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Abstract. Model-oriented formalisms rely on a combination of safety
constraints and satisfaction of refinement obligations to demonstrate
model correctness. We argue that for a significant class of models a sub-
stantial part of the desired model behaviour would not be covered by
such correctness conditions, meaning that a formal development poten-
tially ends with a correct model inadequate for its purpose. In this paper
we present a method for augmenting Event-B specifications with addi-
tional proof obligations expressed in a visual, diagrammatic way. A case
study illustrates how the method may be used to strengthen a model by
translating use case scenarios from requirement documents into formal
statements over a modelled system.

1 Introduction

Use cases are a popular technique for the validation of software systems and
constitute an important part of requirements engineering process. It is an essen-
tial part of the description of functional requirements of a system. There exists
a vast number of notations and methods supporting the integration of use cases
in a development process (see [5] for a structured survey of use case notations).
With few exceptions, the overall aim is the derivation of test inputs for the test-
ing of the final product. Our approach is different. We propose to exploit use
cases in the course of a step-wise formal development process for the engineering
of correct-by-construction systems. It is assumed that a library of use case sce-
narios is available together with a system requirements document and use cases
are presented in a sufficiently precise manner. We discuss a technique and tool
for expressing use case scenarios as formal verification conditions that become
a part of a formal model of a developed system. It is guaranteed that the final
product obtained from such a model posesses, by the virtue of the development
method, all the properties expressed in use cases scenarios. The overall approach
is generally in line with some existing work on formalisation and formal valida-
tion of use cases [8]. The approach is investigated on the basis of an extension of
the Event-B modelling method [1] with a technique for formally capturing use
case scenarios as theorems over model state.

The paper is organised as follows. Section 2 gives a brief overview of Event-B
notation and methodology. The motivation behind the approach is presented in
Section 3. The essential details of the approach and its integration with Event-B
are presented in Section 4. Section 5 gives examples of use cases in the role of
validation conditions for an Event-B model of a networking file system.
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Fig. 1. Event-B model structure.

2 Event-B

Event-B [1] is a formal modelling method for the realisation of correct-by-
construction software systems.

An Event-B development starts with the creation of a very abstract speci-
fication. The cornerstone of Event-B method is the stepwise development that
facilitates a gradual design of a system implementation through a number of
correctness-preserving refinement steps. The general form of an Event-B model
(or machine) is shown in Figure 1. Such a model encapsulates a local state
(program variables) and provides operations on the state. The actions (called
events) are defined by a list of new local variables (parameters) vl, a state pred-
icate g called event guard, and a next-state relation S called substitution (see
the EVENTS section in Figure 1).

The INVARIANT clause contains the properties of the system (expressed as
state predicates) that should be preserved during system execution. These define
safe states of a system. In order for a model to be consistent, invariant preserva-
tion should be formally demonstrated. Data types, constants and relevant axioms
are defined in a separate component called context.

Model correctness is demonstrated by generating and discharging a collection
of proof obligations. There are proof obligation demonstrating model consistency,
such the preservation of the invariant by the events, and the refinement link
to another Event-B model. Putting it as a requirement that an enabled event
produces a new state v′ satisfying the model invariant, the model consistency
condition states that whenever an event on an initialisation action is attempted,
there exists a suitable new state v′ such that the model invariant is maintained
- I(v′). This is usually stated as two separate conditions: event feasibility and
event invariant satisfaction.

FIS I(c, s, v) ∧ g(c, s, vl, v)⇒ ∃v′. S(c, s, vl, v, v′)
INV I(c, s, v) ∧ g(c, s, vl, v) ∧ S(c, s, vl, v, v′)⇒ I(c, s, v′)
The consistency of Event-B models, i.e., verification of well-formedness and

invariant preservation as well as correctness of refinement steps is demonstrated
by discharging relevant proof obligations (such as INV and FIS) that, collec-
tively, define the proof semantics of a model. The Rodin platform [11], a tool
supporting Event-B, is an integrated environment that automatically generates



necessary proof obligations and manages a collection of automated provers and
solvers autonomously discharging the generated theorems.

