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Chapter  4

INTRODUCTION

The variety and ubiquity of modern computa-
tional devices raise the problem (and create the 
opportunity) of utilizing and orchestrating their 

processing capabilities within an integral approach 
which would ensure that the system using them 
is scalable and reliable. In our work we refer to 
such computational resources as system nodes. 
Our solution is based on the universal principle 
of dealing with complexity by introducing a 
particular level of abstraction that allows us to 
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ABSTRACT

This chapter considers the coordination aspect of large-scale dynamically-reconfigurable multi-agent 
systems in which agents cooperate to achieve a common goal. The agents reside on distributed nodes 
and collectively represent a distributed system capable of executing tasks that cannot be effectively 
executed by an individual node. The two key requirements to be met when designing such a system are 
scalability and reliability. Scalability ensures that a large number of agents can participate in computa-
tion without overwhelming the system management facilities and thus allows agents to join and leave 
the system without affecting its performance. Meeting the reliability requirement guarantees that the 
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design formally and to ensure system scalability and reliability.
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focus on achieving certain system properties. In 
particular, our aim is to demonstrate how proper-
ties of solutions can be formally reasoned about 
at various levels of abstraction.

Examples of such abstraction levels that allow 
developers to support integration of many nodes 
can be found in peer networks (BitTorrent), cloud 
platforms (Google App Engine) and distributed 
file systems. Such systems are designed to achieve 
required system properties. The most important 
one is scalability, which ensures a linear or almost 
linear increase in system performance with the 
increase in the number of nodes. Another criti-
cal system property is reliability, which allows 
clients to see the system as if it was realised on a 
single fault-free node. Due to the nature of these 
systems, node failures are not uncommon and 
should not normally lead to an overall failure or 
require explicit actions at the level of applications 
deployed on the system. In other words, within 
certain limits, node failures should be masked. 
This is typically achieved through node and ap-
plication redundancy, whereby the same activity 
is executed on several nodes. Crucially, in case 
of node failures the system is automatically re-
configured.

Our work proposes a formal step-wise develop-
ment model which allows us to prove the scalability 
and reliability of the solutions using the Event-B 
method. As part of our rigorous system develop-
ment, we demonstrate how to formally specify a 
reconfiguration of the system topology performed 
as a response to a change in the number of nodes. 
We apply a multiagent approach in which a special 
programming unit, an agent, resides on every node 
and reacts to node failures and system changes 
in such a way as to automatically reconfigure the 
system to an acceptable state.

BACKGROUND: EVENT-B

Event-B (Abrial, 2010) is a state-based formal 
method inherited from Classical B (Abrial, 1996). 

It is an approach for realising industrial-scale 
developments of highly dependable software. 
The method has been successfully used in the 
development of several real-life applications. An 
Event-B development starts from creating a formal 
system specification. The basic idea underlying 
stepwise development in Event-B is to design the 
system implementation gradually, by a number of 
correctness preserving steps called refinements.

The unit of a development is a model. An 
Event-B model is made of the static part, called a 
context, and the dynamic part, called a machine. 
A context defines constants c, sets (user defined 
types) s, and declares their properties in axioms 
P and theorems T:

context C
sets s
constants c
axioms P(c, s)
theorems T(c, s)

A machine is described by a collection of 
variables v, invariants I(c, s, v), an initialisation 
event RI(c, s, v’) and a set of machine events E:

machine M
sees C
variables v
invariants I(c, s, v)
events E

In the above, construct seesC makes context C 
declarations available to machine M. The model 
invariants specify safe model states and also define 
variable types. An event is a named entity made 
of a guard predicate and a list of actions and has 
the following syntax:

name = any p where G(c, s, p, v) then R(c, s, 
p, v, v’)

where p is a vector of parameters, G(c, s, p, v) 
is a guard and R(c, s, p, v, v’) is a list of actions. 
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Event is enabled when guard G is satisfied on the 
current state v. If there are several enabled events, 
an enabled event is selected for execution non-
deterministically. The result of an event execution 
is a new model state v’.

The essence of the Event-B method is in the 
verification of consistency and refinement condi-
tions of machines. The machine consistency condi-
tions demonstrate that various parts of a machine 
do not contradict each other. The following is a 
summary of these conditions.

