to read in the analyzed statistics and update priority values for requirements in the UML
models without user intervention.

The feedback loop is the main actor for targeting the test execution towards the
parts of the system that had most failures. This is done by incrementally increasing the
priority of the failed and uncovered requirements, such that they will counterbalance
the effect that the probabilities of the use cases have on the ordering of tests. As testing
progresses and the process is iterated several times, the importance (priority) of require-
ments will change according to how well they have been tested. Providing a feedback
loop which updates the requirement importance automatically, will result in that the
failed and uncovered requirements are included in the test cases that are ordered first in
the test execution queue.

However, if requirement importance is changed due to external factors that can-
not be derived from statistics, the tester can choose to manually change the priority of
requirements directly in the models at any time.

The feedback module is executed from the MATERA menu in MagicDraw. When
initialized, the module collects test data from a user specified folder holding test logs
and test scripts from the last test execution. Based on these statistics, the priority values
for requirements that need to be tested more thoroughly in a subsequent test iteration are
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Fig. 5. Statistical Report

incremented with a predefined coefficient and automatically updated in the requirement
models.

5 Tool Support

In our current approach we use No Magic’s MagicDraw [19] modeling tool for creating
and validating the UML models. The Graphical User Interface (GUI) of the MATERA
tool-set has been implemented as a plug-in for MagicDraw. The purpose of the MAT-
ERA tool-set is to extend the capabilities of MagicDraw for specifying system models
and using them as input for automatic test generation.

For automatic test case generation we use Conformiq’s Qtronic [16]. Qtronic is an
Eclipse based tool to automate the design of functional tests. Qtronic generates tests and
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executable test scripts from abstract system models based on selected coverage criteria.
An example of a test case sequence ordered by probability is shown in Figure 6. The
models for Qtronic are expressed using the Qtronic Modeling Language (QML). QML
is a mixture of UML State Machines and a super set of Java, used as action language.
The UML state machines are used to describe the behavior of the SUT and QML is
used to represent data and coordinate the test generation. By using a custom Scripting
Backend (adapter), Qtronic generates executable test scripts for the Nethawk’s EAST
test executor framework [20].

Fig. 6. Test case sequence ordered by weighted probability in Qtronic

The EAST Scripting Backend in Qtronic is the main actor for rendering the test
scripts. When the abstract test cases are selected for execution, they are rendered to
test scripts, loaded into the EAST test executor, and executed against the SUT. The test
executor produces logs from the test case execution, which are used as source for the
statistical analysis in the MATERA tool-set.

6 Conclusions

In this paper, we have presented a model-based testing approach in which statistical
information is included in the system models and used for ordering of test cases. The
approach benefits from a highly integrated tool chain and a high degree of automa-
tion. To handle complexity, the system is described from different perspectives using a
different UML model for each perspective. Statistical information is described in use
case and requirement diagrams, via priority and probability annotations. Traceability
of requirements is preserved in each step of the testing process and can be gathered as
statistics for later test cycles.

During test generation, test cases are ordered based on the statistical information
contained in the models. After each test run, statistical information is gathered and fed
back to the models in a feedback loop. The statistical information serves as basis for
updating the information contained in the models to prioritize tests for those parts of
the system where failures are discovered.

Future work will be to extract additional information from test logs. Since the test
logs contain detailed information about messages sent and received from the SUT, this
information could be extracted and presented to the user. For example the HTML test
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report could be extended to include sequence diagrams for each test case. The tester
could then examine failed tests in more detail, e.g. see what messages has been sent and
received and what values were used, to manually adjust priorities and probabilities in
the model. It could also facilitate the debugging of possible errors in the model.
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Abstract In this paper a model-based, reuse-oriented test technique
is presented, called Colored Model-Based Testing for Software Product
Lines (CMBT-SWPL). It is a new requirements based system testing
method used for validation and verification of product lines. A key con-
cept is the Colored State Chart (CSC), which considers variability early
in the product line development process. During domain engineering the
CSC is derived from the usage model and the feature model. By col-
oring the State Chart the behavior of several product line variants can
be modeled simultaneously in a single diagram. The CSC represents the
domain test model, out of which test models are derived, in turn the in-
put to the test case generation using statistical testing methods. During
application engineering these colored test models are customized for a
specific application of the product line. Finally the generated test cases
are executed and the test results are ready for evaluation. In addition
to test case generation, the CSC will be transformed to a Colored Petri
Net (CPN) for verification and simulation purposes.

1 Introduction

“A software product line is a set of software-intensive systems that share a com-
mon, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets
in a prescribed way.”[1]. The following figure 1 is the product line engineering
reference process which we developed to compare the development artifacts in
parallel to the test artifacts. This reference process was influenced by Klaus
Pohl’s [2] and Gomaa’s [3] frameworks.

As depicted in figure 1 the product line engineering reference process consists
of the domain engineering process and the application engineering process. In
the domain engineering the core assets are built for all members of the product
line. The core assets are the artifacts used in the development of the product line
such as requirements, design, implementation and test artifacts. In application
engineering the core assets are reused and customized to produce a specific
application of the software product line. The reuse addressed here is strategic
planned reuse that is targeted to minimize effort, cost, time and produce high

31



CPN.pdf

D
o

m
a

in
 E

n
g

in
e

e
ri

n
g

A
p

p
li

c
a

ti
o

n
 E

n
g

in
e

e
ri

n
g

New
Requirements

ComponentsTest Cases

Requirements
Reference Architecture  

Application 
Engineer

SPL 
Engineer

Core Assets

Domain 
Artefacts

Application
Artefacts

Domain 
Sub Processes

Application
Sub Processes

Application 1 
Application N 

Requirements
ArchitectureComponents Test Cases

B
in

di
ng

 V
ar

ia
bi

lit
y)

Unsatisfied Requirements,  
Errors, Adaptations

Executable 
Application

Customer3a

2

Feature Model

Domain 

Architecture

Components

Domain

Test Cases

Feature Model

Application

Architecture

Executable 
Application

(Integrated Components)

Application

Test Cases

Product 
Management

Domain 

Requirements

Engineering

Domain 

Design

Domain

Realisation

Domain 

Testing

Application

Design

Application

Realisation

Application

Testing

3b

1

CMBT CMBT

Customizable Test 
Method

Domain Test 
Model

Colored State 
Chart

Domain     
Test Cases

Application 
Test Cases

Application 
Test Model

Colored State 
Chart

Test 
Engineer

Test 
Engineer

Customized 
Test Method

A

B
D

C

Application

Requirements

Engineering

Figure 1: Colored Model-Based Testing for Software Product Lines(CMBT-
SWPL) in the Product Line Engineering Reference Process

quality products. Variability is closely related to the concept of software reuse.
The benefits of reuse were realized for all development artifacts but still not for
testing. It is desired to create test artifacts that consider variability early in the
development process, i.e. in the domain engineering phase in order to be reused
in the application engineering phase.

The two main aspects that we like to focus on when testing product lines,
are as we mentioned before (1) reuse and the second one which is important to
achieve this type of predictive or strategic reusability is (2) model based testing.

This paper describes a new approach for validation and verification of prod-
uct lines called the CMBT-SWPL. This requirements-based testing approach
uses CSCs[4]. Requirements-based testing can increase efficiency, reduce the risk
of failure, and improve overall software quality.[5] The behavior of various prod-
uct variants can be modeled simultaneously in a single figure by coloring State
Charts, and thus address product line variability early in the product line de-
velopment life cycle.

The remainder of the paper is organized as follows. In section 2, a running
example is provided in form of the Universal Remote Control. The relevant
artifacts of this system are described. Section 3 represents the Colored State
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Chart (CSC) starting by showing in 3.1 an example how the folding is performed
and then in 3.2 an overall CSC is formally defined. Section 4 describes how the
test models can be derived. First, the CSC used in the example is presented.
Next, it is described how a simple State Chart can be derived from the CSC for
a given feature set. Finally, the Statistical Testing approach is described and it
is explained how test cases for different feature sets can be derived in this way.
The paper ends with a summary and outlook.

2 Example: Universal Remote Control (URC)

The example of a URC is used to explain the test method. This example [6]
was conducted at the Faculty of Computer Science and Automation - Institute
of Computer Engineering - Ilmenau University of Technology and it is part of
the Digital Video Project(DVP)[7][8] based on the VDR project [9]. The URC
is modeled using features where a feature stands for “a logical unit of behaviour
that is specified by a set of functional and quality requirements representing an
aspect valuable to the customer and system architect” following the definitions in
[10]. Feature models first described by Kang 1990 [11] model a complete product
line by hierarchically organized features, which might be mandatory or optional.
The set of all mandatory features composes the core of the product line, present
in all derived applications. Each set of selected optional features (according to
the given constraints, e.g. requirements) together with the mandatory core is
used to derive an application of the product line.