3 Motivation

A stack may be defined in Event-B as a pair of variables stack ∈ 1 .. top→ N
and top ∈ N where top is the stack top pointer and stack is a sequence of values
representing a stack contents. The following two events define the obvious stack
manipulation operations.

push = any v where v ∈ N then stack(top+ 1) := v ‖ top := top+ 1 end
pop = when top > 0 then stack := 1 .. top− 1 C stack ‖ top := top− 1 end

It is not difficult to ascertain that the above model is indeed a specification of
a stack. However, the model invariants (the typing conditions for variables stack
and top given above) permit a wide range of safe but undesirable behaviours.
For instance, we could have made a mistake in the definition of event push

push broken = any v where v ∈ N then stack(top+ 1) := v end

Event push broken does not violate the invariants and hence there is no feed-
back from the verification tools. Although the model is correct it cannot be used
in the role of a stack, that is, it is an inadequate representation of stack. The
problem is not in the specification itself: the invariant is as strong as it can be for
this model. While, in some cases, it is possible to find a model abstraction 1 that,
via the refinement relation, would demonstrate the necessary conditions, this is
not always possible in practice due to often awkward models and interference
with the use of refinement as a development method.

The problem is not artificial: in larger models, it is difficult to identify a
problem by simply reading model text. An informal inspection of some recent
Event-B developments [3] shows that industrially-inclined models (models of a
piece of software rather than models of protocols or algorithms) tend to have
less restrictive (but not necessarily less numerous) invariants, more involved
event actions and exhibit the prevalence of horizontal refinement - a form of
data refinement where all new model elements contribute to the behaviour on
the new, hidden state. Correspondingly, in such models, much of behavioural
specifications is not under an obligation to establish any verification conditions.

The issue of constructing a correct model that does what is expected from
it is generally known as a problem of model adequacy and largely falls into
the domain of requirements engineering. Here we study an application of one
requirements engineering technique - use case scenarios - in the formal setting
of the Event-B method. To illustrate the main point of the proposed technique
let us consider the following (algebraic) specification of a stack object S holding
elements of type N.

1 One attempt at such an abstraction may be found [9].



init ∈ S empty(init) = TRUE
empty : S→ BOOL empty(push(s, v)) = FALSE
push : S × N→ S top(push(s, v)) = v
pop : S→ S × N pop(push(s, v)) = s

In a contrast to the Event-B model above, it does not specify how the stack
operations update the stack but rather defines few principal properties of stacks.
This style makes it easier to spot unexpected model properties as the defining
characteristics are given in an explicit and concise form whereas for a model-
oriented formalism, like Event-B, one has to do some mental calculations.

An interesting exercise is to translate such algebraic properties into Event-B
model theorems (that is, equivalent statements over stack and top). Notice that
pop(push(s, v)) = s may be put as

(pop ◦ push) ⊆ id(Σ)

where Σ is the state of the model: Σ = {s× t | t ∈ N ∧ s ∈ 1 .. t→ N}; s and t
are shorthands for stack and top. The relations push and pop are easily derived
from the event definitions:
pop = {(s 7→ t) 7→ (s′ 7→ t′) | t > 0 ∧ s′ = 1 .. t− 1 C s ∧ t′ = t− 1}
push = {(s 7→ t) 7→ (s′ 7→ t′) | v ∈ N ∧ s′ = sC− {t+ 1 7→ v} ∧ t′ = t+ 1}

The condition is proven by expanding the relational composition into a join:
pop ◦ push = {(s 7→ t) 7→ (s′′ 7→ t′′) | v ∈ N ∧ s′ = s ∪ {t+ 1 7→ v} ∧ t′ = t+ 1∧

t′ > 0 ∧ s′′ = 1 .. t′ − 1 C s′ ∧ t′′ = t′ − 1}
= {(s 7→ t) 7→ (s′′ 7→ t′′) | · · · ∧ s′′ = s ∧ t′′ = t}
= {x 7→ x | x ∈ Σ} = id(Σ)

In the same manner, one can establish that condition pop ◦ push broken ⊆
id(Σ) does not hold and therefore formally rule out the push broken version of
the push event.

