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Abstract. The Logic of Partial Functions (LPF) is used to reason about
propositions that include terms that can fail to denote values. This paper
provides semantics for LPF. A Structural Operational Semantics (SOS)
provides an intuitive introduction; this is followed by a denotational se-
mantics where the space of denotations is relations which provide an
intuitive model of undefined terms. Finally, we illustrate how the deno-
tational semantics can be used as a basis for proofs about propositions
that include terms that can fail to denote.
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1 Introduction

Terms that can fail to denote proper values arise from partial operators such
as head (of a list) and from applications of recursive functions; such terms oc-
cur frequently in program specifications [CJ91, Jon06, Fit07]. This raises the
question of how reasoning about such terms can be conducted formally. To il-
lustrate the issue, consider the following (deliberately partial over all integers)
function [CJ91]:

zero L — 7

zero(i) & if i =0 then 0 else zero(i — 1)

this function returns 0 when ¢ > 0. However, when i < 0, zero(i) will fail to
denote a value of the expected type and thus a term such as zero(—1) is referred
to as a non-denoting (or “undefined”) term. Now consider the following property
of this function®:

Vi€ Z- zero(i) =0V zero(—i) =0 (1)

! The function might look to be perversely partial but it —and Property 1- have been
deliberately chosen to be as simple as possible to illustrate the issues around non-
denoting terms (e.g. in Property 1, there is no obvious “guarding” predicate to be
used on the left of an implication). In realistic applications, it is frequently difficult to
spot the defined domain of a function: [CJ91,FJ08] use a function of two parameters
where definedness depends on a relation between the two arguments.



A reasonable view of the zero function suggests that Property 1 is true; in
particular, the disjunction is true for the least fixed point interpretation of the
recursive definition of zero. It is clear that one of the disjuncts will fail to denote
a value, with the exception of the case when ¢ = 0, so the truth of Property 1
relies on the truth of disjunctions such as zero(1) = 0 V zero(—1) = 0 which
reduces to? 0 = 0 V Lz = 0. Since zero(—1) does not, in the least-fixed point,
denote an integer; with strict equality (undefined if either operand is undefined)
this further reduces to true V Lg which makes no sense in FOPC.

Since we are interested in reasoning formally about such properties, we have
decided to make use of a non-classical (three-valued) logic known as the Logic of
Partial Functions (LPF) [BCJ84] which copes naturally with propositions over
terms that can fail to denote. In LPF Property 1 is true and its proof presents
no difficulty.

The objective for this paper is to provide semantics for LPF both through a
Structural Operational Semantics (SOS) and a denotational semantics. Because
decision procedures etc. can go underneath the notion of provability in the logic
(PF @), it is important to fix the semantics of truth in a model (P = @). The
second author of this paper is undertaking research on mechanised tool support
for proofs involving non-denoting terms using LPF.

1.1 Outline

Section 2 provides a brief overview of approaches to coping with non-denoting
terms which is followed by a detailed discussion on our preferred approach of
LPF. Section 3 introduces the chosen expression constructs before presenting a
Structural Operational Semantics (SOS) which defines their evaluation accord-
ing to the semantics of LPF. Continuing with the semantics of LPF, Section 4
presents a denotational semantics which addresses shortfalls noted in Section 3.3.
Section 5 illustrates how proofs about propositions that include terms that can
fail to denote values can be based on our denotational semantics, and finally
Section 6 highlights future work alongside some conclusions.

2 Approaches to Coping with Non-denoting Terms

When terms involve the application of partial functions and operators, they can
fail to denote proper values. Over the years many different approaches have
been suggested to handle non-denoting (undefined) terms; the reader is referred
to [CJ90,CJ91,Jon06] for fuller surveys and citations to the original papers, but
it is useful here to picture the range of options. Essentially, the issue is where
undefinedness is “caught”. For instance one could insist that all terms do denote
something, for example, zero(—1) should denote an arbitrary value in the range
of the zero function, i.e. an arbitrary integer — pictorially:

2 Where necessary we represent non-denoting terms as Lz and non-denoting logical
values as Lg.



€L €L
— ——
Vi€ Z- zero(i) =0V zero(—i) =0

this, however, raises questions like whether it is true that zero(—1) = zero(—1)
and whether zero(—1) = zero(—2).

=3 0 1 2 .. 14
0 |true false false ... false
1 |false true false ... false
2 |false false true ... false

1 7|false false false ... false
Fig. 1. The truth table for existential equality with integer operands.
Another approach would be to accept that for example zero(—1) = L1y,

and employ non-strict relational operators to bring the problem of non-denoting
terms under control; writing Z, = Z U 1y:

€B €B
Vi€ Z- zero(i) =3 0V zero(—i) =3 0
S—— ——
E€Z 1 €7y

notice that “existential equality” has been used here: its truth table is given in
Figure 1; it is non-strict and thus non-computational. Clearly, this is distinct
from the weak equality that must be used in the computation of zero. (The
truth table for weak equality shows L when either operand is 1lyz.) The key
disadvantage of this approach is precisely that a user who is reasoning about
partial functions and/or operators has to think about two notions of equality®
and this extends to all relational operators.

