
Luigia Petre
Åbo Akademi University, Finland

Kaisa Sere
Åbo Akademi University, Finland

Elena Troubitsyna
Åbo Akademi University, Finland

Dependability and
Computer Engineering:
Concepts for Software-Intensive
Systems

Dependability and computer engineering: concepts for software-intensive
systems / Luigia Petre, Kaisa Sere and Elena Troubitsyna, editors.
 p. cm.
 Summary: “This book offers a state-of-the-art overview of the dependability
research, from engineering various software-intensive systems to validating
existing IT-frameworks and solving generic and particular problems related to
the dependable use of IT in our society”--Provided by publisher.
 Includes bibliographical references and index.
 ISBN 978-1-60960-747-0 (hardcover) -- ISBN 978-1-60960-748-7 (ebook) -- ISBN
978-1-60960-749-4 (print & perpetual access) 1. Reliability (Engineering) 2.
Computer systems--Reliability. 3. Computer engineering. I. Petre, Luigia,
1974- editor. II. Sere, K. (Kaisa), 1954- editor. III. Troubitsyna, Elena,
1970-, editor.
 TS173.D47 2011
 620’.00452--dc22
 2011011401

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Michael Killian
Production Editor: Sean Woznicki
Typesetters: Keith Glazewski, Natalie Pronio, Jennifer Romanchak
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
Engineering Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

58

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

INTRODUCTION

The variety and ubiquity of modern computa-
tional devices raise the problem (and create the
opportunity) of utilizing and orchestrating their

processing capabilities within an integral approach
which would ensure that the system using them
is scalable and reliable. In our work we refer to
such computational resources as system nodes.
Our solution is based on the universal principle
of dealing with complexity by introducing a
particular level of abstraction that allows us to

Denis Grotsev
Kazakh National University, Kazakhstan

Alexei Iliasov
Newcastle University, UK

Alexander Romanovsky
Newcastle University, UK

Formal Stepwise Development
of Scalable and Reliable

Multiagent Systems

ABSTRACT

This chapter considers the coordination aspect of large-scale dynamically-reconfigurable multi-agent
systems in which agents cooperate to achieve a common goal. The agents reside on distributed nodes
and collectively represent a distributed system capable of executing tasks that cannot be effectively
executed by an individual node. The two key requirements to be met when designing such a system are
scalability and reliability. Scalability ensures that a large number of agents can participate in computa-
tion without overwhelming the system management facilities and thus allows agents to join and leave
the system without affecting its performance. Meeting the reliability requirement guarantees that the
system has enough redundancy to transparently tolerate a number of node crashes and agent failures,
and is therefore free from single points of failures. The Event B formal method is used to validate the
design formally and to ensure system scalability and reliability.

DOI: 10.4018/978-1-60960-747-0.ch004

59

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

focus on achieving certain system properties. In
particular, our aim is to demonstrate how proper-
ties of solutions can be formally reasoned about
at various levels of abstraction.

Examples of such abstraction levels that allow
developers to support integration of many nodes
can be found in peer networks (BitTorrent), cloud
platforms (Google App Engine) and distributed
file systems. Such systems are designed to achieve
required system properties. The most important
one is scalability, which ensures a linear or almost
linear increase in system performance with the
increase in the number of nodes. Another criti-
cal system property is reliability, which allows
clients to see the system as if it was realised on a
single fault-free node. Due to the nature of these
systems, node failures are not uncommon and
should not normally lead to an overall failure or
require explicit actions at the level of applications
deployed on the system. In other words, within
certain limits, node failures should be masked.
This is typically achieved through node and ap-
plication redundancy, whereby the same activity
is executed on several nodes. Crucially, in case
of node failures the system is automatically re-
configured.

Our work proposes a formal step-wise develop-
ment model which allows us to prove the scalability
and reliability of the solutions using the Event-B
method. As part of our rigorous system develop-
ment, we demonstrate how to formally specify a
reconfiguration of the system topology performed
as a response to a change in the number of nodes.
We apply a multiagent approach in which a special
programming unit, an agent, resides on every node
and reacts to node failures and system changes
in such a way as to automatically reconfigure the
system to an acceptable state.