The main difficulty in checking (pop◦push) ⊆ id(Σ) is the construction of the
verification goal from the event definitions. The resultant theorem is trivial for an
automated prover. The proposal we discuss in this paper allows one to construct
this kind of theorems very easily and in large quantities (when necessary) using
a simple visual notation.

4 Flow language

The section presents the semantics of the Flow language and its visual notation.

4.1 Flow theorems

Consider the following relations over pairs of relations on some set S.

U = {f 7→ g | ∅ ⊂ f ⊆ S × S ∧∅ ⊂ g ⊆ S × S}
ena = {f 7→ g | f 7→ g ∈ U ∧ ran(f) ⊆ dom(g)}
dis = {f 7→ g | f 7→ g ∈ U ∧ ran(f) ∩ dom(g) = ∅}
fis = {f 7→ g | f 7→ g ∈ U ∧ ran(f) ∩ dom(g) 6= ∅}



The definitions are concerned with the properties of a composite relation
g ◦ f . f ena g states that g ◦ f is defined for every value on which f is defined
- dom(g ◦ f) = dom(f); relation f dis g implies that g ◦ f = ∅; f fis g means
that there is at least one pair of values satisfying relation g ◦f : ∃v, u ·u (g ◦f) v.
The relations enjoy the following properties.

dis ∩ fis = ∅ ⇔ ¬(f dis g ∧ f fis g)
ena ∩ dis = ∅ ⇔ ¬(f ena g ∧ f dis g)
dis ∪ fis = U ⇔ f dis g ∨ f fis g

Let pe, Ge, Re characterise the parameters, guard and action of an event e.
Assuming that the consistency proof obligations are discharged, the universe of
system states Σ is said to be its safe states: Σ = {v | I(v)}. An event e is a
next-state relation of the form e ⊆ Σ × Σ. Let before(e) ⊆ Σ and after(e) ⊆ Σ
signify the domain and the range of relation e. The set before(e) corresponds to
the enabling states defined by the event guard and after(e) is a set of possible
new states computed by the event:

before(e) = {v | I(v) ∧ ∃pe ·Ge(pe, v)}
after(e) = {v′ | I(v) ∧ ∃pe · (Ge(pe, v) ∧Re(pe, v, v

′))}

Let b and h be some events. Taking into the account the definitions of before
and after, relations ena,dis,fis may be expanded as follows.

b ena h ⇔ after(b) ⊆ before(h)
⇔ {v′ | I(v) ∧ ∃pb · (Gb(pb, v) ∧Rb(pb, v, v

′))}
⊆ {v | I(v) ∧ ∃ph ·Gh(ph, v)}
⇔ ∀v, v′, pb · I(v) ∧Gb(pb, v) ∧Rb(pb, v, v

′)⇒ ∃ph ·Gh(ph, v
′) (FENA)

b dis h ⇔ after(b) ∩ before(h) = ∅
⇔ after(b) ⊆ Σ \ before(h)
⇔ after(b) ⊆ {v | I(v)} \ {v | I(v) ∧ ∃ph ·Gh(ph, v)}
⇔ after(b) ⊆ {v | I(v) ∧ ∀ph · ¬Gh(ph, v)}
⇔ ∀v, v′, pb, ph · I(v) ∧Gb(pb, v) ∧Rb(pb, v, v

′)⇒ ¬Gh(ph, v
′) (FDIS)

b fis h ⇔ after(b) ∩ before(h) 6= ∅
⇔ ∃v, v′, pb, ph · I(v) ∧Gb(pb, v) ∧Rb(pb, v, v

′) ∧Gh(ph, v
′) (FFIS)

Conditions (FENA,FDIS,FFIS) are the main flow verification conditions.
Event-B proof obligations of these form are automatically derived by a tool
supporting the approach.