Moving now to non-classical logics (considering again strict relational oper-
ators), non-denoting terms can be brought under control by having the logical
operators cope with the arising non-denoting logical values (so, accepting that
for example zero(—1) is a non-denoting term — Lz — and that zero(—1) =0 is a
non-denoting logical value — Lp):

€B

Vi€eZ- zero(i) =0V zero(i) =0

€eBy €eB

this is exactly how LPF captures undefinedness. This is our preferred approach
to handling non-denoting terms and we present a detailed discussion of this
approach in Section 2.1.

McCarthy’s conditional operators also gives rise to a non-classical logic. This
approach imposes a left-to-right evaluation, since conditional expressions are

3 An interesting link between variant notions of equality and LPF proofs is examined
in [FJO8].



strict in their first argument, so while true V 1y and Llp V true are truths in
LPF, the latter is not in McCarthy’s approach [Jon06]. The conditional operator
approach deals adequately with expressions where there is a form of “guard” as
in Property 2:

VieZ-i>0 = zero(i) =0 (2)

but conditional logical operators do not enjoy the familiar equivalences of clas-
sical logic; so, for example, disjunction is not commutative nor does the con-
trapositive of an implication hold. Thus it is not obvious how to handle the
contrapositive of Property 2:

VieZ-—(zero(i) =0) = i<0 (3)

Property 1 also poses a problem in this approach. It is also interesting to
note that it would appear that undefined values corrupt quantified expressions
such that:

Ji e {-1..1} - zero(—i) =0
does not have the same truth value as:
zero(1) =0V zero(0) =0V zero(—1) =0

etc. All of these issues are resolved in LPF.
A final approach to the problem of non-denoting terms is to prohibit the use
of partial functions and operators:

verboten

Vi€ Z- zero(i) =0V zero(—i) =0

In addition the simple implication of Property 2 can, of course, be rewritten over
arestricted set as: Vi € N-zero(7) = 0 but this approach does not provide a pleas-
ant treatment for our key disjunction property, and restricting types becomes
messy for functions of more than one argument where the required “dependant
type” needs a predicate of all arguments [CJ91].

2.1 The Logic of Partial Functions (LPF)

The remainder of this paper is concerned with the approach known as LPF; which
is a first order predicate logic designed to handle non-denoting logical values that
can arise from terms that apply partial functions and operators. LPF is the logic
that underlies the Vienna Development Method (VDM) [Jon90, BFLT94, Fit07].

LPF* copes with undefinedness by accepting that where one (or both) oper-
ands of propositional operators fail to denote they will not yield one of the

4 A brief history of LPF: Three-valued truth tables for the propositional operators are
given in [Kle52]; Peter Aczel supervised Koletsos’ research [Kol76] in which he gives
a proof theory for such a logic; Cliff Jones suggested that Jen Cheng [Che86] apply
this to programming tasks [BCJ84]; the typed version of LPF is covered in [JM94].



logical values (true or false); the interpretation of quantifiers is extended in a
compatible way. A shorthand for talking about this is to say that there is a
third logical value: undefined (Lg), but —for reasons that become clear below—
we prefer Blamey’s notion of “gaps” in the value space [Bla80]. From this point
forward, Lp and Ly are to be understood as ways of representing “gaps”.

The truth tables in Figure 2 (presented in [Kle52]) illustrate the way in which
the propositional operators in LPF have been extended to handle logical values
which may fail to denote (conjunction is defined via negation and disjunction in
the normal way). These truth tables provide the strongest possible extension of
the familiar propositional operators and can be viewed as “describing a parallel
lazy evaluation of the operands” [Fit07]: a result is delivered as soon as possi-
ble, for example true V L evaluates to true and this result will still be valid
(there will be no contradiction) even if the second (non-denoting) operand later
evaluates to true or to false, (i.e. the evaluation later completes). This fits with
our liking for Blamey’s notion of undefinedness as “gaps”. The issue of how to
handle such “gaps” is central to the semantics given in both Sections 3 and 4.

V ‘true 1p false = ‘true 1p false = ‘
true|true true true true|true L1y false true|false
J_]B true J_]B; J_]B J_]B true J_]B J_]B; J_]B J_]B
false|true L1y false false|true true true false|true

Fig. 2. The LPF truth tables for disjunction, implication, and negation.

It is also worthwhile noting that these propositional operators enjoy the fa-
miliar equivalences of classical logic; so, for example, disjunction is commutative
and the contrapositive of an implication holds.

The quantifiers of LPF are a natural extension of the propositional operators
— viewing existential quantification as a disjunction and universal quantification
as a conjunction as is standard in FOPC. An existentially quantified expression in
LPF is true if a witness value exists even if the quantified expression is undefined
(or false) for some of the bound values. Such an expression is false if no witness
value can be shown. This follows mutatis mutandis with universally quantified
expressions.

Considering again the zero partial function from Section 1, when 7 < 0 an
application of this function can be thought of as denoting an undefined value
of the appropriate type (say Lz) but we again prefer a notion of “gaps” in the
value space. Formally, in LPF [JM94], one reasons about (the least fixed point
interpretation of) recursive functions such as zero function using two inference
rules that can be generated automatically from the recursive definition of zero:

zero(i) =0



1 €71 #0;zero(i — 1) =k
zero-step fem() (k )

it is important here to note that the equality used throughout these inference
rules is “strict” — see Section 1.