The URC in [6] has the following features: (1) Controlling the video recorder
(2) Controlling other devices and it should (3) provide a user profile. All the func-
tionalities are explained in detail in [6]. In this paper we are going to concentrate
only on how to control the video recorder. The features we are going to focus
on are based on the overall feature model represented in [6] and are reduced to
the feature model in figure 4. In the reduced feature model, there are mandatory
features such as Basic Functions. The Basic Functions feature could contain
other features such as choosing channel feature, controlling volume fea-
ture or waiting feature. The optional features for controlling the video recorder
(VDR) are Electronic Program Guide (EPG) and Title-Database (which is
out of our scope). The Reminder feature is available to remind a user of e.g.
movies and is a sub feature of the EPG feature.

3 Colored State Charts

The State Charts (SCs), that are used here, are based on David Harel´s State
Charts, which were introduced 1987 in [12]. UML State Charts are based on
Harel’s State Charts [13] with modifications like enhanced synchronisation prop-
erties or overlapping states. The basics of the State Charts are covered in [14],
[13] as “UML state machine diagrams”.

UML State Charts cannot address product lines. Thus, the extended State
Chart version as introduced in [4] and [15], will be used in this article. Such State
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Charts are called “Colored State Charts” (referred to as CSC) and are based on
the basic idea of Colored Petri Nets (CPN), as described in [16] or [17].

The basic principle is based on the folding of similar state diagrams, which
represent, for example, a class and its subclasses, or more object instances of a
class. The example in figure 2 is depicted to explain the idea.

3.1 Example: Folding of States and Transitions

Figure 2: Folding of States and Transitions (from [4])

Here, State Charts SCa and SCb have the same states, but differ only in the
transitions. SCa and SCb have the transitions t1a and t1b respectively as well
as t2a and t2b. However, t3a exists only in SCa. The included tokens (black
dots) in S3a and S1b show the currently active states in the state diagrams
SCa and SCb. Tokens move when transitions fire into the next active state. In
the resulting CSC, the common states and transitions are superimposed. This
superimposition is labeled as shown in figure 2. For example, the two states S1a
and S1b will be superimposed in the CSC to S1a/S1b and correspondingly the
two transitions t1a and t1b are superimposed in the CSC to t1a/t1b. The states
or transitions (e.g. t3a) that are only present in one state diagram are transferred
to the CSC. In the CSC the tokens SCa and SCb appear in the states (S1a/S1b
and S3a/S3b), as result of the superimposition of the corresponding marked
states in SCa or SCb. The transitions of the CSC will be further labeled with
the disjunction of the SC names, which are involved in the superimposition of
the transitions. For example, the transition based on t1a and t1b will be labeled
SCa ∨ SCb and the transition based on only t3a will be labeled SCa. The SCi
names used in the tokens and on the transitions are described in the following
sections as colors. Transitions can fire, if the originating state contains a token
of color SCi (e.g. S1a/S1b contains the token SCb) and the disjunction of the
transition contains SCi (e.g. the disjunction of t2a/t2b contains SCb).
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3.2 Formal Definitions

The following CSC used in this article does not use all the options mentioned in
[4] and [15]. In order to extend the State Chart (SC) to a Colored State Chart
(CSC), based on the general State Chart definition, we are going to focus only
on the following:

– S: a finite set of complex states. The elements of S are called s.
– T: a finite number of complex transitions with T ⊆ S × S. The elements of

T are resulting as (si, sj).
– C: a finite set of colors. The elements of C are called c.
– CV: a finite set of color variables. The elements of CV are called cv.
– m: a marking with m: S → P (C), were P(C) is the power set of C.
– ctf: a color transition function with T → CV . For each cv ∈ CV there is a

definition set cvd with cvd ⊆ C ∧ cvd 6= ∅.

For the state transitions in the CSC, there is a transition firing rule:

– A transition (si, sj) can fire for c ∈ C if c ∈ m(si).
– A transition fires for c ∈ C if and only if it can fire for c (and additionally

the events and the guards of the transition are fulfilled).

The result of firing of (si,sj) for c ∈ C is:

– mk+1(si) = mk(si)\{c} and mk+1(sj) = mk(sj) ∪ {c}
– k is before firing (si, sj); k +1 is after firing (si, sj).
– A transition fires in parallel for different colors, if it can fire for these colors.

The CSC in figure 2 will be depicted in the overall following figure 3.

s1 s2

s3

cv1/a1

cv3/a3cv2/a2

c1

c2

cvd(cv1) = (c1 , c2) s1 : S1a / S1b    c1 : SCa

cvd(cv2) = (c1 , c2) s2 : S2a / S2b    c2 : SCb

cvd(cv3) = (c1) s3 : S3a / S3b

ai represents actions
cv represents color variables

Figure 3: Example of a Colored State Chart(CSC)

Colored State Charts can be transformed to Colored Petri Nets [4]. This
makes verification of the transformed model possible using widespread methods
and tools developed for CPN.

4 Testing Product Lines with Colored State Charts

The traditional way of testing single systems is to test after coding is finished
(for functions, components or the integrated system), i.e. when there is a running
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application. However, in product line testing, we aim to start the test develop-
ment early in the domain engineering phase and not to wait until the variability
is bound and there is a running application. Therefore, testing a product line is
divided into domain testing and application testing [2]. The targeted test here is
a requirements model based system test that takes variability into consideration.
System testing falls within the scope of black box testing, and as such, should
require no knowledge of the inner design of the code or logic[18].

4.1 CMBT: Domain Engineering.

Within the domain engineering (the left part of figure 1) of the product line a
feature model was developed in [6] to model the variable and common features
of the product line. For the further elaboration of the example we concentrate
only on the features shown in figure 4, referenced as “Reduced Feature Model”.
The selection of features in the reduced feature model for a certain product
line variant is called feature configuration. In parallel to the feature model a
usage model is developed, represented as State Chart with usage probabilities.
It models the black box usage of the system and is extended towards a Colored
State Chart.

Figure 4: Reduced Feature Model

The reduced feature model results in three product line variants (V1, V2
and V3). V1 includes features f1 and f4. V2 includes features f1, f2 and f4. V3
includes features f1, f2, f3 and f4. The set of all features corresponds to the finite
set of color variables of the colored State Chart. The features correspond to the
color variables, presented in the test model in figure 5 (gray refers to feature f2,
the Electronic Program Guide). This test model can be elaborated formally as
explained in the following lines and based on Section 3.2:

– S represents the set of all states. We use symbolic identifiers for the elements
of S. In our example: S = {Waiting, Volume, Channel, Electronic Program
Guide(EPG), Reminder}

– T represents the set of all transitions. The elements of T are resulting from
S × S as (symbolic identifier i, symbolic identifier j). In our example: T =
{(Waiting, V olume), (Waiting, Waiting), . . . . . .}

– An example for a condition is: condition(Waiting, V olume) = vol_plus
– An example for ctf is: ctf(Waiting, V olume) = f4
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– The set of features is: F = CV = {f1, f2, f3, f4}
– The set of the defined product line variants is: V = C = {v1, v2, v3}

From the VD(v)in figure 5, the assignment of the product line variant vi to
the feature fj can be directly derived as follows:

– cvd(f1) = {v1, v2, v3}
– cvd(f2) = {v2, v3}
– cvd(f3) = {v3}

Based on the knowledge captured in the feature model and the previously
developed usage model a CSC is developed (see (A) in figure 1). The CSC in-
cludes the behavior of the system family and at the same time its variability,
represented by the colors. At any given moment the CSC refers to one active
product line variant while the remaining variants are passive. It is similar to
the concept of instantiation in the object oriented paradigm. One active product
variant is equivalent to a certain feature configuration extracted from the feature
diagram or respectively from the CSC.

Waiting

Channel

Electronic Program Guide (EPG)

Reminder

Volume

Initial

f1

EPG ⋀ f2

f1

Off ⋀ f1

On ⋀ f1

ChDown ⋀ f4

ChUp ⋀ f4

AnyKeyRelease2 ⋀ f4

BackFromEpg ⋀ f2

VolPlus ⋀ f4

BackFromReminder ⋀ f3

· TV is on

· „Remote“ is on

(batteries are ok)

· F represents the set of all features and 

corresponds to CV from section 3.2

· The elements of F are called f and build the 

color variables in the CSC

· V represents the set of all defined product line 

variants and is equivalent to C

· The elements of V are called v and build the 

colors in the CSC.

· VD is the variant definition set.

· VD contains the allocation of all defined product 

line variants to the features and is produced 

from the specification of the product line 

variants and the restrictions of the feature 

model.

· V D : V → F

· V D ( v ) = { fi, fj, fk, . . . . . . }

The following three product line variants are defined:

V D ( v 1) = { f 1, f 4}

V D ( v 2) = { f 1 , f 2, f 4}

V D ( v 3) = { f 1 , f 2 , f 3, f 4}

(f1 = Controlling VDR,  f2 = Electronic Program 

Guide(EPG), f3 = Reminder, f4 = Basic function)

VolMinus ⋀ f4

ConfigReminder ⋀ f3

AnyKeyRelease1 ⋀ f4

Figure 5: CSC-Test Model

One color, i.e. one product line variant may constitute of one or more fea-
tures in this case color variables. Within the domain test model in figure 5 the
variability is realized by mapping the features to one or more transitions. The
events are combined with features present in a given application of the product
line. A transition will only be able to fire if all features which are bound to it
are present in the derived application.