Axioms P and invariants I should be satisfiable 
for some values for constants, sets and variables:

∃ c, s, v . P(c, s) /\ I(c, s, v)

Every event, including the initialization event, 
must establish invariants:

P(c, s) /\ I(c, s, v) /\ G(c, s, v) /\ R(c, s, v, v’) => 
I(c, s, v’)

P(c, s) /\ RI(c, s, v’) => I(c, s, v’)

It should be possible to find a new state satisfy-
ing the event guard and event action conditions:

P(c, s) /\ I(c, s, v) /\ G(c, s, v) => ∃ v’ . R(c, s, v, v’)

P(c, s) => ∃ v’ . RI(c, s, v’)

The main development methodology of Event-
B is refinement - the process of transforming an 
abstract specification while preserving its correct-
ness and gradually introducing implementation 
details. Let us assume that the refinement machine 
N is a result of refinement of the abstract machine 
M. Then machine M is called an abstract machine 
in regards to machine N.

machine N
refines M
sees C1
variables w

invariants J(c1, s1, v, w)
events E1

Concrete machine N defines new variables 
w and provides a gluing invariants J(c, s, v, w) 
that links the states of N and M. A concrete event 
from E1 refines an abstract event by replacing the 
original guard G(c, s, v) with a stronger predicate 
H(c, s, w) and defining new action S(c, s, w, w’). 
Such new action must be feasible:

P(c, s) /\ I(c, s, v) /\ J(c, s, v, w) /\ H(c, s, w) => 
∃ w’ . S(c, s, w, w’)

Concrete guard H must strengthen abstract 
guard G:

P(c, s) /\ I(c, s, v) /\ J(c, s, v, w) /\ H(c, s, w) => 
G(c, s, v)

A concrete action S must refine abstract ac-
tion R:

P(c, s) /\ I(c, s, v) /\ J(c, s, v, w) /\ H(c, s, w) /\ 
S(c, s, w, w’) =>

∃ v’ . (R(c, s, v, v’) /\ J(c, s, v’, w’))

The refined model can also introduce new 
events. In this case, we have show that these new 
events are refinements of implicit empty (skip) 
events of the abstract model. There are several 
other proof obligations and well-formedness rules. 
The complete definition can be found in (Abrial 
& Metayer, 2005).

SYSTEM MODEL

Due to their reliance on message passing rather 
than common shared memory, distributed comput-
ing environments pose a number of challenges, 
including, for example, how to make decisions 
about resource location and ownership, and how 
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to define patterns which structure communication 
between system nodes. In this work we mainly 
focus on the latter area, while only partially ad-
dressing the rest.

We are developing a system which will include 
the distribution of computation tasks among its 
nodes as its core function. By the node we under-
stand a fairly independent computing platform – 
one that is free to disappear, or fail, or decline to 
execute a task. Since we are aiming to produce a 
system with many thousands of nodes, we use an 
abstraction of a node called bundle. A bundle is a 
collection of nodes with an additional property, 
which is that the agents of a bundle are able to 
communicate more efficiently among themselves 
than with those of other bundles. We do not discuss 
in this work how a communication infrastructure 
supporting bundles may be designed and deployed.

A node, i.e. a member of bundle, is associ-
ated with one or more agents (run/located on that 
node), whose purpose is to execute system tasks. 
An agent can be responsible for managing several 
tasks; equally, the same task may be replicated to 
several agents. The system maintains the following 
relation between its tasks and agents:

distribution ∈ Task <–> Agent

In a general case, several agents can reside on 
the same node. The distinction between nodes and 
agents allows us some flexibility at the abstraction 
level, as it is possible to choose to see a specific 
execution unit as a collection of nodes or as a single 
node with several agents. To a great extent, the 
distinction between the two views is determined 
by how much of a unit is likely to fail or disappear 
from the system. If the likely scenario is an isolated 
failure of a unit part, it is convenient to treat the 
unit is a collection of independent nodes. On the 
other hand, if it is known that the unit is likely 
to fail as a whole, it is convenient to view it as a 
single node with multiple agents. In rough terms, 
the number of the agents in a node correlates with 
the processing capabilities of the node.

We do not distinguish here between cata-
strophic hardware failures of nodes, communica-
tion problems, the decision of a node to leave the 
system and many other failure scenarios, as we 
believe it is difficult in practice to have a mecha-
nism that distinguishes between these scenarios in 
a system that is intrinsically open (which means, 
for example, that its nodes may appear and disap-
pear at any time).