In LPF, Property 2 of the zero function is true and is easily proved. In
addition Property 1 is true in LPF and its proof is presented in Figure 3°.
Moreover, Property 4 is also true in LPF:

from i € Z
1 i>0Vi<0 hi, Z
2 from ¢ >0
2.1 zero(1) =0 = -E-L(L, 2.h1)
infer zero(i) =0V zero(—i) =0 V-I-R(2.1)
3 from ¢ <0
3.1 -1 >0 3.h1, Z
3.2 zero(—i) =0 = -E-L(L, 3.1)
infer zero(i) =0V zero(—1i) =0 \/ 1-L(3.2)
infer zero(i) =0V zero(—i) =0 -E(1, 2, 3)

Fig. 3. Proof of the zero function disjunction Property 1.

Jie€Z- zero(i) =0 (4)

Why is LPF not universally accepted? Clearly, there is a reluctance to adopt
any non-classical logic. Specifically, one looks for those things that are unfamiliar
in a non-standard logic. The only significant “surprise” in LPF is that the law
of the excluded middle (e V = e) does not hold because the disjunction of two
undefined Boolean values is still undefined — so zero(—1) = 0V = (zero(—1) =
0) is not considered to be a tautology.

For expressive completeness, a defined () operator has been introduced into
LPF: §(e) returns true if e is defined (it is true or it is false). This gives LPF
the deductive power of classical logic for defined expressions. In actual proofs
about programs, the § operator is rarely needed except that, due to the loss of
the law of the excluded middle, the unrestricted deduction theorem:

61"62
e = €y

® Where the L used in this proof refers to the implication lemma of i > 0 = zero(i) =
0, where ¢ is an integer, and whose proof also follows with little difficulty. The
inference rules used in this proof are the standard inference rules for LPF presented
in [BFL*94].



does not hold in LPF; a version of the deduction theorem that does hold in LPF
adds an extra hypothesis stating that e; is defined:

d(er1);e1 b eg
€] = €
In fact, the most weighty argument against the adoption of LPF is the body
of research and engineering that has created automatic tools for classical logic.
This is precisely why the second author of this paper is researching mechanised
proof support tools for LPF.

3 Structural Operational Semantics (SOS)

The first semantic formalisation approach that we use to provide the semantics
for LPF is an SOS specification (introduced by Gordon Plotkin [Plo81]). Our
SOS specification provides an intuitive introduction to the semantics of LPF and
how LPF addresses the issues of handling propositions that can include terms
that fail to denote values. We feel it is beneficial to provide such a formalisation
as doing so allows us to be clear about the semantics of the logic before we begin
with a mechanisation of it. Additionally such a specification will provide a means
of checking whether any mechanisation we implement is correct.

Before we introduce the rules which formalise the semantics of LPF for ex-
pression evaluation we first introduce the expression constructs that we are in-
terested in providing the semantics for. In order to serve the stated purposes, it
is clear that we need to present a language that includes quantified expressions
and ways of introducing non-denoting terms — for instance through recursive
functions.

3.1 Introducing Our Language

Our basic language includes logical expression constructs, where all of our ex-
pressions must be of the type BOOL or of the type INT. This restriction is made
to be able to simplify the semantic rules that follow but at the same time even
with just these two types we can adequately describe the issues encountered with
non-denoting terms.

A constant value is itself an expression. Other expressions in our language
include using a valid identifier, arithmetic expressions (— and =), a relational
(equality) expression, a conditional expression®, propositional logic expressions
(disjunction, negation, and the defined operator — §)7, quantified expressions
(universal and existential)® and a function invocation expression.

6 Useful for recursive function definitions.

" Conjunction and implication follow in virtually the same way as disjunction in the
semantic rules that follow and as a result we do not present them in this paper. The
same argument applies to why we only present the relational (equality) operator and
not relational operators such as >, >, etc.

8 All expressions have to be explicitly closed by quantifiers. In addition we only con-
sider quantification over integers for simplicity.



A function in our language always takes a (single) integer argument and
returns an integer result”; a function definition thus contains a parameter name
and a resulting expression (an expression — that might include recursive calls to
the function). Such functions have no free variables; the free variable of a result
expressions can only be the parameter. A function invocation requires the name
of the function and an argument to pass to the function.

For a function invocation expression we need to be able to access the called
function in our semantic rules. To do this we create a map entitled I' from
function names to the functions themselves (VDM notation [Jon90] is used):

I'=1d 2 Func

where T is the set of all possible functions, and v (y C T') is used to represent a
specific set of functions.

We are interested in ruling out ill-formed expressions so that we do not have
to provide any semantics to expressions such as true —1 and true V 1. In order to
be able to perform type checks in our language we consider a map called Types
that maps variable identifiers to the type of data that they can store.