The domain test model includes all features of the product line. Out of the
domain test model, domain test cases (see (B) in figure 1) are derived by re-
ducing the feature set to the common features, which is the core of the product
line. Based on this reduction a State Chart is derived and enhanced with usage
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probabilities to be used as input for the generation of test cases, described in
section 4.3. The test artifacts that are gained until this step such as test models
and test cases are stored in the repository to be reused for the derivation of
applications of the product line.

4.2 CMBT: Application Engineering

Within the application engineering (the right part of figure 1) of the product line
the feature model is reused. Based on the Application Requirements Engineering
phase possible needed changes to the feature model are thoroughly assessed. In
the case where such new requirements make changing the feature model worth-
while, these changes are fed back to the Domain Engineering phase. The next
step is to customise the colored domain test model (i.e. one color is chosen) to
produce the colored application test model for a specific application (see (C) in
figure 1). The CSC is ransformed into a State Chart modeling the behavior of a
single application and enhanced with usage probabilities to generate test cases
for this application using the statistical testing approach described in section
4.3. Statistical testing as one of the technologies to reduce the huge test space
was chosen based on own experiences in the embedded software development
domain, expert knowledge of embedded software developers in the automation
domain and the results of the D-MINT project. Other approaches towards test
case reduction and generation are subject of further research.

4.3 Statistical Testing

Statistical testing [19], [20] is based on usage models. Such models represent
the typical (based on statistics) usage of a system, in our case by an end user.
The usage model may be expressed by a State Chart with annotated transition
probabilities. All possible paths from the start to the final state form the test
cases of the system.

Figure 6: Statistical Testing based on State Charts

Each test case is composed of the transitions and states along a path from the
start to the final state as depicted in figure 6. An example of a test case would be
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the path with the transitions goto_A, goto_AB, goto_BF and goto_X in exactly
this order. For each transition, test steps according to a test interface are defined,
e.g. push buttons on the system under test (SUT) or the measurement of the
reference values parallel to the test case execution. The probabilities attached to
the transitions represent the typical usage of the system and allow the generation
of an arbitrary number of test cases according to the statistical system usage.

The typical usage can be obtained by observing the user using the system,
using similar project´s statistics or by expert estimations which can be further
refined if necessary through observed usages. The tool JUMBL [21] is used to
generate test cases according to the above mentioned criteria. The test model in
6 is represented as Graph Modeling Language (GML) and with minor manual
adaptations transformed into The Model Language (TML) used as input for
JUMBL.

5 Summary and Outlook

In this paper we presented a model-based, reuse-oriented test technique called
the Colored Model-Based Testing for Software Product Lines (CMBT-SWPL).
UML state machines do not consider product line variability. With the approach
described in this paper, variability will be considered early by introducing it
directly in the main product line components of the CSC. Thus, by using the
CSC, the product line variability can be extended to UML state machines. One
of the main benefits of the CMBT-SWPL method is its formal syntax as well
as a formal semantic for the CSC and the variability. Currently the CMBT-
SWPL method has been positively reviewed for its industrial feasibility, the fu-
ture application of the method will deliver real measurements. The combination
of applying the CMBT-SWPL method with the statistical testing is expected to
lead to reduction of the testing efforts. As result of the D-MINT project [22] an
overall improvement of 35% for the usage of model-based testing technologies in
contrast to non-model-based testing was achieved (statistical testing was a cen-
tral part of this project). The result is valid for development projects of single
applications in the automation domain, product lines have not been targeted in
D-MINT. Future research efforts will result in metrics on the improvement due
to the CMBT-SWPL product line testing - we expect at least the improvement
of the D-MINT project. Thus, the targeted strategic reuse, realised for the de-
velopment artifacts, could be argued for the test artifacts as well. Last but not
least, applying the CMBT-SWPL method enables the application of validation
and verification techniques on the same model.
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Streams of Use

Frank Böhr Æ
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Abstract. Model Based Statistical Testing (MBST) is a highly auto-
mated test approach. It allows the fully automated test case generation,
execution, and evaluation after building the test model. However, it is
not easy to build the model used in MBST if the system under test
needs to handle concurrent streams of use, which is the usual case for
embedded systems. The usual way to address such a situation is to use
strong abstraction, even though it is not impossible to represent concur-
rent streams of use in the test model used in MBST. The reason to use
strong abstraction, is the emerging high complexity of the test model
(which arises because of the lack of explicit support of concurrency) and
thus its error prone and time consuming construction. This is why this
paper focuses on the introduction of an explicit representation of con-
currency within the test model. This is done with the use of Petri nets.
The paper proposes to use Petri nets as a test model because they are
well suited for modeling concurrency and in a second step to generate
the test models usually used in MBST based on these Petri nets in order
to preserve the ability of statistical analysis.

1 Introduction to MBST

Model Based Statistical Testing (MBST) has been used for testing a wide range
of applications. These applications vary from sophisticated software engineering
environments [1] to data bases [2] and large industrial software systems [3].
MBST is furthermore used in industries and by government agencies [4]. MBST
was also used in projects involved with testing embedded systems such as mass
storage devices, weapon systems, medical devices and automotive components
[5]. More examples can be found in [6][7][8] and [9]. Testing the special charac-
teristics of embedded systems is only mentioned in [10] and [11] but there, the
focus is on time and not on concurrency.

Embedded systems are usually handling concurrent streams of use. As an
example of two concurrent streams of use imagine a co-drivers power window in
a car. It can be controlled by the co-driver himself, but it can also be controlled
by the driver. The driver (representing one stream of use) can act concurrentlyÆ I want to thank The Klaus Tschira Foundation gGmbH and Prof. Dr.-Ing. Dr. h.c.

Andreas Reuter for funding and supporting my work.
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to the co-driver (representing a second stream of use). However, a stream of use
might also be representing inputs from a sensor or another software system.

Additionally to handling concurrent streams of use, embedded systems are
becoming more and more complex [12] and increasingly software intensive. Even
though additional software adds new features to those systems, it introduces
potential failures at the same time. An adequate testing approach must con-
sider the special properties of these embedded systems software (e.g. concurrent
streams of use).

Poore [4] mentions that the software testing problem is complex because of
the astronomical number of scenarios and states of use and that the domain of
testing is large and complex beyond human intuition and that statistical princi-
ples must be used to guide the testing strategy in order to get the best informa-
tion for the resources invested in testing because the software testing problem
is so complex. MBST offers a solution, because a main benefit of MBST is that
it allows the use of statistical inference techniques for computing probabilistic
aspects of the testing process, such as reliability [13]. In MBST all possible uses
of the software are represented by a statistical model wherein each possible use
of the software has an associated probability of occurrence. Test cases are drawn
from the sample population of possible uses according to a sample distribution
and run against the software under test. The model used to represent the use of
the software is a finite state, time homogeneous, discrete parameter, irreducible
Markov Chain (MC) [9]. This model can be represented as a state transition
graph as shown in [13]. The states in this graphical representation determine
externally visible states of use. The arcs represent inputs (also called stimuli) to
the System Under Test (SUT) and the required SUT response [7]. This means
each arc is tagged with a certain stimulus and with a system response which
represent possible uses of the system and its reaction. A user might be a human,
a hardware device, another software system, or some combination [4].

An example of a graphical representation of a usage model, which represents
the use of a telephone, is shown in Fig. 1. Each usage model has two special
states. The first state is called source (On Hook) and the second is called sink
(Exit). Each possible walk through the usage model starting at the source state
and ending in the sink state is a possible test case [3]. When traversing an arc,
the associated stimulus and response are collected. A test case is created by
concatenating the stimulus/response pairs of the arcs visited.

Which arc is chosen in a particular state depends only on the sample dis-
tribution (shown in brackets in Fig. 1). So each arc is, additional to the stimu-
lus/response pair, associated with a certain probability. These probabilities are
used to generate test cases which are representative with respect to the way in
which the software will be used after its deployment. The values of the proba-
bilities of outgoing arcs of each state add up to 1 and depend on the current
state only. This is normally a reasonable description of the usage of most soft-
ware systems [15]. Such a model is called a usage model because it describes
the use of the software rather than the software itself. There are several ways
to build the structure of a usage model i.e. a graph like the one shown in Fig. 1
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Ringing

On Hook

Off Hook

Busy Tone

Error Tone

Ring Tone

Connected

Exit

disconnectedp0.5q
incoming callp0.5q

lift receiverp0.5q lift receiverp0.5q
dial busyp0.25q

dial badp0.25q dial goodp0.25q
hang upp1.0q hang upp1.0q hang upp0.5q

connectp0.5q
hang upp0.5q

disconnectp0.5q
hang upp0.25q

Fig. 1. An example of a usage model [14] which represents the use of a
telephone.

without the probabilities. One way is to apply a method called Sequence Based
Specification (SBS). The SBS builds the model structure solely based on the re-
quirements. Approaches introducing hierarchies into usage models are presented
in [4][15][16].