Initially, the abstract view of the system as-
sumes that only one agent resides on a node and 
that agents join and leave the system independently 
of one another. In other words, we treat an agent 
as a synonym for a node and define a bijection 
Agent >>–> Node. The task distribution relation 
above can be replaced by

distribution ∈ Task <–> Node

To achieve reliability, a task is replicated on 
several nodes:

∀ task . card(distribution[{task}]) > 1

As the distribution relation given above is 
hard to maintain in a distributed system, a design 
decision was made to restrict it. We assume that 
agents are assigned to whole bundles rather than 
individual agents. In this case, all the agents of a 
bundle have the same set of tasks assigned to them:

distribution ∈ Task +–> Bundle

We will now show how to perform certain 
bundle and task operations on a distribution 
relation of this kind. Every bundle is required to 
contain at least two agents. This allows us to use 
the bundle as an abstraction that hides node fail-
ures, treating bundles as perfectly reliable entities. 
We will also show how to form such bundles in 
an open environment. At this level of abstraction 
agents are interchangeable, and a bundle is char-
acterized by its size, i.e. the number of agents in 
the bundle. A newly joining agent appears in one 
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of the existing bundles and immediately becomes 
engaged in the current task of its parent bundle.

We implement the distribution function by 
splitting it into two parts: static and dynamic.

The static part of the function, which does 
not change during the execution of the system, is 
known to every agent of the system. We are using 
the hash function value of a data identifier, which 
in our case is intended for load balancing among 
bundles, as such static part. Maintaining the static 
function does not require extra communication 
between system nodes.

In order to support effective search and change 
operations, the dynamic part must be simple and 
symmetric (it should not have a single point of 
failure) for all bundles. The B tree structure (Bayer, 
& McCreight, 1972) is an example of data structure 
with such properties. It efficiently handles changes 
but is not sufficiently symmetric for our purposes, 
since it relies on a single root that would be a 
single point of failure in our system. We employ 
a different node topology, which enjoys similar 
change properties but is more symmetric, as there 
is no global root and any bundle can be used as 
a root for a search tree.

The topology we use is a hypercube, in which 
vertices represent bundles and every edge connects 
exactly two bundles. A bundle plays a similar role 
to that of a block in a B tree. A new agent join-
ing a bundle can lead to the latter becoming too 
large (compared to the average bundle size). This 
bundle will then need to be split into two smaller 
ones, each inheriting an equal share of agents 
as well as tasks of the original one. Conversely, 
agents leaving bundles will result in some of 
them becoming too small; it will be necessary to 
merge such a bundle with another one and bring 
together their task sets.

In terms of system topology, the merging and 
splitting of bundles lead to the joining and split-
ting of the hypercube topology vertices, which 
can violate its levels of symmetry and result in 
a topology different from that of a hypercube. 
For a number of reasons, it is essential to rely on 

the symmetry properties of a hypercube; hence, 
bundle operations must always result in creation 
of a hypercube of a differing dimension rather 
than in simply adding or removing nodes. Hence, 
when a bundle is split, all bundles need to be split, 
and the dimension of the hypercube increases by 
one. When any pair of bundles is merged all the 
adjacent bundle pairs are also merged, and the 
dimension decreases by one. In other words, at 
the top level of abstraction, the system reacts to 
a change in the number of available agents by 
changing its topology, which always remains a 
hypercube topology, and a topology change results 
in a hypercube of a greater or lesser dimension.

REFINEMENT STEPS OF THE 
DEVELOPMENT

Initial Model

The departure point for modelling is the defini-
tion of the requirements for bundles. At the most 
abstract level, the state of the system is represented 
by two Boolean variables: few and many. In the 
normal state, which is also the initial state, both 
variables are set to false.

event INITIALISATION
then
few := FALSE
many := FALSE
end

Figure 1. Abstraction levels: unreliable agents, 
reliable bundles, scalable hypercube
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When one of the bundles of the system be-
comes too small, event underflow switches the 
system state from the normal into an exceptional 
one, by raising flag few. Similarly, when one of 
the bundles becomes too large, event overflow 
raises flag many.

event underflow
where
few = FALSE
many = FALSE
then
few := TRUE
end

event overflow
where
few = FALSE
many = FALSE
then
many := TRUE
end

The system recovers from these exceptional 
states in events merge and split, respectively, by 
simply resetting the flags.