BACKGROUND: EVENT-B

Event-B (Abrial, 2010) is a state-based formal
method inherited from Classical B (Abrial, 1996).

It is an approach for realising industrial-scale
developments of highly dependable software.
The method has been successfully used in the
development of several real-life applications. An
Event-B development starts from creating a formal
system specification. The basic idea underlying
stepwise development in Event-B is to design the
system implementation gradually, by a number of
correctness preserving steps called refinements.

The unit of a development is a model. An
Event-B model is made of the static part, called a
context, and the dynamic part, called a machine.
A context defines constants c, sets (user defined
types) s, and declares their properties in axioms
P and theorems T:

context C
sets s
constants c
axioms P(c, s)
theorems T(c, s)

A machine is described by a collection of
variables v, invariants I(c, s, v), an initialisation
event RI(c, s, v’) and a set of machine events E:

machine M
sees C
variables v
invariants I(c, s, v)
events E

In the above, construct seesC makes context C
declarations available to machine M. The model
invariants specify safe model states and also define
variable types. An event is a named entity made
of a guard predicate and a list of actions and has
the following syntax:

name = any p where G(c, s, p, v) then R(c, s,
p, v, v’)

where p is a vector of parameters, G(c, s, p, v)
is a guard and R(c, s, p, v, v’) is a list of actions.

60

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

Event is enabled when guard G is satisfied on the
current state v. If there are several enabled events,
an enabled event is selected for execution non-
deterministically. The result of an event execution
is a new model state v’.

The essence of the Event-B method is in the
verification of consistency and refinement condi-
tions of machines. The machine consistency condi-
tions demonstrate that various parts of a machine
do not contradict each other. The following is a
summary of these conditions.

Axioms P and invariants I should be satisfiable
for some values for constants, sets and variables:

∃ c, s, v . P(c, s) /\ I(c, s, v)

Every event, including the initialization event,
must establish invariants:

P(c, s) /\ I(c, s, v) /\ G(c, s, v) /\ R(c, s, v, v’) =>
I(c, s, v’)

P(c, s) /\ RI(c, s, v’) => I(c, s, v’)

It should be possible to find a new state satisfy-
ing the event guard and event action conditions:

P(c, s) /\ I(c, s, v) /\ G(c, s, v) => ∃ v’ . R(c, s, v, v’)

P(c, s) => ∃ v’ . RI(c, s, v’)

The main development methodology of Event-
B is refinement - the process of transforming an
abstract specification while preserving its correct-
ness and gradually introducing implementation
details. Let us assume that the refinement machine
N is a result of refinement of the abstract machine
M. Then machine M is called an abstract machine
in regards to machine N.

machine N
refines M
sees C1
variables w

invariants J(c1, s1, v, w)
events E1

Concrete machine N defines new variables
w and provides a gluing invariants J(c, s, v, w)
that links the states of N and M. A concrete event
from E1 refines an abstract event by replacing the
original guard G(c, s, v) with a stronger predicate
H(c, s, w) and defining new action S(c, s, w, w’).
Such new action must be feasible:

P(c, s) /\ I(c, s, v) /\ J(c, s, v, w) /\ H(c, s, w) =>
∃ w’ . S(c, s, w, w’)

Concrete guard H must strengthen abstract
guard G:

P(c, s) /\ I(c, s, v) /\ J(c, s, v, w) /\ H(c, s, w) =>
G(c, s, v)

A concrete action S must refine abstract ac-
tion R:

P(c, s) /\ I(c, s, v) /\ J(c, s, v, w) /\ H(c, s, w) /\
S(c, s, w, w’) =>

∃ v’ . (R(c, s, v, v’) /\ J(c, s, v’, w’))

The refined model can also introduce new
events. In this case, we have show that these new
events are refinements of implicit empty (skip)
events of the abstract model. There are several
other proof obligations and well-formedness rules.
The complete definition can be found in (Abrial
& Metayer, 2005).