A usage model can be represented as a MC. The Markov property of the
usage model can be used to compute information which provides a great deal
of information about the testing effort [16] like the expected test case length,
probability of occurrences for states, long run occupancies of states, arcs and
inputs [17], source entropy, amount of statistical typical paths and some more
[9] prior to any test run and single-use reliability and single-event reliability [17]
after the test cases are executed.

According to [2] it is possible to obtain the needed probabilities in three ways.
The first is called the un-informed approach. It consists of assigning a uniform
probability distribution across the exit arcs for each state. The second one, called
the informed approach, can produce many models, and is used when some
real usage patterns are available. These patterns could be captured inputs from
a prototype or from a prior version of the software.The third approach, called
the intended approach, is similar to the informed approach in that it can lead
to many models, but the sequences are obtained by hypothesizing runs of the
software by a careful and reasonable user. A way which allows some degree of
automation in the generation of probabilities is presented in [18].

Concurrent streams of use with respect to MBST are only addressed in [19] as
far as known to the author. However, the work presented there does not introduce
concurrency to the test model. The approach generates test cases (from a usage
model like the one in Fig. 1) which each represent a single stream of use, and
interleaves these test cases after their generation.
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2 Introduction to Petri Nets 1

Petri nets (PNs) were introduced by C.A. Petri in 1962 [21]. Petri nets are a
graphical tool for the formal description of systems whose dynamics are charac-
terized by concurrency, synchronization, mutual exclusion and conflict [22].

The basic graphical representation of a PN is a bipartite directed graph [23]
(i.e. it is not allowed to connect places with places or transitions with transi-
tions). It consists of places, transitions, arcs and tokens [24]. Places are drawn
as circles and transitions are drawn as bars (or squares) [25]. Arcs are drawn
as arrows (with possibly different arrow heads) and tokens are drawn as black
circles inside places [26] (or the amount of tokens is written inside the places as
a number). An arc can connect a place with a transition or a transition with a
place.

Places are used to describe possible local system states. Transitions are used
to describe events that may modify the system state. Arcs specify the relation
between local states and events [22].

An arc drawn from a place to a transition is called an input arc into the
transition from the place. Conversely, an arc drawn from a transition to a place
is called an output arc from the transition to the place [23]. Each place connected
to a transition t via an input arc is called an input place of t, each place connected
to a transition t via an output arc is called an output place of t and each place
connected to a transition t via an inhibitor arc (inhibitor arcs are explained at
the end of this section) is called an inhibitor place of t. A transition is said to
be enabled, if all of its input places contain at least one token and all of its
inhibitor places contain no token [25]. The behavior of a PN is controlled by the
firing rule. An enabled transition may fire by removing a token from each of its
input places and depositing a token in each of its output places [26]. The tokens
which get removed from the Petri net by firing a transition t are denoted by Iptq
(called the input bag of t) and the tokens which get added to the Petri net by
firing transition t are denoted by Optq (called the output bag of t).

When arc cardinalities (shown as numbers labeling the arcs in Fig. 2) are
used, the number of tokens required in each input and inhibitor place for enabling
the transition and the number of tokens generated in each output place by the
transition firing are determined by the cardinality of the arc connecting the place
and the transition [22]. The number of tokens in each place is called the marking

of the PN and is denoted by µ. It is possible to think of the marking as a vector
of non negative integers. Each element in the vector belongs to the amount of
tokens in one particular place. Thus adding (subtracting) the output bag (input
bag) of a transition to (from) a marking can be done by adding (subtracting)
vectors (see line 8 of algorithm 1).

A special type of arc is the inhibitor arc, which is represented as a circle-
headed arc originating from a place and ending at a transition [22]. If an inhibitor
arc exists from a place to a transition, then the transition will not be enabled

1 Fig. 2 in this section and Fig. 3 and Fig. 4 in the next section are created using a
tool called “yEd Graph Editor” available from [20].
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if the corresponding inhibitor place contains more or equal tokens than the arc
cardinality [27]. The use of inhibitor arcs allows implementing a test for zero
tokens in a place which is not possible with normal arcs in general. The addition
of inhibitor arcs is an important extension of the modeling power of PNs, which
gives them the same modeling power as Turing machines [22]. With the above
extended Petri nets powerful enough to simulate Turing machines, all nontrivial
problems for such Petri nets become undecidable [28].

Fig. 2. An example Petri net which shows two streams of use.

An example Petri net is shown in Fig. 2. It consists of eight places numbered
P0 to P7. Each place contains 0 tokens except P0 which contains 1 token. The
Petri net consists furthermore of six transitions numbered T 0 to T 5 and 14 arcs
(arrows) each having a cardinality of 1. The box in the background does not
belong to the Petri net and is only used to highlight the concurrent parts of the
Petri net.

3 Petri Nets and Usage Models

A usage model can be seen as a special kind of Petri net. It is a Petri net
which has only one token in each of its possible markings. This token indicates
the current state of use in the usage model. The relation between Petri nets
and usage models gets more obvious if the stimulus/response pairs which are
associated to the usage model arcs get represented as Petri net transitions (see
Fig. 3). The restriction to use only one token is not needed during modeling i.e.
creation of the test model. However, it is needed during the statistical analysis
of the test results, because it allows to represent the usage model as a markov
chain.

This is why this section explains first how it is possible to use the modeling
capabilities of Petri nets during the usage model building and, second a way how
it is possible to transform the created model to a Petri net which uses only one
token in order to preserve the ability for statistical analysis of the test results.

The ability to model concurrent behavior is an integral part of Petri nets.
As an example see Fig. 2. Place P0 contains 1 token. It is the only input place
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Fig. 3. The lower part shows a tiny usage model with two states. Changing the state
from s1 to s2 generates a test case with stimulus S and response R. The upper part
shows a Petri net which does exactly the same.

of transition T 0 and the arc connecting P0 and T 0 has cardinality 1. Thus
transition T 0 is enabled and can fire. Firing transition T 0 results in remov-
ing the token from P0 and putting 1 token in each of the output places of T 0
(i.e. P1 and P2) because each arc connecting T 0 to an output place has car-
dinality 1. This situation starts two concurrent streams of use. These streams
are T 1, T 3 and T 2, T 4. The involved transitions can happen in any of the
following orders: (T 1,T 3,T 2,T 4),(T 1,T2,T3,T4),(T 1,T2,T4,T3),(T2,T1,T3,T4),
(T 2,T 1,T 4,T 3),(T 2,T4,T1,T3) which is basically each possible interleaving of
the two streams of use.

As an example consider (T 1,T 2,T 4,T 3). Firing of T 1 removes one token from
P1 and adds one token to P3 which results in enabling T 3. The token in P2
which remains there from firing T 0 enabled T 2 whose firing removes the token
from P2 and puts one token in P4 which enables T 4. Firing T 4 moves the token
from P4 to P6. In this situation firing T 5 is not possible because there is no
token in P5. Thus the only remaining enabled transition T 3 is firing and moves
a token from P3 to P5. In this situations there is one token in P5 and one token
in P6 which enables T 5. Firing T 5 is the end of the concurrent streams of use.

The association of stimulus/response pairs to Petri net transitions allows the
creation of a test model with concurrent streams of use.

Modeling each of the possible interleavings is possible with a usage model
as well, but the resulting model is much more complicated even in the case of
the small example shown in Fig. 2. The usage model is shown in Fig. 4. The
concurrency cannot be easily seen in the usage model. Additionally, changing
one of the streams of use (e.g. adding one more transition) results in additional
usage model states and additional usage model arcs originating from various
different usage model states and cannot be performed easily.

Even though the usage model is more complicated it is well suited for gen-
erating test cases and especially for performing statistical analysis. This is why
this paper proposes to use Petri nets during modeling and usage models during
test case generation and statistical analysis. To achieve this goal it is necessary
to transform Petri nets to usage models after building the test model (i.e. Petri
net) and before test case generation and statistical analysis. How this is possible
gets explained in the following part of this section and is shown as pseudo code
in algorithm 1.
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Fig. 4. A usage model which represents the same possible uses as the PN in Fig. 2.

Basically, the idea is to generate the reachability graph of the Petri net.
One state in the reachability graph corresponds to one possible marking of the
Petri net. Each arc in the reachability graph is tagged with the transition which
caused the state change. The resulting reachability graph is the usage model.
The probability to choose a certain usage model arc can be computed based
on transition weights. This means that each transition in the Petri net gets
associated with a certain weight, which is a non negative integer value. The
probability to chose and fire a transition among possibly many other enabled
transitions (which is the probability to chose a certain arc in a certain usage
model state) gets computed by dividing the weight of the chosen transition by
the sum of the weights of all enabled transitions.

Algorithm 1 works as follows. The outputs are the two set S and PS . S

contains the states of the usage model and PS contains the state transitions
between these usage model states. These sets are initially empty as indicated in
the second line of the algorithm.

The set Snext contains the known but unprocessed usage model states. One
usage model state belongs to one Petri net marking. Initially there is only one
known state and this state is unprocessed as shown in the third line. This state
corresponds to the initial marking of the Petri net.