Type = BooL | INT

Types = Id = Type

We only intend to provide semantics for those expressions which are well-
formed and thus satisfy the following criteria:

— A constant expression (of the type BooL or INT) is well-formed

— An identifier is well-formed if it is in the domain of a given Types map, and
thus has an appropriate type (BOOL or INT)

— An arithmetic expression is well-formed if both of its operands are well-
formed and are both of the type INT, and the operator is either — or +

— A relational (equality) expression is well-formed if both of its operands are
well-formed and of the type BooL

— Propositional logic expressions (disjunction, negation, and ¢) are well-formed
if all of their operands are well-formed and of the type BooL

— A conditional expression is well-formed if the expression condition is well-
formed and of the type BOOL, and the true and false expressions are both
well-formed and of the type INT

— Quantification expressions (universal and existential) are well-formed if the
quantified expression is well-formed and of the type BoOL when the quan-
tified variable is included in a given Types map and is constrained to be of
the type INT

9 We have chosen to simplify the semantics by limiting functions to the one argument,
and constraining the parameter type and the functions return type to integers —
this is of course trivial to change. This restricted form of function definitions still
adequately allows us to highlight where the issues which we are faced with occur
when reasoning about propositions over terms that can fail to denote.



— A function invocation is well-formed if the argument is well-formed and of
the type INT, and the function to be called exists in a given v map

In addition we only consider well-formed functions, and we consider them to
be well-formed if the result expression is of the same type as the return type
(INT) of the function.

3.2 Semantic Rules

Having introduced our expression constructs and having ruled out ill-formed
expressions and function definitions from further consideration, we can now move
on to our primary task of defining the semantics of LPF. We begin with an SOS
specification.

All expressions in our language that reduce to a constant value are defined.
Such values cannot be reduced any further. The constant values present in our
language are the Boolean values ¢rue and false, and the integers (---,—1,0,1,
-++). If an expression can be evaluated to a member of one of these two sets then
it is fully evaluated (no more evaluation can occur) and we refer to this as the
evaluated expression denoting a value. For instance, the expression 0 is denoting,
the expression zero(0) denotes 0 and is thus denoting, but while the argument
of zero(—1) is denoting such an expression can never denote a member of one
of these two sets of values and thus this expression is not denoting — it is an
undefined expression.

We also need to introduce a map —that we refer to as a memory store— which
maps the variable identifiers to the values they store at runtime:

Value =B | Z

Y = Id = Value

where ¥ is the set of all possible memory stores in our language and ¢ (o € X)
is used to represent a specific memory store.

Our SOS specification is presented as a series of inference rules which define
the valid expression evaluations that can occur for the expression constructs
we are considering. This SOS provides an intuitive understanding but is itself
problematic when it comes to the quantified expressions. These semantic rules
define the LPF semantics for expression evaluation; for a comparison between
the semantic rules that are required to define LPF and those that are required
to define FOPC, the reader is referred to Appendix A.

The semantic relation that we use to model the process of expression evalu-

ation is!0:

5 P((Bxpr x ) x Expr)
10 We do not include 7 in our semantic relation until later when we define the semantics

for function invocations. This is purely for simplicity since ~ is not used directly in
any of the earlier semantic rules which we present.



. e . .. e
where required, we use —x* for the reflexive, transitive closure of —.
Our first semantic rule simply returns the value to which an identifier is
mapped in a given memory store.

id € Id

ld-E (id, o) — o(id)

The following semantic rules define the evaluation of arithmetic expressions.
The operands a and b must be reduced as much as possible (to constant values)
before a result can be returned, i.e. eliminating the operator from the expression.
The reader should be aware that the choice of which rule is evaluated is non-
deterministic; there is no notion of fairness in the SOS rules.

SRt ) ] !
L i thile0) — o

(a op b,o) —— a’ op b

e{—,+};(b, Y
gl shilbe) —

(a op b,o) —— a op b’

eZ;belZ
A’I"ith—El ¢ e
(a+0b,0) — [-](a,b)

—— (e b,0) = [+](a, D)

where [op] provides a semantic function for the syntactic object op — thus [op]
is the expected result from evaluating op on its two operands.

Non-denoting terms arise from the arithmetic semantics given above with
expressions that reduce to something of the form 7 +0. Notice that the Arith-E2
semantic rule is one of the places that gives rise to “gaps” in the value space.

The following set of semantic rules define weak (strict) equality [F.JO8] which
returns a result only if both operands denote values; otherwise, the relational
(equality) expression will fail to denote a value of the expected type. The truth
table for weak equality is discussed in Section 1.

_ (a,0) - a
Equality-L (a=bo) S a =0
: (b,o) =V
Equality-R (a=bo) Za=V
o a €Z;be
[ Bowality- B 5 )

Considering the Equality- E semantic rule if both ¢ and b are not fully reduced
(evaluated) to integer values then a result from an equality expression in question

10



will never be returned thus making the equality expression non-denoting. The
reader should now notice how non-denoting terms that are operands to such
strict relational operators can lead to non-denoting logical values.