event merge
where
few = TRUE
then
few := FALSE
end

event split
where
many = TRUE
then
many := FALSE
end

At this point we assume that the system has 
to handle only one failure at a time (or, more 
formally, the occurrence of exceptional situations 

is interleaved with system reaction; note that this 
does not impose any limitations on the rate at 
which exceptions may happen). One important 
consequence of this is that the system may not 
have too few and too many agents simultaneously 
in differing bundles. This translates into a require-
ment for a balanced distribution of agents across 
bundles. Formally, the property is expressed with 
the following invariant:

inv1 few = FALSE \/ many = FALSE

The state diagram of the abstract model is 
given in Figure 2. Small left and large right circles 
show that there is a bundle containing too few or 
too many agents respectively. The middle circle 
represents the normal state.

Scale of the System

The next modelling step, the first refinement in the 
Event-B terms, gives a certain (abstract) view of 
how the hypercube transforms. The new variable 
scale is introduced to denote the hypercube dimen-
sion. The total count of bundles in the system is 
2scale, as every edge of the hypercube consists of 
exactly two bundles. Initially, scale is set to zero 
and the hypercube is just a single bundle. Below, 
the keyword extends means that all declarations 
of the event INITIALIZATION of the previous 
abstract machine are implicitly copied into the 
event INITIALIZATION of the current concrete 
machine. In this case these declarations consist 
of two assignments of variables few and many.

inv1 scale ∈ ℕ

event INITIALISATION extends INITIALIZATION
then
scale := 0
end
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Event split, in addition to its abstract actions, 
increases the dimension of the hypercube, while 
the event merge decreases it.

event split extends split
then
scale := scale + 1
end

event merge extends merge
then
scale := scale – 1
end

The event merge can, however, violate the 
invariant inv1, as there is no guarantee that scale 
will not become negative. This can be resolved 
by introducing a new invariant to forbid the state 
leading to a violation and to strengthen the guards 
of the merge and underflow events.

inv2 scale = 0 => few = FALSE

event underflow extends underflow
where
scale > 0
end

A state diagram of the model is given in Figure 
3. Note that it illustrates only the situations when 
scale = 0 and scale = 1. The circles in this figure 
denote bundles. The two adjacent circles mean 
that the 1-dimentional hypercube (segment) has 

only two bundles. The state denoted by the grey 
circle is forbidden by the model invariant inv2.

Modelling Bundle Size Constraints

At the abstract level of the initial model, we refer 
to small and large bundles. Now we formally 
define these terms by further refining the model 
above, which introduced the variable scale. Let 
the LOWER and UPPER constants define the 
number of agents in a bundle in a normal state. 
If the number of agents is below LOWER, then 
the bundle is too small. If it is above the UPPER, 
it is too large.

Small bundles must still provide a level of 
redundancy sufficient to tolerate agents leaving 
the system. Therefore, the value of LOWER must 
be higher than one:

axm1 LOWER > 1

A modification of the bundle size can result 
in a bundle splitting into two or a pair of bundles 
merging into one. Therefore, the following condi-
tion must hold:

axm2 2 * LOWER ≤ UPPER

Because of node distribution, maintaining the 
information about the exact number of agents in 
a bundle is expensive. Thus, the reconfiguration 
logic has a limited knowledge of bundle states 
and has to work with an imprecise view of the 
overall system state. This is why the bundle size 

Figure 2. State diagram of the abstract model
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is only known as an estimate of the range between 
the variables lower and upper, which define the 
minimum and maximum of the agent number of 
all bundles, respectively. These variables observe 
the following conditions:

inv1 few = TRUE <=> lower < LOWER

inv2 many = TRUE <=> upper > UPPER

Here, the lower estimation is always positive 
because the system has to be redundant, while the 
upper estimation is limited because the system has 
to be efficiently scalable. The lower estimation 
must never exceed the upper estimation.

inv3 lower ≥ LOWER – 1

inv4 upper ≤ UPPER + 1

inv5 lower ≤ upper

Initially, lower is the minimal possible value 
satisfying the invariant:

event INITIALISATION extends INITIALISATION
then
lower:= LOWER
upper:∈ LOWER .. UPPER
end

Small and large bundles are detected by the 
LOWER and UPPER boundaries of the normal 
state in the following way:

event underflow extends underflow
where
lower = LOWER
then
lower:= lower – 1
end

event overflow extends overflow
where
upper = UPPER
then
upper:= upper + 1
end

Figure 3. State diagram of the model with scale
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Bundle size correction events merge and split 
update lower and upper to preserve the invariant:

event merge extends merge
any l u
where
l ≥ LOWER
u ≤ UPPER
l ≤ u
then
lower:= l
upper:= u
end