The while loop in line 4 goes on until there are no more states in Snext i.e.
until all possible markings (i.e. usage model states) got processed.

The first step in the while loop is to chose one known unprocessed state si

from Snext which is going to be processed next (line 5).
This state gets removed from Snext in line 6 in order to avoid processing it

again in a later iteration of the while loop.
The for loop in line 7 chooses one transition from the set Epsiq which repre-

sents all enabled transitions (i.e. transitions which can fire) in state si.
The first line in the for loop fires the chosen transition by subtracting the

input bag and adding the output bag of the chosen transition to the marking
associated to si (i.e. µi). The resulting marking µi�1 corresponds to a new state
si�1 which can be reached from si by firing transition tj .

The probability to fire tj in state si gets computed in line 9 of the algorithm.
It divides the weight of transition tj by the sum of the weights of all transitions
in Epsiq.
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Lines 10 to 13 are skipped if the reached state si�1 was already reached in a
previous iteration of the while loop. si�1 gets added to the set of known states
S and the set of known but unprocessed states Snext if the state wasn’t reached
up to now.

Line 14 adds the found state transition to the set PS . A state transition
consists of a start state (si), an end state (si�1), the associated transition (tj)
which represents the associated stimulus/response pair and the probability to
choose the state transition (f j).

The next step in line 15 is to go back to the start of the for loop in line 7
and to choose the next transition which is fired in marking µi which belongs to
si. The for loop goes on firing transitions in this state until each transition in
Epsiq gets fired. Thus each state reachable from si gets reached.

The while loop chooses the next state which is going to be processed from
Snext after the for loop fired each possible transition in state si.

The algorithm goes on like this until there are no more known and unpro-
cessed states. In that case the algorithm terminates and reaches line 17. In this
case S contains each reachable state and PS contains all possible state transi-
tions. The algorithm does not terminate if the state space of the Petri net is
infinite.

Algorithm 1 This algorithm generates a usage model out of a Petri net. Some
parts of the algorithm and of its notations are adapted from [29].

1: procedure generateUsageModel(out: S ,PS)
2: S � H; PS � H;
3: S

next � ts0 � pµ0qu;
4: while S

next � H do
5: choose a state si � pµiq from S

next

6: S
next � S

nextztsiu;
7: for all tj P Epsiq do
8: si�1 � µi�1 � µi � Iptjq �Optjq;
9: f j � ŵptj , Epsiqq;

10: if si�1 R S then
11: S � S Y tsi�1u;
12: S

next � S
next Y tsi�1u;

13: end if
14: PS � PS Y tpsi, f

j , tj , si�1qu;
15: end for
16: end while
17: end procedure

4 Conclusion

MBST has a high degree of automation. It allows achieving fully automated
test case generation, test execution, test evaluation and reliability estimation
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based on a usage model [6]. However, it was hardly possible to consider con-
current streams of use in MBST without using strong abstraction up to the
presented proof of concept, because of the emerging complexity of the usage
model. Handling concurrent streams of use is important in embedded systems
testing because it is usual that these systems need to handle more than one
stream of use. The ability to model several streams of use is achieved by the
use of Petri nets. It is important to notice that a usage model can be automati-
cally generated out of a Petri net. Thus all advantages of MBST are preserved
e.g. generating test cases which include the test oracle (this means it is possible
to decide between pass and fail of a generated test case automatically) and the
ability to statistically analyze the results and estimate the reliability of the SUT.

The presented work furthermore allows preserving the efforts invested in
previous usage model construction. This is the case because a usage model can
easily be turned into a Petri net as shown in Fig. 3. Concurrent streams of use
can be added to the usage model after converting it to a Petri net.

The next step is evaluating the method at an example of realistic size like the
one presented in [6]. Tool support for generating a usage model out of a Petri
net and for generating test cases out of a usage model and statistical analysis is
available.
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Abstract. For software quality assurance, it is necessary to improve
the testing process, which ensures that software works correctly. As the
task of test design, such as creating the test cases and the test data, are
time and effort consuming when done manually, we propose a technique
that can generate these artifacts from UML design models, aiming to
improve SUT coverage and test density within limited man-hour. We
implemented a prototype of a test design support tool, carried out a
case study for evaluation through the comparison between automatic
generation and manual derivation.

Key words: model based testing, test case extraction, test data gener-
ation, UML 2.0, activity diagram

1 Introduction

1.1 Background

Software defects, which lead to economic loss, have become an unignorable object
of public concern. In this study, we aim to achieve better quality assurance by
improving testing, within a reasonable range of the quality-cost-delivery balance.
We consider testing as a confirmation of whether the product is developed just
as one intended, rather than just a search of bugs. Here, the intentions of the
customer are formalized into software design. So the subject of our study are
tests which confirm “whether the product is implemented as its design”.

To achieve test improvement, it is essential to increase the quantity and
quality of the test, besides other related factors such as testing process and
testing management. We use test density as a metric of test quantity, which is
represented by the following formula where SUT represents software under test:

Test density = Number of test cases ÷ Size of the SUT.
On the other hand, SUT coverage can be used as a metric of test quality. Here, we
consider 2 kinds of SUT coverage, structure coverage and input space coverage.

Structure coverage is percentage of SUT’s elements which have been tested.
This can be represented as below:

Structure coverage = Elements tested ÷ Total number of elements.
Here, the elements that make up the structure of the software are instructions,
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branches, paths, methods, classes, components, etc. In this study, we focus on
the path coverage.

Input space coverage, is the percentage of inputs given to the SUT which are
used for testing. This can be represented as below:

Input Space Coverage = Inputs used for testing ÷ Entire input space.
Here, the entire input space is a collection of all the possible inputs that can be
given to the SUT. Choosing inputs is important for quality assurance, because
the number of inputs is usually infinite but we can only do testing finite times.

When improving test density and SUT coverage, we also need to work on test
laborsaving. Pursuit of high density and coverage will ask for more manpower
of testing. So in order to achieve these goals within constraints on costs and
delivery time of development, “easier way” of testing is strongly required.

Therefore, as a part of test laborsaving, our study focuses on test design
automation. Test design is composed of activities extracting test cases and test
data from the software design. The test data materializes a test case and makes
it executable. Unlike test execution, test design can only be done by a few skilled
engineers, so it may become the bottle neck of the test process. In this study, our
goal is to increase the test density and SUT coverage while reducing man-hours
of test, by means of test design automation.

1.2 Motivation

As an approach of test design automation, we proposed a method to automat-
ically generate test cases and test data as test design artifacts, based on the
software design described in UML (UML model). In particular, the inputs of
this generation are UML 2.0 class diagrams and activity diagrams, and outputs
are test cases, and test data with hierarchical structure such as object data-type.
We give 3 motivations below to explain why we choose this approach.

Easy notation. Existing research on test design automation especially test case
extraction, as mentioned in literature[7, 4, 2], mainly aims at embedded systems
and communications protocols which are based on state transition model, so the
applicable scope is still limited. Besides, remember that the input of test design
is software design, means formalized users and developers’ intention. But there
is also a problem that software design notation proposed is often “original” and
“esoteric”, therefore making a high barrier for the technique’s practitioners.

In consideration of usability, our study adopts UML which has been widespread
in recent years as a notation for software design, especially activity diagrams and
class diagrams which have been widely experienced by the developers. UML 2.0
is well suited for the formalization of software design information and it also has
a high affinity with mechanical processing.

Software design based. As a part of test design, to consider the variation
of test data and to create the data instances themselves, will be very labor-
consuming if you want to increase SUT coverage and test density. Because,
you need to create a huge amount of test data, and before that you have to
consider about selecting the input values, which should cover the input space
comprehensively and efficiently.
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In contrast, existing research on test data generation, as surveyed in litera-
ture[5, 3, 6], has the following problems. A lot of studies generate test data from
source code, but studies using software design as input are still few. Also, there
are some tools that generate pseudo personal information such as combination of
name and address, etc.[1] These kind of data are useful but they are randomly
generated from dictionary, not based on design information. Unlike software
design, source code and dictionaries might be away from the user/developer’s
intention, so the validity of the content has to be verified.

Structured test data. In addition, about the data-type which can be gener-
ated, studies dealing with only primitive type for example integer and boolean
are the majority. As for managing the variation of the data-type, it is still de-
veloping.

We consider that in the test data generation, how to deal with test data that
has complicated structure is the problem. Therefore this study focuses on test
data generation techniques dealing with the data-type with hierarchical structure
(e.g., object data-type).

Data-types such as XML and objects are often used in recent software, so
it is insufficient to only have primitive type of the numerical value and the
character string as the test data. we think by coping with structural data-type,
it may increase the applicability of generation techniques for more practicable
tests. Especially, new ideas will be necessary because more variations have to be
considered when the test data has hierarchical or repetition structure.