The semantic rules that we present all represent a small-step semantics un-
less stated otherwise. The small-step semantics allow for interleaving of steps in
different expression branches as can be seen from the rules for the arithmetic
operators and from the relational equality operator. It is less important to have
such interleaving for the arithmetic operators and the strict relational equality
operator as both operands must denote anyway, but it is important for logical
operators such as disjunction since they have to cope with the “gaps” that can
occur. This is because in LPF we can return a result even in the presence of
“gaps” in operands, as long as there is enough information available from evalu-
ating the other operand. For example, Ly V true can be evaluated to true even
though the first operand has not been fully evaluated'!. Considering the first
operand of the previous example as containing a term that will never denote (e.g.
arising from our function invocation e.g. zero(—1) = 0 — see later), without such
interleaving being able to occur we may start to evaluate the first operand, and
with a big-step semantics we could not stop evaluation without evaluating this
operand to a constant Boolean value (which it will never denote). The following
set of semantic rules illustrates the evaluation of the disjunction logical operator
according to the truth table presented in Figure 2.

(a,0) - a
(aVb,o)—a Vb

Or-L

(b,o) = b
(aVbo)—=aV

Or-R

@ (true V b,0) — true

@ (a V true,o) —= true

@ (false V false, ) —— false

The two rules Or-E1 and Or-E2 can be seen as “coping with gaps” in that
they can return a value even if one of their operands fails to denote.

The choice of which rule is used is non-deterministic; there is no notion of
fairness, so we have no control over which rule is used. Ideally we would like each
operand to be evaluated in parallel and then have an elimination rule return
a result once enough information is available from at least the one evaluated

1 Tt could be that this operand could be fully evaluated or that this operand will fail
to denote a value.

11



operand. Alternatively we could simulate this parallel evaluation by performing
one evaluation step on the left hand operand and then one evaluation step on
the right hand operand and then repeating this process until enough information
is available to be able to apply an elimination rule (to complete the evaluation
of a disjunction expression).

The fact that we have no control over when and what semantic rule is eval-
uated could be problematic. One may always evaluate the left hand operand
and never the right hand operand. Alternatively one may evaluate the left hand
operand to true and then try to evaluate the right hand operand continuously
(with multiple applications of a rule), and this right hand operand may not de-
note (see function application later) and thus the disjunction expression may
never denote a Boolean value. Additionally there are other similar evaluations
that are possible with these rules that could cause no result to be returned even
if a result could be returned according to our understanding of the LPF truth
table for disjunction.

The following set of semantic rules defines the evaluation of the negation
logical operator. If a is evaluated to true or to false then invert it, otherwise
attempt to keep evaluating a to see if eventually it will become defined.

(a,0) - a
Not-A € 7
(ma,0) — —a
I@ (—true, o) —— false
[ Not-E2] (—false, 0) — true

The defined (§) construct as mentioned earlier is defined to return true only
if its argument is defined. Taking 6(a), if a can be evaluated to true or to false
then return ¢rue as a is defined, otherwise a is not denoting (but we can attempt
to continue to evaluate a to see if it will eventually denote a Boolean value). The
evaluation of this construct is illustrated in the following set of semantic rules.

(a,0) - a
Dl Af (50) ) - oo
I@ (§(true), o) — true
I@ (6(false), o) - true
12

We now consider the task of defining the rules for the quantifier expressions™=.
We start with universal quantification. The following semantic rule states that

12 Here we define the quantification rules using big-step semantics, whereas the rest of
our semantic rules are defined using small-step semantics. The small-step semantics
allow interleaving of the steps in different expression branches.
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if there exists an integer ¢ —which when applied to the expression e causes e to
evaluate to false— then return false, even if the expression e fails to denote with
certain values of i. Clearly the choice of the value for i is important.

Forall-F i€l -(e,0t{t—d}) —%ox false

(Vt-e,0) — false

For the following semantic rule, it is necessary that for every integer substi-
tuted for 7, e must evaluate to true.

I@WEZ-(@UTHHZ’}) _ %4 true

(Vt-e,0) - true

We are using quantifiers to define the quantifier above and this is the core
issue resolved in Section 4. For now, think of the use of the existential quantifier
above the line as shorthand for an infinite disjunction (using the LPF disjunction
logical operator already introduced), and the use of the universal quantifier above
the line as shorthand for an infinite conjunction (both over the set of integers).

The next set of semantic rules illustrates the evaluation of the existential
quantifier.

dieZ- (e,of{t—1i —Sx true
FExists-T ( i )

(3t-e,0) - true

Eanp e L (oot (£ i) s false

(3t -e,0) - false

Notice that both quantifiers can result in “gaps”.

Later we introduce the semantic rules for the evaluation of function invo-
cations. In order to be able to allow for recursive functions to be defined it is
necessary to have a conditional expression.

Cond-A (o) = ¢
(e?t:s,0) e 2t:s

Cond-F1 (true? t: s,0) —— t

Cond-E2 (false 7 t: s,0) — s

The Cond-A semantic rule describes the small-step semantics for evaluating
the condition expression in our conditional expression construct. If this expres-
sion can be evaluated to a Boolean value (the expression is defined), then one
of our two elimination semantic rules (Cond-E1 or Cond-E2) can be applied —
either simply replaces the conditional expression construct with the appropriate
sub-expression (¢ or s).
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Up until now non-denoting terms (“gaps”) have only been able to be in-
troduced through applying the division operator in the obvious way. We now
present another way of introducing such “gaps” in the first place through the
use of our function invocation expression. First we must update our semantic
relation that we use to model the process of expression evaluation to include T'.
There is no way in our semantics to update T.