Assumptions and assertions It is convenient to construct new events from ex-
isting events. We define two operators for this: assumption and assertion. An
assumption constraints the enabling set of an event while an assertion constraints
the set of new states computed by the event.

P.e
def= {t 7→ r | t 7→ r ∈ e ∧ t ∈ P} before(P.e) = before(e) ∩ P

e.Q
def= {t 7→ r | t 7→ r ∈ e ∧ r ∈ Q} after(e.Q) = after(e) ∩Q
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Fig. 2. A summary of the core flow notation and its interpretation.

It is trivial to see that such constrained events are safe: P.e ⊆ e∧e.Q ⊆ e. One
special case is a constraint used in the roles of both assumption and assertion:
e(D) = D.e ∩ D.e. It is easy to see that e(D) may be obtained by adding a
guard predicate L to event e such that D = {v | L(v)}. It often necessary to
make statement about a state rather than an event. This is done with the help
of the skip event that does not change system state: skip = id(Σ). Then skip(D)
is a stuttering step constrained to states D.

4.2 Graphical notation

The approach is realised by a tool employing a visual, diagrammatic depiction of
Flow theorems. A Flow diagram always exists in an association with one Event-
B model. The theorems expressed in a Flow diagram are statements about the
behaviour of the associated model. The basic element of a diagram is an event,
visually depicted as a node (in Figure 2, f and g represent events). Event defini-
tion (its parameters, guard and action) is imported from the associated Event-B
model. One special case of node is skip event, denoted by a grey node colour
(Figure 2, 5). Event relations ena,dis,fis are represented by edges connecting
nodes ((Figure 2, 1-3)). Depending on how a diagram is drawn, edges (flow theo-
rems) are said to be in and or or relation (Figure 2, 7-8). New events are derived
from model events by strengthening their guards (a case of symmetric assump-
tion and assertion) (Figure 2, 6). Edges may be annotated with constraining
predicates inducing assertion and assumption derived events (Figure 2, 4). Not
shown on Figure 2 are nodes for the initialisation event start (circle) and im-
plicit deadlock event stop (filled circle). The diagrams like those in Figure 2
(except 5 and 6 which are next-state relations rather than relations over events)
are translated into theorems and appear as additional proof obligations for the
associated Event-B model. A change in the diagram or Event-B model would
automatically lead to the recomputation of affected proof obligations. Flow proof
obligations are dealt with, like all other proof obligation types, by a combination
of automated provers and interactive proof. Like in proofs of model consistency
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Fig. 3. Flow specification for the verification of stack properties.

and refinement, the feedback from an undischarged Flow proof obligation may
often be interpreted as a suggestion of a diagram change such as an additional
assumptions or assertion.

Stack example Let us revisit the stack example from Section 3. The Flow diagram
in Figure 3 constructs theorems checking that the algebraic stack properties are
satisfied by the Event-B model of stacks. There are five theorems in the diagram.
The first three of these check properties empty(init) = TRUE, empty(push(s, v)) =
FALSE and top(push(s, v)) = v. In the diagram, init = ∅, z ∈ N,m ∈ N1 and s
is some arbitrary stack state. Property pop(push(s, v)) = s is decomposed into
three theorems: push is enabled for an arbitrary state; after push, event pop is
enabled; pop after push returns the stack into the original state.

It is not difficult to formally demonstrate that the property (pop ◦ push) ⊆
id(Σ) is implied by the Flow specification. Note that i.push ena j.pop ⇔
i.push ena skip(j) ∧ skip(j) ena pop. Then the Flow theorems may be trab-
slated into set theoretic statements as follows.

skip(i) ena push ⇔ i ⊆ dom(push)
skip(j) ena pop ⇔ j ⊆ dom(pop)
i.push ena skip(j) ⇔ push[i] ⊆ j
j.pop ena skip(i) ⇔ pop[j] ⊆ i

The statements above is merely the predicate form of a relational join for
pop and push : i ⊆ dom(push) ∧ push[i] ⊆ j ∧ j ⊆ dom(pop) ∧ pop[j] ⊆ i ⇒
(pop◦push)[i] ⊆ i. Since i is an arbitrary stack state, it follows that (pop◦push) ⊆
id(Σ).