SYSTEM MODEL

Due to their reliance on message passing rather
than common shared memory, distributed comput-
ing environments pose a number of challenges,
including, for example, how to make decisions
about resource location and ownership, and how

61

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

to define patterns which structure communication
between system nodes. In this work we mainly
focus on the latter area, while only partially ad-
dressing the rest.

We are developing a system which will include
the distribution of computation tasks among its
nodes as its core function. By the node we under-
stand a fairly independent computing platform –
one that is free to disappear, or fail, or decline to
execute a task. Since we are aiming to produce a
system with many thousands of nodes, we use an
abstraction of a node called bundle. A bundle is a
collection of nodes with an additional property,
which is that the agents of a bundle are able to
communicate more efficiently among themselves
than with those of other bundles. We do not discuss
in this work how a communication infrastructure
supporting bundles may be designed and deployed.

A node, i.e. a member of bundle, is associ-
ated with one or more agents (run/located on that
node), whose purpose is to execute system tasks.
An agent can be responsible for managing several
tasks; equally, the same task may be replicated to
several agents. The system maintains the following
relation between its tasks and agents:

distribution ∈ Task <–> Agent

In a general case, several agents can reside on
the same node. The distinction between nodes and
agents allows us some flexibility at the abstraction
level, as it is possible to choose to see a specific
execution unit as a collection of nodes or as a single
node with several agents. To a great extent, the
distinction between the two views is determined
by how much of a unit is likely to fail or disappear
from the system. If the likely scenario is an isolated
failure of a unit part, it is convenient to treat the
unit is a collection of independent nodes. On the
other hand, if it is known that the unit is likely
to fail as a whole, it is convenient to view it as a
single node with multiple agents. In rough terms,
the number of the agents in a node correlates with
the processing capabilities of the node.

We do not distinguish here between cata-
strophic hardware failures of nodes, communica-
tion problems, the decision of a node to leave the
system and many other failure scenarios, as we
believe it is difficult in practice to have a mecha-
nism that distinguishes between these scenarios in
a system that is intrinsically open (which means,
for example, that its nodes may appear and disap-
pear at any time).

Initially, the abstract view of the system as-
sumes that only one agent resides on a node and
that agents join and leave the system independently
of one another. In other words, we treat an agent
as a synonym for a node and define a bijection
Agent >>–> Node. The task distribution relation
above can be replaced by

distribution ∈ Task <–> Node

To achieve reliability, a task is replicated on
several nodes:

∀ task . card(distribution[{task}]) > 1

As the distribution relation given above is
hard to maintain in a distributed system, a design
decision was made to restrict it. We assume that
agents are assigned to whole bundles rather than
individual agents. In this case, all the agents of a
bundle have the same set of tasks assigned to them:

distribution ∈ Task +–> Bundle

We will now show how to perform certain
bundle and task operations on a distribution
relation of this kind. Every bundle is required to
contain at least two agents. This allows us to use
the bundle as an abstraction that hides node fail-
ures, treating bundles as perfectly reliable entities.
We will also show how to form such bundles in
an open environment. At this level of abstraction
agents are interchangeable, and a bundle is char-
acterized by its size, i.e. the number of agents in
the bundle. A newly joining agent appears in one

62

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

of the existing bundles and immediately becomes
engaged in the current task of its parent bundle.

We implement the distribution function by
splitting it into two parts: static and dynamic.

The static part of the function, which does
not change during the execution of the system, is
known to every agent of the system. We are using
the hash function value of a data identifier, which
in our case is intended for load balancing among
bundles, as such static part. Maintaining the static
function does not require extra communication
between system nodes.

In order to support effective search and change
operations, the dynamic part must be simple and
symmetric (it should not have a single point of
failure) for all bundles. The B tree structure (Bayer,
& McCreight, 1972) is an example of data structure
with such properties. It efficiently handles changes
but is not sufficiently symmetric for our purposes,
since it relies on a single root that would be a
single point of failure in our system. We employ
a different node topology, which enjoys similar
change properties but is more symmetric, as there
is no global root and any bundle can be used as
a root for a search tree.