At this point of development we are ready 
to introduce new functionality to dynamically 
maintain an estimate of a bundle size, lower and 
upper, while in the normal state.

event fluctuate
any l u
where
few = FALSE
many = FALSE
l ∈ LOWER .. UPPER
u ∈ LOWER .. UPPER
l ≤ u
then
lower:= l
upper:= u
end

The state diagram of this model is given in 
Figure 4. The inner structure shows the number 
of agents. For example, constants are assigned 
with the lowest possible values LOWER=2 and 
UPPER=4 according to axioms axm1 and axm2. 
Thus, it is possible to have a bundle with two, 
three or four agents. A bundle with a single agent 
is too small and must be merged. A bundle with 
more than four agents is too large and is to be split.

Prepare to Correction

In the next refinement step we improve the model 
by explaining the notion of a normal state as a 
combination of two new states. The purpose is 
to be able to reason about the readiness of the 
system to perform reconfiguration.

When a system is ready to reconfigure the state 
is marked by flag ready. Initially the flag is on.

event INITIALISATION extends INITIALISATION
then
ready := TRUE
end

The system is able to detect when there are too 
few agents in a bundle and update the estimations 
of the upper or lower values while it is ready.

event underflow extends underflow
where
ready = TRUE
end

Bundle merge makes the system unready for 
the next correction.

event merge extends merge
then
ready := FALSE
end

Events overflow and split are defined in a 
similar way.

New behaviour describes how the system 
prepares to the next reconfiguration by adjusting 
the lower and upper estimates.

event prepare refines fluctuate
any l u
where
l ∈ lower .. upper
u ∈ lower .. upper
l ≤ u
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ready = FALSE
then
lower := l
upper := u
ready := TRUE
end

At this stage an assumption is made that ex-
ceptions may occur only when the system is in 
the ready state.

inv1 ready = FALSE => few = FALSE

inv2 ready = FALSE => many = FALSE

The state diagram of the model is given in Fig-
ure 5. The opaque figures represent intermediate 
states when the system is not ready for the next 
correction and its agents are involved in global 
communication. Constants LOWER and UPPER 
have values 2 and 8 correspondingly.

Concerted Preparation

When a bundle is about to initiate split or merge it 
sends a message to all other bundles. It would be 

desirable that they were in a state in which they 
can split or merge without subsequently initiating 
a new split or merge request. This is only possible 
when all the bundles contain approximately the 
same number of agents. To be able to reason 
about the comparative bundle size, we introduce 
new constant WIDTH determining the maximum 
difference between the sizes of any two bundles. 
Now, LOWER and UPPER also take in the account 
the WIDTH value.

axm1 WIDTH > 0

axm2 2 * (LOWER + WIDTH) ≤ UPPER

At this step flag ready is refined. In an abnor-
mal state, the bundle size estimation is stronger 
to allow for the detection of the underflow and 
overflow conditions (see Box 1).

These invariants allow us to reason about the 
exceptional states and to assert the theorems stat-
ing the relation between the upper and lower 
values. The new theorems will help us to discharge 
proof obligations for the merge and split events 
(see Box 2).

Figure 4. State diagram of the model with constrained bundle size
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Merging here means that all bundles are split 
into pairs and each pair is consolidated into a 
single bundle; therefore the merge event effec-
tively doubles the lower and upper estimations.

event merge refines merge
where
few = TRUE
then
few, ready := FALSE, FALSE
scale := scale – 1
lower, upper := lower * 2, upper * 2
end

Similarly, the split event halves the size es-
timations.

The state diagram of the model is shown in 
Figure 6. The constants are defined as follows: 
LOWER=2, UPPER=8 and WIDTH=2. A small 

value of WIDTH leads to more communication 
to ensure a balanced distribution of agents across 
bundles.