4.3 Structuring

The Flow language offers a number of structuring mechanisms to help in the
construction of larger diagrams. Some of the more important of them are ad-
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Fig. 4. Folding of idempotent stack scenarious.

dressed by a container diagram element called sub-scenario. A sub-scenario plays
differing roles depending on whether it is open or closed.

An open sub-scenario defines a property that must be preserved by every
event of contained scenarios. Because of the similarity with the way the condition
of a safety invariant is formulated, such a property is called an interval invariant.
Interval invariants are often used when a property is maintained for some part
of scenario, and, compared to the propagation of such property via assumptions
and assertions, it results in a larger set of (generally) simpler proof obligations
as the interval invariant preservation is treated independently from the core
theorems of enabling, disabling and feasibility. It also helps to produce more
legible diagrams.

A closed sub-scenario is a black-box container with a well-defined interface.
Externally, it appears to be a simple event (although no such event exists in the
associated machine). Internally, it is a Flow specification that may be developed
and manipulated independently from the rest of the diagram, subject to some
additional constraints. Besides an interval invariant, a closed sub-scenario defines
pre- and postconditions. The precondition is a predicate defining a state that
is guaranteed to enable at least one of the contained scenarios. A postcondition
is a next-state relation characterising the overall effect of a contained scenario
as a relation between the initial state of the closed sub-scenario and the state
computed by the last event of the scenario. A closed sub-scenario may be linked
to a separate diagram file to facilitate collaborative development. An example of
a closed sub-scenario is given on diagram in Figure ?? (a green square icon in the
left-top distinguishes a closed scenario from an open one). From top to bottom,
the predicates are: interval property, precondition and postcondition. In this
example, the closed sub-scenario characterises scenarios that, when considered
in isolation, have no effect on the stack size and contents. Two trivial examples
of such scenarios are defined within the subscenario. On the right-hand size of
the diagram is an example of a closed sub-scenario in the role of an event node.

The reason for having the sub-scenario element in two versions rather than
two separate element kinds is that the construction of a closed scenario is in-
variably preceded by a stage when an open sub-scenario is defined. The first
step in folding a scenario part into a closed sub-scenario is the identification of



a property that holds for the whole part. It is such property that makes a piece
of diagram distinct from the rest and, typically, is central to demonstrating the
postcondition property.

Sometimes the same constraint or diagram pattern is used repeatedly through-
out a scenario. To avoid visual clutter, such repeating parts may be declared sep-
arately as aspects. An aspect may define a predicate and contain a Flow diagram.
The semantics of these are defined by the point of integration. For instance, a
link to an aspect from an event node conjuncts the aspect property with existing
event constraints.

5 Case study

As a case study we consider a model of networking file system loosely inspired
by the design of NFSv4 [13]. The model focuses on the behaviour of a server
accepting requests from clients. Somewhat unusually, requests come in the form
of simple programs - operation sequences - executed non-atomically (interleaved
with other such requests) on the server side. The server is free to schedule in-
coming requests as it likes (in a real system this has to do with file locking
mechanism). At any moment, there may be any number of running requests but
the operations on a file system are always executed atomically. A request may be
aborted if the server discovers that the current operation may not be executed.
If a request succeeds, the client may receive some data as the request result.

Such system architecture makes it difficult to introduce server functionality as
series of small-step refinements and provide strong safety invariants. On the other
hand, although it is a relatively small model, there is a number of interesting
use cases.