This paper makes the following contributions: First, we present a technique
that achieves higher test density and SUT coverage by automatically generating
test cases and test data from UML design models. It can handle data-types with
hierarchical structure, and it can generate abnormal test data therefore it’s more
useful in real project. Second, we evaluated our approaches with one Java web
system, and get some useful lessons including the correspondence and differences
between manual creation and automatic generation.

The remainder of this paper is organized as follows. Section 2 describes test
case and test data generation techniques. Section 3 evaluates our method by a
case study. Section 4 shows the future works and concludes the study.

2 Generation techniques

2.1 Test case extraction

IEEE Standard 610 defines test case as follows:

A set of test inputs, execution conditions, and expected results developed
for a particular objective, such as to exercise a particular program path
or to verify compliance with a specific requirement.

In this study, we consider a test case to be a pair of (a) a particular execution
path within the intended behavior, and (b) the test data including the input and
the expected result.
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(a) Execution path
First, we analyze the structure of the input UML design model and decompose

it smaller and smaller into components, classes, methods and activities. Then
we extract the execution paths from each activity, which is a directed graph,
by simple depth first search algorithm. This is a search of activity final node
starting from initial node.

In the extraction of the execution paths, all possible execution paths are
extracted exhaustively, to make the structure coverage secured.

However, when a loop exists in the activity, infinite execution paths can be
extracted. We limit it to two paths in case of not passing the loop and the case
of passing the loop just once. There for the number of paths extracted can be
represented as a sum of permutations shown below, when N is the number of
loops within the activity:

Number of paths =
N∑

i=0

NPi

(b) Test data
The other element of the pair is the test data, being necessary and indispensable

to extract executable test cases. therefore for each extracted execution path, we
have to generate the test data that can trace this path, and we will describe the
generation procedure in the next section.

2.2 Test data generation

The test data generation method is the one according to the idea of SUT cov-
erage especially input space coverage. In order to generate the test data with
high coverage, we need to obtain thoroughly the factors and the levels that con-
stitutes the test data. In software testing, the factors refer to the variable to
be considered, while the levels mean the values set to a specific variable. For
instance, we can think about two levels (male and female) for the factor of sex.

The test data is generated with the 4 steps explained one by one below, and
an UML model(class diagram, activity diagram only) is assumed to be the input
of this.

(1) Extraction of the factors we acquire the activity parameter nodes which
are the input parameters of the activity, and these are assumed to be factors.
The input parameters have a name and a type.

(2) Generation of the test data specification The test data specifications
are a set of constraints that the test data should follow in order to trace one
execution path of SUT. A test data specification is generated per each factor
of each execution path. In other words, it contains the information of “what
variable x should be proper for path y?”

(a) Data structure
The test data specification maintains the domain of the factor internally.

Figure 1 shows the structure of the test data specification.
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Fig. 1. Data structure of the test data specification

We enable the generation of the test data with the hierarchical structure, by
defining the test data specification corresponding to the factor of object data-
type. As shown in Figure 1, the “object typed test data specification” contains
a list A in its domain, and the list consists of the test data specifications of
its own attribute. As a result, we can recursively specify the constraints which
the object data-type factors should fill, therefore we can handle the hierarchical
structure. Moreover, for collection type, we consider that it is possible to handle
the repetition structure by preserving the test data specification for each element
in the collection.

The domain’s form of each test data specification is different and depends on
the data-type of the factor. For instance, the factor of the Integer data-type is
associated with the Integer typed test data specification, and this specification
has a domain defined by two parameters like lower bound l and upper bound
u. In addition, each kind of domain has an invariant condition. An invariant
condition is a constraint that the domain should always satisfy. For instance, “l
≤ u” should always be true in integer typed test data specification.

(b) Extraction
The extraction of the test data specification contains 2 steps, the initialization

and the update.
The initialization is explained as follows. For one specified factor in a certain

execution path, we acquire the “type” of the factor according to the UML meta
model. And then, a test data specification corresponding to the type of the factor
is generated. For example, the string typed test data specification is generated
for a String data-type factor. Next, an initial value is set to the domain of the
generated test data specification. For instance, lower bound l and upper bound
u included in the Integer typed test data specification will be set to MIN and
MAX value of the system default. However, if the data definition concerning
the type of the factor is described as an invariant condition in the UML model
(constraints associated to the class in the class diagram), we give higher priority
to this data definition and use it as the initial value of the domain.

Next, the update is explained as follows. In this step, we clarify the conditions
in order to trace down the execution path, and update the test data specification.
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The execution path is traced from the initial node to the activity final node, and
the preconditions of activity, the local preconditions and the guard conditions
in the execution path, are processed sequentially. For instance, assume that
when scanning through a certain execution path, we met a guard condition
says “name.length < 20”. This condition refers to the factor “name”, so we
update (overwrite) length upper bound u to 19, in the domain of the test data
specification of “name”. Such an update is repeated until all conditions are
processed and the activity final node is reached.

(3) Generation of the levels Several (finite) concrete values selected from
the domain, which will be set to a factor, are assumed to be the levels. In the
extraction of the levels, we basically apply the technique of equivalent classes
division and the boundary value analysis. In consideration of the input space
coverage, we extract not only the values which are inside of the domain as
normal levels but also the values which are outside of the domain as abnormal
levels.

As for object data-type, if every attribute is “normal”, then the whole object
is assumed to be a normal level. Otherwise, if any of the attributes is “abnor-
mal”, then the whole object is assumed to be an abnormal level. In a word,
after expanding an object to the tree structure hierarchically, if as much as one
“abnormal level” exists as a “leaf”, then the entire object is assumed to be
abnormal.

(4) Combination of the levels The test data is composed of the input and
the expected result.

In general, the input is a combination of the levels set to factors respectively.
Since testing all combinations is unrealistic, there are a variety of techniques
to reduce the combinations. Here, we adopt a simple goal, “level coverage”, to
generate inputs making all levels generated be covered. This means, each level
only has to be used at least one time somewhere in the test data. In our method,
the combinations that consist all of normal level are generated, and these are
assumed to be normal inputs. Because we generate normal inputs in minimum
number that can satisfy level coverage, the number of normal inputs is same to
the number of normal levels, of the factor which has the most normal levels. On
the other hand, the combinations where only one abnormal level included are
also generated, and these are assumed to be abnormal input. These tests aim
to confirm that an abnormal input CANNOT trace the execution path. Only
one abnormal level is included to make the fault localization easier when failure
occurs.

The expected result corresponding to an input, is acquired from the postcon-
dition associated to the execution path.

3 Evaluation

3.1 Tool prototype

To verify and evaluate the technique proposed above, we implemented a proto-
type of “test design support tool”.

56



The software design model based on UML 2.0 in XMI 2.1 format (a xml file)
is assumed to be the tool’s input, and the output are the list of test cases and
the test data used by each test case (csv files). A test data consists of an ID,
input values, an expected result, and a boolean value which shows whether it’s
normal for the according path.

3.2 Viewpoints

We evaluated whether the proposed method, aiming to the automation of the
test design, is effective enough to secure the test density and the SUT coverage by
few man-hours. First we create an UML model of an application for evaluation.
and then we compare the test design artifacts made from the same UML model,
both created by hand (manual) and by our generation technique (automatic).

The viewpoints of this evaluation are shown below:
Comparison of the manpower consumed for the test case extraction and the

test data creation.
Comparison of the test density and the SUT coverage of a part of test cases

which have correspondence between “manual” and “automatic”. Here, when we
can judge that 2 test cases are doing the same test, we call they have correspon-
dence.

3.3 Results

We carried out our evaluation on an Java web application, which is a shopping
store. We used the serverside order processing component of the application, and
the scale is about 4.8 KLOC.

As the comparison result between manual and automatic, number of test
cases are shown in table 1, and the test density are shown in table 2. Here in
table 2, “Automatic” is calculated using number of automatic test cases WITH
correspondence (360 in table 1).

The structure coverage of test cases and input space coverage of the test data
are shown in table 3.

We used one average skilled engineer for this evaluation and the manpower
cost totally is shown in table 4. The unit man-power cost per test case and per
scale are shown in table 5. Note that our prototype generates test cases within
one minute so we did not count it in table 4. The overhead cost of automatic
means the cost of retouching existing “rough sketch” UML model more detailed
enough to generate test cases, this assuming to be 50% of the overall cost of UML
modeling. In the test execution after the test design, cost of test case selection
will also be the overhead. Here, we didn’t consider it because no evaluation on
that part was carried out yet.