Modelling Bundle Relations

The next refinement step introduces a relation 
that organizes bundles into pairs. Previously, 
we have assumed that bundles somehow know 
their neighbours and, moreover, the global view 
of neighbourhood is consistent with the local 
information. Realizing such a mechanism in a 
distributed system is far from trivial. In this model 
we introduce an abstract relation defining bundle 

Figure 5. State diagram of a model realising two-stage correction

Box 1. 

inv1 ready = TRUE => upper – lower ≤ WIDTH
inv2 few = FALSE /\ many = FALSE /\ ready = TRUE => upper – lower < WIDTH

Box 2. 

theorem inv3 few = TRUE => upper < LOWER + WIDTH
theorem inv4 many = TRUE => lower > UPPER – WIDTH
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pairs. Remember that new bundles appear by split-
ting a bundle into two. This means that, with an 
exception of the initial bundle, all bundles in the 
system have a historical parent. It is important for 
us that such a parent relationship defines sibling 
bundles – the descendants from the same parent. 
The described process for creating new bundles 
ensures that siblings always come in pairs. The 
sibling relation gives us a ready solution for find-
ing pairs of bundles to merge: we always merge 
two children bundles of the same parent and gain 
this parent bundle. Mathematically the relation 
is characterized by a binary tree with bundles 
represented as its nodes. New constant SCALE 
represents the depth of the node in the binary tree. 
The distinguished node ROOT is a tree root with 
zero depth and the initial bundle.

axm1 SCALE ∈ BUNDLE ––> ℕ

axm2 SCALE(ROOT) = 0

Every bundle has two distinct children that 
replace it when the bundle is split. The scale of 
a system containing a given child node is greater 
by one than the scale of the system containing the 

parent node. The parent for any bundle, except 
ROOT, may be found by inversing one of the child 
functions (see Box 3).

In our model, we define a partial function count 
to characterize the number of agents in a bundle. 
This description gives rise to a stronger definition 
of lower and upper.

inv1 count ∈ BUNDLE +–> LOWER – 1 .. UP-
PER + 1

inv2 lower ≤ min(ran(count))

inv3 upper ≥ max(ran(count))

Refined events merge and split use functions 
CHILD1 and CHILD2 to compute the new value 
count. Note that when the system is ready for 
recovery and is in the normal state the number of 
bundles in the system is always 2scale.

Recursive Specification 
for Model Distribution

One of the obstacles we face in the further re-
finement of our models is handling the details 

Figure 6. State diagram of a model realising concerted two-stage correction



70

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

pertaining to the scale of the system. Since the 
model characterizes the system for some arbitrary 
scale value (hence, it is a modelling parameter), 
the proofs have to be done also for the case of 
some arbitrary scale. The nature of the scaling 
mechanism modelling is such that the properties 
of a system of a given scale are naturally expressed 
as an extension of the properties of a system of a 
smaller scale. In our case the hypercube consists 
of two hypercubes of the previous dimension. 
The Event-B modelling language and the proof 
semantics do not provide means for handling 
complex recursive data types and, as the result, 
the proofs are sometimes more difficult to prove 
and models are less natural.

To overcome the problem, we propose to 
change the point of view and to define a model 
as a single step of a recursive process definition. 
In other words, we fix the scale of the system and 
build a model for the given scale by connecting two 
similar systems of smaller scales. Importantly, the 
definitions of model state transitions (the Event-B 
events) are the same for the main system and for 
its sub-systems. This makes it possible to approach 
the model analysis described below as a step of 
an induction procedure where scale is becoming 
the induction parameter. The induction base is 
a system of the zero scale with a single bundle.

The overall model is now a composition of two 
models of the first refinement which introduced 
variable scale. The composition process Box 4 is 
a simple juxtaposition of model states and events 
but with an addition of invariants linking the states 
of the composed models.

An exception arises when any component is 
in the exceptional state. So the abstract variables 

few and many are glued by a disjunction of the 
same component variables (see Box 5).

A gluing invariant for the variables scale is 
more complex. The scale of the compound ma-
chine and of its components are the same in the 
normal state (see Box 6).

According to invariant inv8 the exceptional 
state of the whole system may be caused by the 
exceptional state of the first component while the 
second may be already be in a normal state. While 
the scale of the first component is still less than 
that of the second one (the first component recon-
figuration lags behind the second one), invariant 
inv11 defines the scale of the system to be equal 
to the scale of the smaller component (see Box 
7). Other three invariants define the scale of the 
whole system in similar cases.