The basic notions of the model are the following.
- m file system (current state)
- Q set of known (accepted) requests
- q set of active (running) requests, q ⊆ Q
- p(t) operation vector of request t ∈ q
The state of a running request t is characterised by a pointer c(t) to the

current operation in the operation vector p(t), an error flag e(t) and a pair of data
register r1(t), r2(t) used to store parameter values for the request operations. The
first register is normally used to store the path to a file and the second holds
data that may be written to file or was read from a file.

register meaning
c(t) operation counter
r1(t) data register 1
r2(t) data register 2
e(t) error flag
The request scheduler of the server is defined by four high-level operations:

the acceptance of a new request; starting the execution of a request; request
finalisation; request abort. The latter two create and send a reply message to a
client that has submitted the request.



operation semantics meaning
NEW r, d1, d2 Q′ = Q ∪ {r 7→ d1 7→ d2} accepts new request (r, d1, d2)
FIN r q′, Q′ = {r}C− q, {r}C−Q 2 finalises the current request
PICK r q′, c′(t) = q′ ∪ {r}, 1 prepares a requests for execution

p′(r) 7→ r′
1(r) 7→ r′

2(r) = Q(r)
ABORT r q′, Q′ = {r}C− q, {r}C−Q aborts the current request

We define a small subset of possible request operations: addition of a new
file (not existing already in the system); deletion of an existing file; overwriting
the contents of an existing file; file read; file search; and register swap acting as
a connector between some other operations. The following is the summary of
operations and their beaviour.

name semantics condition meaning
ADD m′ = m ∪ {r1 7→ r2} r1 /∈ m adds new file r1 with contents r2
DELETE m′ = {r1}C−m r1 ∈ m deletes existing file r1
UPDATE m′ = mC− {r1 7→ r2} r1 ∈ m overwrites existing file r1 with r2
READ r′

2 = m(r1) r1 ∈ m reads an existing file
LOOKUP r′

2 = r1 r1 ∈ m looks for a file
XCHG r′

1, r
′
2 = r2, r1 register swap

All the operations implicitly update program counter c(t). In addition, when
the associated condition is not satisfied, an operation does nothing but raises
flag e(t). For the convenience of modelling, operations in p(t) are given in re-
verse order: 1 7→ DELETE, 2 7→ ADD is understood as first ADD and afterwards
DELETE.

We have build an Event-B model of the system comprised of four refinement
steps. As an illustration, at the last refinement step, the ADD operation is realised
by the following event.

add = any t where
q 6= ∅ t ∈ q
c(t) > 0
p(t)(c(t)) = ADD
r1(t) ∈ DATA \ {NIL}
r1(t) /∈ dom(m)

then
m(r1(t)) := r2(t)
c(t) := c(t)− 1 ‖ p(t) := 1 .. c(t)− 1 C p(t)

end

The event picks some request t such that it is not finished (c(t) > 0) and its
current operation is ADD, i.e., p(t)(c(t)) = ADD. The event also requires that
r1(t) contains a valid fresh file name.

In the continuation of the section we discuss three use cases introducing
additional verification constraints into the model.
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Fig. 5. File look-up after addition.

5.1 Use case 1: file look-up after addition

The use case states that a new file (not previously known in the file system) added
with operation ADD may be found with operation LOOKUP immediately after
executing ADD. The scenario checks that the notion of file creation implemented
by ADD is compatible with the notion of file existence implemented by LOOKUP.

The Flow diagram (see Figure ??) encoding the use case starts with a premise
that the file system is in some state ss1 and request name ta is not in the pool
Q of ready requests. We also rely on the fact that a file with name file1 does
not exists in m = ss1. The first step is the creation of a new request made of
operations ADD and LOOKUP with register one set to file name file1 . It is not
important what ADD writes in file file1 thus register two is left unconstrained
in event new. To simplify the definition of the remaining of the scenario, the
information about the request operations is deposited in an aspect (green box
titled TA). Events pick and add integrate this aspect.