The topology we use is a hypercube, in which
vertices represent bundles and every edge connects
exactly two bundles. A bundle plays a similar role
to that of a block in a B tree. A new agent join-
ing a bundle can lead to the latter becoming too
large (compared to the average bundle size). This
bundle will then need to be split into two smaller
ones, each inheriting an equal share of agents
as well as tasks of the original one. Conversely,
agents leaving bundles will result in some of
them becoming too small; it will be necessary to
merge such a bundle with another one and bring
together their task sets.

In terms of system topology, the merging and
splitting of bundles lead to the joining and split-
ting of the hypercube topology vertices, which
can violate its levels of symmetry and result in
a topology different from that of a hypercube.
For a number of reasons, it is essential to rely on

the symmetry properties of a hypercube; hence,
bundle operations must always result in creation
of a hypercube of a differing dimension rather
than in simply adding or removing nodes. Hence,
when a bundle is split, all bundles need to be split,
and the dimension of the hypercube increases by
one. When any pair of bundles is merged all the
adjacent bundle pairs are also merged, and the
dimension decreases by one. In other words, at
the top level of abstraction, the system reacts to
a change in the number of available agents by
changing its topology, which always remains a
hypercube topology, and a topology change results
in a hypercube of a greater or lesser dimension.

REFINEMENT STEPS OF THE
DEVELOPMENT

Initial Model

The departure point for modelling is the defini-
tion of the requirements for bundles. At the most
abstract level, the state of the system is represented
by two Boolean variables: few and many. In the
normal state, which is also the initial state, both
variables are set to false.

event INITIALISATION
then
few := FALSE
many := FALSE
end

Figure 1. Abstraction levels: unreliable agents,
reliable bundles, scalable hypercube

63

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

When one of the bundles of the system be-
comes too small, event underflow switches the
system state from the normal into an exceptional
one, by raising flag few. Similarly, when one of
the bundles becomes too large, event overflow
raises flag many.

event underflow
where
few = FALSE
many = FALSE
then
few := TRUE
end

event overflow
where
few = FALSE
many = FALSE
then
many := TRUE
end

The system recovers from these exceptional
states in events merge and split, respectively, by
simply resetting the flags.

event merge
where
few = TRUE
then
few := FALSE
end

event split
where
many = TRUE
then
many := FALSE
end

At this point we assume that the system has
to handle only one failure at a time (or, more
formally, the occurrence of exceptional situations

is interleaved with system reaction; note that this
does not impose any limitations on the rate at
which exceptions may happen). One important
consequence of this is that the system may not
have too few and too many agents simultaneously
in differing bundles. This translates into a require-
ment for a balanced distribution of agents across
bundles. Formally, the property is expressed with
the following invariant:

inv1 few = FALSE \/ many = FALSE

The state diagram of the abstract model is
given in Figure 2. Small left and large right circles
show that there is a bundle containing too few or
too many agents respectively. The middle circle
represents the normal state.

Scale of the System

The next modelling step, the first refinement in the
Event-B terms, gives a certain (abstract) view of
how the hypercube transforms. The new variable
scale is introduced to denote the hypercube dimen-
sion. The total count of bundles in the system is
2scale, as every edge of the hypercube consists of
exactly two bundles. Initially, scale is set to zero
and the hypercube is just a single bundle. Below,
the keyword extends means that all declarations
of the event INITIALIZATION of the previous
abstract machine are implicitly copied into the
event INITIALIZATION of the current concrete
machine. In this case these declarations consist
of two assignments of variables few and many.

inv1 scale ∈ ℕ

event INITIALISATION extends INITIALIZATION
then
scale := 0
end

64

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

Event split, in addition to its abstract actions,
increases the dimension of the hypercube, while
the event merge decreases it.

event split extends split
then
scale := scale + 1
end

event merge extends merge
then
scale := scale – 1
end

The event merge can, however, violate the
invariant inv1, as there is no guarantee that scale
will not become negative. This can be resolved
by introducing a new invariant to forbid the state
leading to a violation and to strengthen the guards
of the merge and underflow events.

inv2 scale = 0 => few = FALSE

event underflow extends underflow
where
scale > 0
end

A state diagram of the model is given in Figure
3. Note that it illustrates only the situations when
scale = 0 and scale = 1. The circles in this figure
denote bundles. The two adjacent circles mean
that the 1-dimentional hypercube (segment) has

only two bundles. The state denoted by the grey
circle is forbidden by the model invariant inv2.