Initially, both components are in the normal 
state.

event INITIALISATION
then
few1, many1, scale1:= FALSE, FALSE, 0
few2, many2, scale2:= FALSE, FALSE, 0
end

The underflow1 event happens when the first 
component detects a too small bundle before the 

Box 3. 

axm3 CHILD1 ∈ BUNDLE ––> BUNDLE
axm4 CHILD2 ∈ BUNDLE ––> BUNDLE
axm5 ∀ b . b ∈ BUNDLE => CHILD1(b) ≠ CHILD2(b)
axm6 ∀ b . b ∈ BUNDLE => SCALE(CHILD1(b)) = SCALE(CHILD2(b))
axm7 ∀ b . b ∈ BUNDLE => SCALE(CHILD1(b)) ≠ SCALE(b) + 1
axm8 (CHILD1 U CHILD2)~ ∈ BUNDLE \ {ROOT} ––> BUNDLE

Box 4. 

inv1 few1 = FALSE \/ many1 = FALSE
inv2 few2 = FALSE \/ many2 = FALSE
inv3 scale1 ∈ ℕ
inv4 scale2 ∈ ℕ
inv5 scale1 = 0 => few1 = FALSE
inv6 scale2 = 0 => few2 = FALSE



71

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

second component. The merge1 event merges 
the bundles. The overflow1 and split1 events 
are similar. The second component has the same 
four events.

event underflow1 refines underflow
where
few1 = FALSE
many1 = FALSE
few2 = FALSE
many2 = FALSE
scale1 > 0
then
few1 := TRUE
end
event merge1 refines merge
where
few1 = TRUE
few2 = FALSE
scale2 = scale1 – 1
then
few1 := FALSE
scale1 := scale1 – 1
end

Other new events are omitted due to space 
limitations.

RELATED WORKS

The dynamic function that distributes tasks across 
agents (see the System Model section above) is 
realised by implementing a topology connecting 
agents and routing tasks. Two levels of abstraction 
will be introduced here.

The first one groups agents into bundles to en-
sure reliability. If the state of a bundle is changed, 
its agents have to communicate to quickly move 
to a consistent state. A bundle also needs to be 
partition-tolerant (Gilbert, 2002). Therefore, a 
fully connected topology is optimal for connecting 
agents in a bundle. This tends to be expensive, but 
because of the limited bundle size in our case, the 
cost of a fully connected topology is acceptable.

The second one connects bundles to ensure an 
efficient routing of tasks. Here efficiency means 
that bundles are directly connected to few neigh-
bours, and that the distance between any pair of 
bundles is small.

Box 5. 

inv7 few = TRUE <=> few1 = TRUE \/ few2 = TRUE
inv8 many = TRUE <=> many1 = TRUE \/ many2 = TRUE

Box 7. 

inv11 many1 = TRUE /\ many2 = FALSE /\ scale2 = scale1 + 1 => scale1 = scale
inv12 many2 = TRUE /\ many1 = FALSE /\ scale1 = scale2 + 1 => scale2 = scale
inv13 few1 = TRUE /\ few2 = FALSE /\ scale2 = scale1 – 1 => scale1 = scale
inv14 few2 = TRUE /\ few1 = FALSE /\ scale1 = scale2 – 1 => scale2 = scale

Box 6. 

inv9 few1 = FALSE /\ many1 = FALSE /\ few2 = FALSE /\ many2 = FALSE => scale1 = scale
inv10 few1 = FALSE /\ many1 = FALSE /\ few2 = FALSE /\ many2 = FALSE => scale2 = scale



72

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

We distinguish two kinds of topologies sup-
porting effective routing: regular and irregular. 
The regular topology can be analytically expressed 
in design time, while the irregular topology can 
only be constrained in design time and reified 
only in run time of the system. Obviously, regular 
topologies are easier to verify formally.

One promising direction is the hypercube 
(Schlosser, 2002) and cube-connected cycles 
(Preparata & Vuillemin, 1981) topologies, mainly 
thanks to their symmetry properties, which facili-
tate reasoning and scalability and provide shorter 
communication paths (Fang et al, 2005). However, 
supporting a highly symmetrical topology in a 
dynamic environment such as ours requires ad-
ditional effort, including dealing with reliability 
considerations. The disadvantage of the hypercube 
design (Schlosser, 2002) is that in this case only 
one agent is responsible for a hypercube vertex. If 
this agent fails, some requests may be lost before 
the system has a chance to discover the problem. 
In other words, all these agents represent single 
points of failure.