As a result of the evaluation, by the proposed technique, for 56.3% of manual
test design work, 52% of its manpower can be reduced. And beside this, the test
density and the SUT coverage can be highly improved.
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Table 1. Comparison of the number of test cases

Manual Automatic

test cases WITH correspondence 107 (56.3%) 360 (6.0%)

test cases WITHOUT correspondence 83 (43.7%) 5597 (94.0%)

total 190 5957

Table 2. Comparison of the test density

Manual Automatic

test density (number of test cases / KLOC) 39.6 75.0

Table 3. Comparison of the SUT coverage

Manual Automatic

structure coverage covered all execution paths covered all execution paths

input space levels representative values only covered all boundary values
coverage combinations without clear rules covered all levels

Table 4. Comparison of the manpower

Manual Automatic

on test design (man-minutes) 2330 0

on other overheads (man-minutes) 0 1123

total (man-minutes) 2330 1123

Table 5. Comparison of unit man-power

Manual Automatic

manpower per test case (man-minute / test case) 12.3 3.1

manpower per scale (man-hour / KLOC) 8.1 3.9

3.4 Discussion

The proposed technique achieved certain effect to improve the test density and
the SUT coverage by less manpower. However, some problems have been left, as
the technique could not correspond to a part of manual made test cases, and also
the number of generated test data is too large to be used in test execution. We
will give a more detailed discussion based on the evaluation results as follows.
We separate those test cases which have correspondence between automatic and
manual, which means the part could be improved by automation, and those
without correspondence.

Test cases WITH correspondence
These are the test cases created both by the engineer and our tool. Most tests

of the normal inputs to the execution paths, belong to this category. The test
density has improved by automations, but we still need to improve the method
by introducing orthogonal tables or pair-wise methods to narrow the number of
combinations in the future. On the structure coverage, all the execution paths
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are covered both by the automatic tool and the manual operation. But about
the input space coverage, several differences are observed at the following points:
(1) Extraction of levels
For instance, when a constraint “arbitrary character string” is specified, only one
test data is created by the engineer manually, though in automatic generation
the test data are generated with two or more variation, changing the length of
the character string.
(2) Combination
Because the man-hour is limited at the manual creation, the variations of the
test data containing other than “key” factor which influences the branch of the
execution paths explicitly, are less considered (only one to several). On the view-
point of whether it can comprehensively confirm that software works correctly
according to the design, we can say that manually created test data are inferior
to the automatically generated test data.

Manual test cases WITHOUT correspondence to automatic
43.7% of the test cases created manually could not be generated by the auto-

matic tool. The typical reasons are listed below:
(a) A part of information is not described in the UML model.

Generally, it is difficult to include information related to semantics of the
software into the UML model, and so often not to be described. For example, a
variable of string type though only numbers will be inputed actually, or various
dependencies exist among two or more factors etc. It seems that it is possi-
ble to deal with this kind of knowledge by deciding a notation and describing
them in the UML model. Or, when necessary information is formalized outside
of the UML model, a method is needed to extract test cases considering this
information.
(b) Two or more activities are not processed integrated.

Because human can access to information in the UML model comprehen-
sively, they make test cases even considering the internal branch of the sub-
activity called by the test target activity. Of the current state, our proposed
method pays attention only to one activity and does not consider the nested
structure of activities. To mimic human behavior, test cases extraction based on
the viewpoint of integration test will be requested in the future.

Automatic test cases WITHOUT correspondence to manual
Almost abnormal inputs automatically generated belong to this category. Ab-

normal (error handling) tests created manually are just like the “null” tests,
but lots of abnormal variations are outputted in automatic generation. For in-
stance, to say nothing of “null”, all things contains abnormal value at the leaf
level somewhere in the tree structure of an object, are outputted as an abnormal
test data. However, as well as the test by normal inputs, “many more” does not
mean “better”. It is necessary to narrow down the number of test cases by an
abnormal input, to a practicable level. For example, for object data-type, an
improvement can be done by outputting not all leaf level abnormal values, but
the important ones only while securing input space coverage.
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4 Future works and conclusions

In this paper, we confirmed the effectiveness and the insufficient points of the
proposed method by using a “toy application” with a relative small size. We
need to conduct an application experiment on a real, alive project, to get more
reliable evaluation results.

Moreover, we need to abolish various constraints gradually, to improve the
proposed technique. The priority of the constraints will be clarified by the result
of the application experiment to a real project.

The main constraints include the following. (1) Cannot treat other variables
except the input parameters of an activity, as factors. (2) Cannot handle the
conditions describing the dependence between two or more factors. (3) Cannot
handle the case when the value of the factors are overwritten and changed during
the execution path.

In addition, by test design automation we are able to easily generate a large
number of test cases, but if it takes a great deal of manpower to conduct all
the tests generated, it is not significant at all. Therefore, we need to discuss the
cooperation of test design automation tools and test execution automation tools
such as xUnit.

In conclusion, we proposed a method to extract test cases and test data with
hierarchical structure, from UML design models. And we evaluated the method
by a tool prototype. As a result, in a part of the test design, higher SUT coverage
and the test density are achieved by fewer man-hours, compared with manual
creating. We wish to contribute more to the software quality assurance through
the further test design automation techniques in the future.
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Fokus!MBT – A flexible and extensible toolset for  
Model-based testing approaches 
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Kaiserin-Augusta-Alle 31, 10589 Berlin, Germany 
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Abstract. Model-based testing (MBT) is a test engineering approach that 
facilitates the development and documentation of test processes by including 
formal models and automatically executed transformations between them. This 
offers a great potential of test automation, which is one of the most promising 
benefits of MBT. Similar to the concepts of Model-Driven Engineering (MDE), 
the idea of MBT includes an abstracted view on the problem domain. Details 
which are not necessary for the testing process can be omitted in order to get a 
simplified representation of what should be tested. This abstract view is 
concretized by subsequently applied transformations or manual augmentation. 
Fokus!MBT is a set of compound tools supporting the model-based paradigm 
for testing by providing an adaptable infrastructure. Internally, it is based on a 
dedicated metamodel for testing (TestingMM) that allows the description of an 
entire test process within one single artifact.  

1 Architecture 

Fokus!MBT defines a compound infrastructure of independent and heterogeneous 
tools that are connected with each other in order to be realize a specific, model-based 
testing process. It consists mainly of two parts, that is a core component and the 
TestingMM, fully integrated into the Eclipse IDE. The highly extensible core 
component is responsible for the integration of futurity extensions as well as the 
overall process flow among the participating tools. Therefore, it defines a set of 
extension points that can be used by tool providers to integrate their implementation 
easily into Fokus!MBT, whereas the core component itself merely offers a set of 
common functions (like OCL guidance or test data generation). Fokus!MBT is built 
on top of the ModelBus (http://www.modelbus.de) middleware platform.  

The TestingMM is represented as an Ecore-based metamodel. It implements the 
UML Testing Profile standalone metamodel and reuses several concepts of the UML 
superstructure as well as of Eclipse’s TPTP model. The TestingMM consist of ten 
subpackages, including concepts for test design, test data, test purposes, test behavior, 
test execution, etc. that are suitable to describe an entire test process. Within 
Fokus!MBT the TestingMM acts as canonical data model for the integrated tools. 
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2 Methodology 

Fokus!MBT is highly aligned with UML and the UTP, for which it provides a built-in 
implementation of the profile. This enables a tester to either augment an existing 
system model with test relevant information or to build a pure testing model from 
scratch based on UTP. The benefits of these approaches are that testers on the hand 
can make use of plenty freely available UML tools. On the other hand, the 
communication between testers and architects is often improved since both parties use 
the same language. The conceptual and technical gap between testing and developing 
engineers is bridged by the use of UML as common notation. 

3 Built-in Core Functionality 

3.1 Requirements Traceability 

Fokus!MBT addresses the traceability of requirements from the beginning of the 
development all the way down into the executable test code. The OMG standard 
SysML offers concepts to connect requirements with model elements that either 
satisfy or verify the related requirement. This enables Fokus!MBT to relate 
requirements to generated test cases fully automated. Finally, test reports can state 
what requirement was verified by what test case with what result and vice versa.  

To achieve this, Fokus!MBT is able to import different requirements 
representations, in particular the Requirements Interchange Format (RIF) and  SysML 
requirements. The combination of UTP and SysML allows the construction of 
powerful test models, directly defined in UML and converted to its corresponding 
TestingMM representation afterwards for further refinement. 

3.2 Constraint-based Test Data Generation 

Fokus!MBT provides a constraint-based test data generator that copes with the 
generation of both stimuli and expected oracle data for a given test case, called 
CoDOG. CoDOG is able to parse data constraints, either defined by the OCL or Java, 
which are subsequently passed to the included constraint solver. The parser itself is 
realized as extensible component. Parsers for further constraint languages are easily 
pluggable into the Fokus!MBT core component, so that the a tester may use any 
favored and suitable language for the description of constraints. 

3.3 Test Code Generator 

In order to execute the modeled test suites, Fokus!MBT offers a TTCN-3 exporter 
natively. Since Fokus!MBT comes with a test data generator, the resulting TTCN-3 
code is completely executable, including the entire type system and data instances. 
Other languages are not supported yet, however, again the extensible architecture of 
Fokus!MBT allows an easy integration of further exporters. 
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Test Automation as a Model-Driven Engineering
Process with MDTester

“Test Automation is Model-Driven Software
Development”

Alain-G. Vouffo Feudjio

FOKUS (Fraunhofer Institute for Open Communication Systems)

Abstract. Recent progress in model-driven engineering (MDE) have
made the prospective of applying the same type of approach for test
automation yet more attractive. The model-driven testing (MDT) ap-
proach consists of designing platform-independent test (PIT) models at
a high level of abstraction and transforming those automatically through
platform-specific test (PST) models into executable test scripts. How-
ever, intelligent tool-support is a critical pre-condition to making that
vision true. Beyond the fact that the process of modelling for test au-
tomation must be intuitive and efficient, it must also be ensured that
the created test models are readable, valid and self-consistent. Further-
more, automated transformation of those models into executable test
scripts and backwards are required to ensure round-trip engineering and
a reuse of legacy test automation solutions. The MDTester is a collec-
tion of tools designed to address those issues. The test cases are designed
using a graphical notation called UTML, that combines concepts of the
UML Testing Profile (UTP) with known-patterns in test design.