5 P((Bzpr x £ x T) x Ezxpr)

The FuncCall-A semantic rule represents the small-step semantics for eval-
uating the argument expression to be passed to a function. This rule is to be
utilised until the argument expression has been reduced to a constant value.

(FuncCall-A] (arg,0,~) — arg’
FuncCall-A (id(arg),0,7v) — id(arg")

Any argument used in a function invocation must denote, otherwise we do
not evaluate the function. Once (if) the argument expression has been reduced to
a constant value we can now attempt to evaluate the function’s result expression.

arg € Z; (y(id).result, o t {y(id).param — arg},~) — res
FuncCall-E - e
(id(arg), o,7v) — res

Notice how this last rule represents a big step semantics in that the result of
the function is computed in one go. Ideally we would like a small-step seman-
tics to allow for the possibility of interleaving of steps in different expression
branches. We now modify the FuncCall-E semantic rule to allow for such cir-

cumstances!?.

Z
FuncCall-E ary €

(id(arg),0,7) —
FuncInter(vy(id).result, vy(id).param, arg)

Here we make use of another expression construct that combines the neces-
sary information from a function invocation and from the function being called
itself. The new expression construct Funclnter (which represents a function in-
vocation under evaluation) contains the result expression from the function (e.g.
a conditional expression) as well as the function’s parameter identifier and the
value passed into the function. This expression construct is used to allow for the
current state of the result to be stored (alongside the parameter data) so that
the evaluation can resume from where it left off previously if any interleaving of
the steps in expression branches occurs.

The following two semantic rules define the rest of the small-step semantics
for evaluating a function invocation. The first semantic rule is used to make a

13 No change needs to be made to the FuncCall-A semantic rule since this already
represents a small-step semantics.
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further step in evaluating the result of the function each time it is applied™.
The second semantic rule returns the result of the function invocation once (if)
the function’s result expression has been evaluated to an integer value.

FuncInter-A (res, o 1 {paramid — param}, ) — res’
(

Funcnter(res, paramid, param), o,7y) —
FuncInter(res’, paramid, param)

res € 7,
Funcinter-FE - €
(FPuncInter(res, paramid, param), o,y) — res

3.3 Discussion

The reader should have noticed that in the semantic rules we are using quanti-
fiers to define quantifiers. This is not acceptable because if the meta-language
interpretation of the quantifiers changes then so does the implied semantics.
Section 4 provides an alternative to what has been presented in this section.

4 Set Theoretic Definition

This section carries the intuition of the foregoing SOS definition over to a deno-
tational semantics by providing a set theoretic definition of the values that are
denoted by expressions. Here the “gaps” that arise from partial terms and propo-
sitional expressions are handled by choosing relations as the space of denotations.
This is in contrast to the use of partial functions as is classical in denotational
semantics [Sto77]. The use of relations is directly prompted by thinking of the
operational semantics of Section 3 as defining —— as a relation. The choice of
relational denotations is the essential difference that distinguishes what is done
here from both [JM94] and [And99]. So:

E:P((Expr x ¥ x T') x Value)
which is defined here in parts:

E=E&idUEorUEnot UEdefined U € equality U Earith U E cond U
Eforall U & exists U € funccall

Access to named values presents no difficulties (because in Section 3.1 we
ruled out any unknown names):

Eid ={((v,0,7),0(v)) | v e Id}

14 The parameter is included in the memory store during the evaluation of the function’s
result, but notice that the updated memory store is not returned by the semantic
rule. Only the updated result expression along with the parameter information to
(possibly) be used to update the memory store in the same way later is returned by
this semantic rule. This is to achieve the necessary variable scoping since interleaving
of steps in different expression branches is allowed and is necessary for LPF.
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The way in which “gaps” arise can be seen clearly for disjunctions (cf. Or-E'1
and Or-E2 of Section 3.2):

Eor =
{((a V b,0,7),true) | ((a,0,7),true) € £} U
{((a V b,0,7),true) | ((b,0,7v),true) € £} U
{((a V b,0,v),false) | ((a,0,7),false) € EA((b,0,7),false) € £}

Straightforwardly:

Enot =
{((—a,o,7),false) | ((a,0,7),true) € £} U
{((_‘bv g, ’7)’true) | ((ba g, 7)7 false) € g}

and:

Edefined =
{((6(a),0,7),true) | (a,0,7) € dom E}

Econd =
{((e?t: s,0,7),1es) | ((e,0,7),true) € EA((t,0,7),res) € E}U
{((e?t: s,0,7),1es) | ((e,0,7),false) € EA((s,0,7),res) € E}

Earith =
{((a op b,0,7),[op](a’, V")) |
(op € {—,+}) A ((a,0,7),a") € EA((b,0,7),b') € E}

Remembering that weak equality is strict gives:

Eequality =
{((a=b,0,7),[=](a", 1)) | ((a,;0,7),0a") € EA((b,0,7), V') € €}

The semantics for quantifiers needs to ensure that “gaps” are handled by
non-denoting propositional expressions being absent from the domain of £:

Eforall =
{((Vt-e,o,7),true) | {((e,o T {t — i},7),true) | i € Z} CE} U
{((Vt-e,0,7),false) | false € rng ({(e,oT{t — i},7) | i € Z} <€)}

Eexists =
{((3t-¢,0,7), true) | true € rng ({(e,ot{t — i},7) | i € Z}<€)}U
{((3t - e,0,7),false) | {((e,o 1 {t — i},7), false) | i € Z} C &}
The definition of & funccall is recursive but the traditional least fixed point
interpretation of partial functions in denotational semantics can be applied to

relations so that ((zero(1),0,7v),0) € € but (zero(—1),0,7) ¢ dom €.
Thus:

Efunccall =

{((f(arg),0,7), res) |
((arg,0,7),arg’) € EA

((v(f)-result, o T {y(f).param — arg'}, ), res) € £}
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5 Proofs

This section illustrates how the semantics of Section 4 can be used as a basis
for direct proofs about logical expressions. This does not, of course, indicate
that proofs about expressions should be conducted in terms of the denotational
semantics — the natural deduction style of Figure 3 is far preferable; the interest
is that having based the semantics on simple set theory, even direct proofs are
straightforward.

It is first useful to record that the definition of £ is deterministic:

Lemma 1 ((e,0,7),m1) € EN((e,0,7),12) EE = m=mn

this follows from the fact that there is exactly one rule for each type of Expr
and that although Eor, Enot, Econd, Eforall and & exists are defined with set
unions, the domains of the relations never overlap.

As an illustrative example, the universally quantified disjunction of Section 1
could have been used; but for brevity, rather than look at Property 1, it is
assumed that recursive predicates could be added to our language — e.g.

pos 7 — B

pos(i) £ if i =0 then true else pos(i — 1)
and the logical expression of interest is:
Vi€ Z- pos(i) V pos(—1i) (5)

Property 5 has been chosen because it presents some difficulty to the other
approaches discussed in Section 2, but as we have already mentioned poses little
difficulty in LPF.

The following results follow easily from the denotational semantics. Firstly,
the recursively defined predicate pos is defined (and delivers true) over the nat-
ural numbers.

Lemma 2 {((pos(i),{i — n},v),true) | n e N} C &

This can be proved by a simple inductive argument:
((pos(i), {i — 0},7), true) € €
by &id, Earith, £cond and & funccall; then:

Vn € Nl .
((pos(i),{i — n —1},7),true) € £ =
((pos(i),{i — n},v),true) € £

follows from E€cond and & funccall. So, by induction:

Vn € N ((pos(i),{i — n},v), true) € £
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and the required lemma follows from the single valued property (Lemma 1).
From this it is easy to show that the disjunction (pos(i) V pos(—1)) is defined
over all integers.

Lemma 3 {(((pos(i) V pos(—i)),{i — m},7),true) | m e Z} C &

Observe that Lemma 2 gives both:

{((pos(i), {i = n},7), true) | n € N} C &
{((pos(i), {i = —n},7). true) | n € (Z—N)} C €

and by Eor:

{(((pos(i) V pos(=i)),{i = m},7), true) | m € Z} =
({((pos(2), {i = n},7), true) [ n € N} U
{((pos(i),{i = —n},7), true) [ n € (Z - N)})

This lets us conclude the required result about the universally quantified
(over integers) expression.

Theorem 4 {(((Vi € Z - pos(i) V pos(—1i)),{ },7),true)} C &

This is an immediate consequence of Lemma 3 and & forall.
It would also be straightforward to prove:

p(42) = FieZ- p(i)

which is interesting because it ought follow immediately from an existential
introduction but appears not to be safe in all logics (e.g. McCarthy’s).

6 Conclusions

Over the course of this paper we have formalised the semantics of LPF for the
evaluation of numerous expression constructs first using an SOS specification and
then through the use of a denotational semantics, where the latter overcomes
a problem that presented itself in our SOS specification. In addition we have
illustrated how our denotational semantics definition can be used as a basis for
proofs about propositions over terms that can fail to denote.

Non-denoting terms arise frequently in program specifications [CJ91, Jon06,
Fit07] which raises the question of how proofs about such terms can be conducted
formally. In addition since a large body of research and engineering has created
tools for classical logic and approaches to coping with non-denoting terms having
attracted much research over the years (e.g. [McC67,Bla80,BCJ84,0we85,Che86,
CJ91,Jon06,Kra06,Fit07]), we feel further research on mechanised proof support
tools for LPF will be of significant benefit.

One of the reasons for carrying out this work was to provide a formalisation
of a non-classical logic; in particular to formalise how LPF copes with propo-
sitions that may contain potentially non-denoting terms, for instance from the
application of partial (recursive) functions and operators. Our formalisations
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were created with the intent of mechanising support for proofs in LPF. The for-
malisations provided in this paper not only allow us to be more confident that
we fully understand the semantics of LPF before we begin with a mechanisation,
but they also provide a means of checking whether any mechanisation of LPF
which we come up with is correct.

As in most cases there is much more work to be done. The major task ahead
of us is mechanising support for proofs in LPF. This can be broken down into two
separate subclasses of problems for further research. The first is to research how
fundamental techniques such as unification and resolution work with such a non-
classical logic. The second activity relates to actually implementing mechanised
tool support for proofs about propositions over terms that can fail to denote
values.