Modelling Bundle Size Constraints

At the abstract level of the initial model, we refer
to small and large bundles. Now we formally
define these terms by further refining the model
above, which introduced the variable scale. Let
the LOWER and UPPER constants define the
number of agents in a bundle in a normal state.
If the number of agents is below LOWER, then
the bundle is too small. If it is above the UPPER,
it is too large.

Small bundles must still provide a level of
redundancy sufficient to tolerate agents leaving
the system. Therefore, the value of LOWER must
be higher than one:

axm1 LOWER > 1

A modification of the bundle size can result
in a bundle splitting into two or a pair of bundles
merging into one. Therefore, the following condi-
tion must hold:

axm2 2 * LOWER ≤ UPPER

Because of node distribution, maintaining the
information about the exact number of agents in
a bundle is expensive. Thus, the reconfiguration
logic has a limited knowledge of bundle states
and has to work with an imprecise view of the
overall system state. This is why the bundle size

Figure 2. State diagram of the abstract model

65

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

is only known as an estimate of the range between
the variables lower and upper, which define the
minimum and maximum of the agent number of
all bundles, respectively. These variables observe
the following conditions:

inv1 few = TRUE <=> lower < LOWER

inv2 many = TRUE <=> upper > UPPER

Here, the lower estimation is always positive
because the system has to be redundant, while the
upper estimation is limited because the system has
to be efficiently scalable. The lower estimation
must never exceed the upper estimation.

inv3 lower ≥ LOWER – 1

inv4 upper ≤ UPPER + 1

inv5 lower ≤ upper

Initially, lower is the minimal possible value
satisfying the invariant:

event INITIALISATION extends INITIALISATION
then
lower:= LOWER
upper:∈ LOWER .. UPPER
end

Small and large bundles are detected by the
LOWER and UPPER boundaries of the normal
state in the following way:

event underflow extends underflow
where
lower = LOWER
then
lower:= lower – 1
end

event overflow extends overflow
where
upper = UPPER
then
upper:= upper + 1
end

Figure 3. State diagram of the model with scale

66

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

Bundle size correction events merge and split
update lower and upper to preserve the invariant:

event merge extends merge
any l u
where
l ≥ LOWER
u ≤ UPPER
l ≤ u
then
lower:= l
upper:= u
end

At this point of development we are ready
to introduce new functionality to dynamically
maintain an estimate of a bundle size, lower and
upper, while in the normal state.

event fluctuate
any l u
where
few = FALSE
many = FALSE
l ∈ LOWER .. UPPER
u ∈ LOWER .. UPPER
l ≤ u
then
lower:= l
upper:= u
end

The state diagram of this model is given in
Figure 4. The inner structure shows the number
of agents. For example, constants are assigned
with the lowest possible values LOWER=2 and
UPPER=4 according to axioms axm1 and axm2.
Thus, it is possible to have a bundle with two,
three or four agents. A bundle with a single agent
is too small and must be merged. A bundle with
more than four agents is too large and is to be split.

Prepare to Correction

In the next refinement step we improve the model
by explaining the notion of a normal state as a
combination of two new states. The purpose is
to be able to reason about the readiness of the
system to perform reconfiguration.

When a system is ready to reconfigure the state
is marked by flag ready. Initially the flag is on.

event INITIALISATION extends INITIALISATION
then
ready := TRUE
end

The system is able to detect when there are too
few agents in a bundle and update the estimations
of the upper or lower values while it is ready.

event underflow extends underflow
where
ready = TRUE
end

Bundle merge makes the system unready for
the next correction.

event merge extends merge
then
ready := FALSE
end

Events overflow and split are defined in a
similar way.