1 Introduction

1.1 Architecture

The MDTester is based on the TOPCASED environment, which runs on the
popular modular plugins architecture provided by the Eclipse IDE. This not
only facilitates the integration of test design activities with general system design
activities, but also ensures that the developed solutions can benefit from the large
variety of proposed tools in that environment.

1.2 Methodology

MDTester guides test designers through the whole process from the analysis
of system and user requirements, all the way down to executable test scripts.
A large collection of wizards and guards are provided to ensure that errors and
conceptual test design mistakes are avoided right-away. The result is a test design
process that is simple and intuitive, but yet powerful enough to express complex
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Fig. 1. MDTester Architecture

Fig. 2. MDTester Test Design Process
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test behaviours. The UTML’s graphical notation is simplified form of the UML
notation, enhanced with specificities of test design. This ensures that the learning
curve is kept low and makes it easy for people with less technical expertise,
not just to understand test models, but also to design some themselves,without
having to learn the details of a specific programming or scripting language.

2 Features

2.1 Test Design

MDTester supports all diagrams defined by the UTML notation to support the
process depicted in Figure 2.

2.2 Test Model Validation

MDTester defines more than 50 built-in OCL-Validation rules that can be acti-
vated/deactivated as wished to verify that the created test models are valid and
self-consistent. Additionally to those built-in rules, more validation rules can be
added to the tool to perform quality assessment on the test models (e.g. based
on company guidelines or similar)

2.3 Round-Trip Engineering

MDTester provides several back-ends and front-ends to allow round-trip engi-
neering from PST models to executable test scripts and backwards. Additionally
to the back-ends provided per default (TTCN-3, JUnit), MDTester defines an
API through which customized back-ends and front-ends can be connected and
used to generate proprietary test scripts or specific scripts appropriate to a given
test execution environment

2.4 Requirements Traceability

SysML Requirements can be referenced in UTML test models via test objectives
to provide traceability from test design to requirements and backwards.

2.5 Architecture Traceability

MDTester combines model-driven testing techniques with model-based auto-
mated test generation techniques (MBT) to transform system architectures into
test architectures. This allows traceability of test cases back to the elements of
the system architecture which they address and a quick identification of which
test cases cover a given part of the system under test.

3 Contact Us

MDTester is available for download at http://www.fokus.fraunhofer.de/go/
utml You may also contact us for more information via that site.
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SIMOTEST: A Tool for Deploying Model-Based Testing 
in Matlab/Simulink® using IEEE 1641 

Tanvir Hussain, Robert Eschbach, Martin Größl 
{hussain | eschbach | groessl}@iese.fraunhofer.de 

Fraunhofer IESE, Kaiserslautern, Germany 

Introduction 

Software is prevailing in most of the technical systems, even in the safety critical ones 
where hardware realizatio ns were once do minant. Th erefore, quality assuran ce of 
software i s ga ining e ver m ore im portance since i ts i nfluence i s gr owing l arger. I n 
most of t he d omains of a pplications s oftware i s bei ng de veloped u sing m odels, 
preferably usi ng exec utable m odels. They  render the be nefits of abstractin g 
implementation t echnology rel ated fact ors and t hus rai sing i ts com prehensiveness, 
maintainability an d reu sability. Ex ecutable models ad ditionally provide th e 
advantages of verification and validation to reveal errors during the earlier phases of 
development. M atlab/Simulink® i s a po pular modelling and si mulation fram ework 
that p rovides ex tensive facilit ies fo r m odel based so ftware development an d 
simulative v alidation. However, th e m odels are o ften co mplex in  stru cture and 
behavior and thus the verification and validation appears to be a daunting task. Model 
Based Test ing (M BT) e volved t o m ake ve rification a nd validation practicable and 
transparent.  
 
The m odels use d i n M BT, o ften named as t est m odel, a re ab stract, part ial 
representations of t he Sy stem Under Test  (SUT ) an d ar e used f or generation an d 
selection of t est cases. But  the test m odels ofte n cont ain abst ractions especially 
regarding th e in put and  outputs. This as a result requires a m echanism for 
concretization of these elem ents since othe rwise execution of the test cases is not 
possible. In practice these c oncretizations are m ostly perform ed manually and are  
therefore often error prone, problem or platform specific and can seldom be reused . 
To s olve t his problem SI mulink M Odel-based TE STing (SIMOTEST) tool ca n be  
used. It resorts to IEEE 1 641 - stan dard fo r Sign al an d Test Defin ition (STD) th at 
provides the opportunity to describe signals and signal measurements of wide variants 
in a modular and unique way. This article presents a short overview of STD as well as 
SIMOTEST.  

IEEE 1641 – standard for Signal and Test Definition (STD) 

IEEE 1641 standard is organized into following four layers: 

1. Signal Modeling Language (SML) Layer can be  used t o provide e xact 
mathematical definition of signals and signal measurements. The definitions can be 
formulated using the de-facto functional programming concepts of Haskell 981. 

                                                           
1 Haskell 98 Report: A Non-strict, Purely Functional Language 
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2. Basic Signal Component (BSC) Layer provides reusable, f undamental si gnal 
classes. BSCs can be formally defined through SML and provides the lowest level 
of signal building blocks available in STD. 

3. Test Signal Framework (TSF) Layer identifies how libraries of signal definitions 
can be used. TSF is t he exten dibility mechanism wh ere p arameterization an d 
composition is applied. BSCs can be parameterized and/or composed to form TSFs 
as well as res ultant TSFs  ca n also be used in the m echanism to form ulate other 
TSFs. 

4. Test Procedure Language (TPL) Layer provides th e cap abilities to  d efine test  
descriptions co mposed of test req uirements, i.e., i nitialization, so ftware or 
component re quirements et c., a nd t est p rocedures, i .e., c ausal c hain of rel ations 
between the signals and measurements etc. 

SIMOTEST 

SIMOTEST p rovides n ecessary support for f ormulating ST D co mpliant test 
descriptions that can be used efficiently to deploy MBT. The artefacts of MBT and 
STD can be com bined toge ther in  SIM OTEST to  fin ally obtain an exec utable 
description of the test where each test case is augmented with necessary i nitialization 
as w ell as th e co ncrete sig nal an d m easurement d escriptions co rresponding to  test 
stimulation an d e valuation. Additionally, SIMOTEST provides en ough a utomation 
for con figuring an  ex ecutable test in  Mat lab/Simulink®. Due t o t he unique a nd 
portable definition of the modules in STD it is possible to reuse t he test descriptions 
also for testing code generated from the model as well as the resulting system. 
 

Constructing TSFs from BSCsBSCs

TSF & BSCs 
for 

Signal 
generation and 
Measuremetns

Mapping of Abstract Stimuli and 
Responses to TSF/BSCs

Signal 
Mapping 

and 
Test Oracle

Automated configuration of the 
Simulink SUT for test execution and 

evaluation

Simulink 
SUT ready 
for tests

Test casesExecution and evaluation 
of the tests

Test reports

Test model

Automated generation 
of test cases

SIMOTEST suported 
Automated activity

SIMOTEST suported 
Manual activity Manual activity

 
Figure 1:  Workflow for deploying MBT using SIMOTEST 
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Figure 1 sh ows the workflow fo r deploying MBT using SIMOTEST. Inspired by a 
case study2 in the research project D-Mint3 a demonstrator for phase angle control was 
developed. During the development cycle the hardware which generates these signals 
is so metimes n ot av ailable or in  development th us a realistic test o f th e software 
should have to be performed with simulated signals.  
 

 
Figure 2: Generation of pulse width modulated sinusoidal signal using STD 

Figure 2 s hows a ST D com pliant ge neration of p ulse width m odulated si gnals f or 
testing the model of the soft starter software. 

                                                           
2 Bauer, T., Esch bach, R., Größl, M., H ussain, T., Streitferdt, D., and Kantz, F. Combining combinatorial and mode l-based test approaches for highly 

configurable safety-critical systems. In Proc. of MoTiP, pp. 9 – 22. 
3 http://www.d-mint.org/ 
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WOULD YOU RATHER MODEL THE TESTS OR THE 
SYSTEM UNDER TEST?

DELIVERING THE BENEFITS OF MBT, NOW!

THE       ADVANTAGE
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AUTOMATED TEST DESIGN FLOW

CONFORMIQ CUSTOMER SUCCESS SERVICES: 
C2S2™ METHODOLOGY
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