After a request is formed it may be selected for execution. This is achieved
with event pick. After pick, it is known that ta is some currently running request
and this is reflected in the sub-scenario property ta ∈ q. Event add may be
executed after pick since, from the aspect definition, it is known that the current
operation of the operation vector of ta is pointing at value ADD. The after-
state of add defines an updated operation counter c′(ta) pointing at operation
LOOKUP. This information is deduced automatically by the provers. Finally,
after event lookup we are interested in stating that the second register holds a
value corresponding to the name of the created file. To construct the proof it
is necessary to propagate the information about the effect of executing ADD in
the request. The property we need is that file1 now exists in the file system and
the file we are looking for with operation LOOKUP is, in fact, the same file file1 .
Once the property is added the proof goes automatically.

On this and the following Flow diagrams, predicates highlighted in a ligher
shade indicate constraints discovered during the proof session. In other words,
these elements were not a part of the initial diagram but were necessary to
accomplish the proofs.
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fintran
t=ta ∧ 

file1 ∉ dom(xfs)

idsub

ta ∈ q

ta ∈ Q ∧ ta ∉ q ∧ m=ss1

ta ∉ Q' ∧ m'=ss1

pick
t=ta ∧ 
m=ss1

add
t=ta

delete
t=ta ∧ 
c(ta)=1

fin
t=ta ∧ 

file1 ∉ dom(m)

TB

p(ta) = {1↦DELETE, 2↦ADD} ∧
c(ta) = 2 ∧
r1(ta) = file1 ∧
¬ r1(ta)∈dom(m)

m=ss1{r1(ta)}⩤ m=ss1

m=ss1

m=ss1

Fig. 6. Idempotent requests template and a sample request specification.

5.2 Use case 2: idempotent requests

An important family of use cases are those concerned with requests that do not
change file system state if executed without an interference from other requests.
The only effect of executing such an (idempotent) request is that it disappears
from the pool of prepared requests. There is a large number of scenarios that fit
this template. The common property is that they start and end with the same
file system state (m = ss1 ∧m′ = ss1) while some previously inactive request
ta would be removed from the pool of ready requests (ta ∈ Q ∧ ta /∈ Q′). Since
the only way to remove a request from Q is by executing it till completion or
abort, these properties (formally, pre- and postconditions) define an execution
of an idempotent request. (READ), (LOOKUP) and (XCHG) are the only single-
operation requests that should not change the file system state (the former two
might result in an aborted request).

As discussed in Section 4.3, a closed sub-scenario defines a family of indepen-
dent sub-projects that may be, logically and technically, considered in separation
from the main Flow diagram. This is an important practical consideration as it
allows one to construct large diagrams without overloading the tool infrastruc-
ture. There is also a degree of proof economy as the top three arrows are theorems
proven just once for the whole family of sub-projects.

One example of an idempotent request is shown on the diagram in Figure
??. It is programmed to delete a file added in the same request. Since the addi-
tion operation requires that an added file is not already present in the file, the
subsequent deletion of an added file essentially nullifies the effect of addition.
With condition {r1(ta)} C− m = ss1 we prove that, in the after-state of add,
the state of the file system is exactly as before except the appearance of newly
added file r1(ta). This property allows us to prove that event delete followed by
fin returns the file system into its original state m = ss1 by deleting file r1(ta).
After finalizing the request (event delete) we prove that the system is back into
the state where ta is not a known request and m = ss1.



ta ∉ Q ∧
m=ss1

new
t = ta ∧ l = 3 ∧

o = {1↦READ,2↦ XCHG,3↦LOOKUP}

picktran
t=ta ∧ xfs=ss1 ∧

tranlen(ta)=3

lookup
t=ta ∧ tranlen(ta)=3

read
t=ta ∧ tranlen(ta)=1

∃ f· f ∈ dom(xfs) ∧ 
xfs(f) = trandata2(ta)

abort
t=ta

xchg
t=ta ∧ tranlen(ta)=2 ∧

trandata2(ta)∈dom(xfs) ∧
tranop(ta)(1)=READ

prop2

ta ∈ q

pick
t=ta ∧

m=ss1 ∧ c(ta)=3

lookup
t=ta ∧ c(ta)=3

read
t=ta ∧ c(ta)=1

∃ f· f ∈ dom(m) ∧ 
m(f) = r2(ta)

abort
t=ta

xchg
t=ta ∧ c(ta)=2 ∧

  r2(ta)∈dom(m) ∧
p(ta)(1)=READ

TC

p(ta) = {1↦READ, 2↦ XCHG, 3↦LOOKUP}

m=ss1

Fig. 7. If a file is found it may be read.