One way of implementing mechanised tool support for proofs in LPF would
be to implement a theorem prover for LPF from scratch. However, we take the
view that is also taken in Chapter 4 “Designing a Theorem Prover” of [AGM92]
that it may be a better idea to try to captialise on an existing tool and build our
extension on that. The current options that we see include extending an existing
proof assistant (notably Isabelle [NPWO02]) or adapting a term-rewriting tool
(notably Maude [CT07]) to include support for LPF. We think using a generic
theorem proving assistant such as Isabelle would be an ideal choice of tool for
us to extend to provide a logical framework for LPF. We also like the idea of
using a term-rewriting system such as Maude due to the similarity between the
inference rules (like those for the zero function presented in Section 2.1) and the
term-rewriting rules.
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APPENDIX

A First Order Predicate Calculus (FOPC) Rules for

Comparison

Here we present several semantic rules and then the denotational semantics
which define the evaluation of our chosen expression constructs according to
the semantics of FOPC. This is done for those expression constructs where the
evaluation in FOPC differs from that of LPF. This affects the disjunction logical
operator as well as the two quantification logical expression constructs.

Consider again the truth table for the disjunction logical operator in LPF
and then compare this with the truth table for the disjunction logical operator in
FOPC, presented in Figure 4. We note again that in LPF in certain circumstances
we can return a result even if an operand is not yet fully evaluated or it fails to
denote a value, as long as enough information is already available from evaluating
the other operand. However, in FOPC there is a need for all operands (logical
expressions) to be defined before a result can be returned. FOPC has no meaning
for non-denoting logical values [Jon06, FJ08].

\Y, -lpf‘true 1p false
true |[true true true
J_]E true J_]B J_]B
false [true 1 false

\Y —fopc‘true false
true |true true
false |true false

Fig. 4. A comparison of the LPF truth table and the FOPC truth table for disjunction.

The semantic relation that we use to model the process of expression evalu-
ation is:

5 P((Expr x ) x Expr)

The modified semantic rules for the disjunction logical operator follow.

(a,0) - a
FOPC-Or-1 (mk-Or(a,b),o) - mk-Or(a’, b)

FOPC-Or-R (bo) U
= (mk-Or(a,b),o) —— mk-Or(a,b’)

FOPC-0Or-E1 (mk— Or(true, true), O') -2 true

FOPC-Or-E2 (mk-Or(true, false),0) — true
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FOPC-Or-E3 (mk-Or(false, true),c) —— true
FOPC-Or-E4 (mk-Or(false, false), 0) —— false

Above we have to make sure that before an elimination rule (FOPC-Or-E1
to FOPC-Or-E4) can be applied we have fully reduced (evaluated) each of
the two operands to a constant (Boolean) value. This is problematic with non-
denoting terms and one of our reasons for utilising LPF, since we are interested
in reasoning about propositions that include terms that can fail to denote values.

We now turn our attention to the semantic rules which are required to define
the evaluation of the quantification expression constructs in FOPC.

Vi€Z-((e,ot{t—j}) - trueVv
(e,0 1 {t— j}) — false);
Ji€Z-(e,0t{tw i}) - false
(Vt - e,0) - false

| FOPC-Forall-F |

Vi€ Z-(e,ot{t—i}) - true
(Vt-e,0) - true

| FOPC-Forall-T |

VicZ-(e,0t{t— i}) — false
(3t - e,0) = false

| FOPC-Exists-F |

Vi€Z-((e,ot{t—j}) - trueV
(e,0t{t—j}) - false);
Ji€Z-(e,o0t{tr i}) - true
(3t -e,0) - true

| FOPC-Exists-T |

The difference between the evaluation of the quantified expressions in LPF
and in FOPC reside in the FOPC-Forall-F and the FOPC-FExists-T rules. In
FOPC we must show that the quantified expression is defined for every bound
value (for every integer).

For the denotational semantics consider:

E:P((Expr x ¥ x T') x Value)

disjunction is modified to:

Eor =
{((mk-Or(a,b),o,7), true) |
((a,0,7),true) € EA((b,0,7),true) € E} U
{((mk-Or(a,b),0,7), true) |
((a,0,7),true) € EA((b,0,7),false) € £} U
{((mk- Or(a, b),0,7),true) |

{((mk- Or( ,b), v), false) |
((a,0,7),false) € EA ((b,0,7), false) € £}
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and the quantified expression cases are modified to:

Eforall =
{((Vt © 6,0, ’Y)atrue) |
{((e,ot{t—i},v),true) |1 €Z} CE}U
{((Vt - e,o,7), false) |
false € rng ({(e,o 1 {t — i},y) | i € Z} Q&) A
({(e,;ot{t —i},7) [ i€ Z} C dom&)}

Eerists =
{((3t-e,0,7),true) |
true € rng ({(e,oc T {t — i},7) | i € Z} < &) A
({(e,ot{t—i},v) |i€Z} Cdomé&)}U
{((Elt 1 €,0, V)afalse) |
{((e,;o 1 {t —i},v), false) | i € Z} C £}

24