There is a large amount of research on irregu-
lar topologies that aims to distribute tasks across 
agents in a probabilistic way (Stoica et al, 2001; 
Rowstron & Druschel, 2001; Maymounkov & 
Mazieres, 2002; Zhao et al, 2004). Because it is 
based on distributed hash tables, it does not al-
low explicit reasoning about ensuring reliability 
through fault tolerance or about introducing the 
required level of redundancy. It is worth noticing, 
however, that applying hash functions (Ratnasamy 
et al, 2001) to routing tasks could be useful for 
load balancing of bundles.

FUTURE WORK

Our work can be expanded in several directions.
One of them is allowing several agents to be 

located on the same physical node. This will mean 
that in the worst case all agents of a bundle reside 
in the same single node. If the node fails, all the 

bundle tasks are lost despite agent redundancy. To 
resolve this problem, the bundle agents will need 
to be automatically placed into different physical 
nodes. A similar situation arises in ensuring coarse-
grained reliability, when agents of a bundle are 
placed on distant server racks or even data centres.

Another direction is ensuring smoother scaling. 
In our case exactly two bundles may be merged 
or split. Therefore, the count of bundles in the 
system is a power of 2. A further reification of 
our design would be to consider using rational 
values lower than 2 for scale factors. In this case, 
for instance, two bundles will be split into three 
and three bundles into four. The system will have 
2, 3, 4, 6, 8, 12, 16 and so on bundles, which will 
allow us to reduce the task traffic between bundles 
while scaling.

A third direction is to design a balancing mecha-
nism and introduce it as the next refinement step. 
In the current design we specify it very briefly in 
the events fluctuate and prepare. This mechanism 
needs to ensure that all bundles preserve a similar 
size. This can be achieved by moving agents from 
larger bundles to smaller ones.

The fourth, most challenging direction is to 
generalize our formal approach to support ir-
regular topologies. Such topologies are promising 
because they require fewer resources to maintain 
a high symmetry. Therefore, in theory irregular 
topologies will be more efficient.

CONCLUSION

The main contribution of our work is the formal 
development, by refinement, of large-scale dy-
namically reconfigurable multi-agent systems. 
This development meets the reliability and scal-
ability requirements while ensuring the overall 
system correctness. In this development groups of 
replicated agents (so-called bundles) are explicitly 
defined, starting at a certain abstraction level, for 
reasoning about reliability. One critical aspect of 
the system is that a bundle cannot be allowed to 
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become too small, as the system may not be able 
to fulfil its obligations to its environment in that 
case. To tackle this, bundles that become small are 
merged with others. The merging of a local pair 
of bundles initiates a global merging process that 
halves the bundle total. Similarly, when a bundle 
has too many agents, all the bundles are split at 
once. Such design scales well to accommodate 
large numbers of bundles (and thus agents). In fact, 
this design is an implementation of a hypercube 
topology to connect bundles and route tasks.

We started our formal development from 
requirement specifications, developing two 
models of the system to explore two different 
design approaches. One of them relies on as a 
straightforward solution to how bundles are to 
be merged and split. Another one recursively 
decomposes the entire system into two com-
ponents with an interface similar to that of the 
whole. To simplify the model development, we 
rely on a number of assumptions about bundle 
states, bundle availability and the properties of 
the medium connecting bundles. While this is a 
typical approach to modelling a distributed system, 
we do realize that unless these assumptions are 
relaxed, it may not be possible to realise such a 
system in practice (Gilbert, 2002). Our plan is to 
continue the development to bring it closer to an 
implementable program.
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KEY TERMS AND DEFINITIONS

B Method: A tool-supported formal method 
based around the Abstract Machine Notation, 
used in the development of computer software.

Formal Specification: Is a mathematical 
description of software or hardware that may be 
used to develop an implementation.

Mobile Agents: A mobile agent is a com-
position of computer software and data which 
is able to migrate from one location to another 
autonomously and continue its execution on the 
destination location.

Multi-Agent Systems: A multi-agent system is 
a system composed of multiple interacting agents.

Program Refinement: The verifiable trans-
formation of an abstract (high-level) formal 
specification into a concrete (low-level) execut-
able program. Stepwise refinement allows this 
process to be done in stages.

Redundancy: The provision of multiple 
interchangeable components to perform a single 
function in order to cope with failures and errors.

Reliability: The ability of a system or a com-
ponent to perform its required functions under 
stated conditions for a specified period of time.

Scalability: A desirable property of a system 
which indicates its ability to either handle grow-
ing amounts of work in a graceful manner or to 
be enlarged.