5.3 Use case 3: file may be read if found

This use case checks the interplay of file existence and file reading. The flow
diagram in Figure ?? checks that operation LOOKUP either aborts a request or
stores in register r2 the name of some existing file and, after copying r2 into r1,
reading of the file with operation READ always succeed and delivers a result in
register r2 that is the contents of some existing file.

In this scenario, we use branching to select only one possible case of LOOKUP
execution. Also, the link between LOOKUP and READ includes an intermediate
operation XCHG which requires the propogation via event constraints of the
relevant results of lookup execution.

An interesting point is, assuming that operations READ, XCHG and ABORT
are correct, that this use case gives a complete characterisation of the behaviour
of LOOKUP: the operation either fails or stores in r2 the name of a file that
exists in the file system. This hints at the possibility of synthesis of model parts
from detailed Flow diagrams.

The model of the case study (including both the Event-B model and the Flow
diagrams) is available to download as a Rodin project [9]. In addition to the core
Rodin Platform it is necessary to install the Rodin Flow plugin (instructions
may be found in [10]). The diagrams in this paper were produced by printing
the diagrams directly from the tool into a PDF file. For presentation purposes,
variable names in the diagrams were shortened.

The three scenarios combined have produced 25 non-trivial proof obligations
of which 22 were discharged automatically and the other 3 required a few simple
steps in the interactive prover. This is a promising indication of the approach
scalability. It is necessary to note that scenario diagrams were constructed in a
number of iterations and it took several failed proof attempts to arrive at the
presented Flow diagrams. The overall number of proof obligations for the model
is 167 with 17 assisted proofs.



6 Conclusion

Flow may be seen as a form of a primitive temporal logic with a very limited
expressive power compared, for instance, to CTL. To illustrate this point, assume
[f ] is a predicate for “f has fired”. Then Flow relations may be compared to
CTL statements as follows:

f ena g ⇒ ([f ]⇒ EX[g])
f dis g ⇔ ([f ]⇒ AX¬[g])
f fis g ⇐ ([f ]⇒ EX[g])

Thus, individual flow theorems characterise the immediate future behaviour
and it would take a chain of such theorems to approximate more interesting
statements. For instance, from a fact that f enables g and g enables h one may
conclude that after f there is a path leading to h: (f ena g ∧ g ena h) ⇒
([f ] ⇒ EF [h]). In principle, a statement like [f ] ⇒ EF [g] is expressible as a
flow scenario for any two events f and g3. On the other hand, in most cases,
it should be impractical to approximate [f ] ⇒ AF [g] and [f ] ⇒ AG[g] as this
requires formulation of possible continuation scenarios and a proof (possibly, via
dis) that no other continuation exists.

The most closely related work is a study of liveness-style theorems for the
Classical B [2]. The work introduces a number of notation extensions to construct
proofs about ’dynamic’ properties of models - properties that span over several
event executions. Like in Flow, the formulation of reachability property requires
spelling out a path that would lead to its satisfaction. One advantage of our
approach is in the use of graphs to construct complex theorems from simple
ones and the propagation of properties along the graph structure. The latter
results in interactive modelling/proof sessions where proof feedback leads to
small, incremental changes in the diagram.

There are a number of approaches [12, 7, 4, 14] on combining process algebraic
specification with event-based formalisms such as Event-B and Action Systems.
The fundamental difference is that Flow does not introduce behavioural con-
straints and is simply a high-level notation for writing certain kind of theorems.
It would be interesting to explore how explicit control flow information present
in a process algebraic model part may affect the applicability and the practice
of the Flow approach.
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