New behaviour describes how the system
prepares to the next reconfiguration by adjusting
the lower and upper estimates.

event prepare refines fluctuate
any l u
where
l ∈ lower .. upper
u ∈ lower .. upper
l ≤ u

67

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

ready = FALSE
then
lower := l
upper := u
ready := TRUE
end

At this stage an assumption is made that ex-
ceptions may occur only when the system is in
the ready state.

inv1 ready = FALSE => few = FALSE

inv2 ready = FALSE => many = FALSE

The state diagram of the model is given in Fig-
ure 5. The opaque figures represent intermediate
states when the system is not ready for the next
correction and its agents are involved in global
communication. Constants LOWER and UPPER
have values 2 and 8 correspondingly.

Concerted Preparation

When a bundle is about to initiate split or merge it
sends a message to all other bundles. It would be

desirable that they were in a state in which they
can split or merge without subsequently initiating
a new split or merge request. This is only possible
when all the bundles contain approximately the
same number of agents. To be able to reason
about the comparative bundle size, we introduce
new constant WIDTH determining the maximum
difference between the sizes of any two bundles.
Now, LOWER and UPPER also take in the account
the WIDTH value.

axm1 WIDTH > 0

axm2 2 * (LOWER + WIDTH) ≤ UPPER

At this step flag ready is refined. In an abnor-
mal state, the bundle size estimation is stronger
to allow for the detection of the underflow and
overflow conditions (see Box 1).

These invariants allow us to reason about the
exceptional states and to assert the theorems stat-
ing the relation between the upper and lower
values. The new theorems will help us to discharge
proof obligations for the merge and split events
(see Box 2).

Figure 4. State diagram of the model with constrained bundle size

68

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

Merging here means that all bundles are split
into pairs and each pair is consolidated into a
single bundle; therefore the merge event effec-
tively doubles the lower and upper estimations.

event merge refines merge
where
few = TRUE
then
few, ready := FALSE, FALSE
scale := scale – 1
lower, upper := lower * 2, upper * 2
end

Similarly, the split event halves the size es-
timations.

The state diagram of the model is shown in
Figure 6. The constants are defined as follows:
LOWER=2, UPPER=8 and WIDTH=2. A small

value of WIDTH leads to more communication
to ensure a balanced distribution of agents across
bundles.

Modelling Bundle Relations

The next refinement step introduces a relation
that organizes bundles into pairs. Previously,
we have assumed that bundles somehow know
their neighbours and, moreover, the global view
of neighbourhood is consistent with the local
information. Realizing such a mechanism in a
distributed system is far from trivial. In this model
we introduce an abstract relation defining bundle

Figure 5. State diagram of a model realising two-stage correction

Box 1.

inv1 ready = TRUE => upper – lower ≤ WIDTH
inv2 few = FALSE /\ many = FALSE /\ ready = TRUE => upper – lower < WIDTH

Box 2.

theorem inv3 few = TRUE => upper < LOWER + WIDTH
theorem inv4 many = TRUE => lower > UPPER – WIDTH

69

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

pairs. Remember that new bundles appear by split-
ting a bundle into two. This means that, with an
exception of the initial bundle, all bundles in the
system have a historical parent. It is important for
us that such a parent relationship defines sibling
bundles – the descendants from the same parent.
The described process for creating new bundles
ensures that siblings always come in pairs. The
sibling relation gives us a ready solution for find-
ing pairs of bundles to merge: we always merge
two children bundles of the same parent and gain
this parent bundle. Mathematically the relation
is characterized by a binary tree with bundles
represented as its nodes. New constant SCALE
represents the depth of the node in the binary tree.
The distinguished node ROOT is a tree root with
zero depth and the initial bundle.

axm1 SCALE ∈ BUNDLE ––> ℕ

axm2 SCALE(ROOT) = 0

Every bundle has two distinct children that
replace it when the bundle is split. The scale of
a system containing a given child node is greater
by one than the scale of the system containing the

parent node. The parent for any bundle, except
ROOT, may be found by inversing one of the child
functions (see Box 3).

In our model, we define a partial function count
to characterize the number of agents in a bundle.
This description gives rise to a stronger definition
of lower and upper.

inv1 count ∈ BUNDLE +–> LOWER – 1 .. UP-
PER + 1

inv2 lower ≤ min(ran(count))

inv3 upper ≥ max(ran(count))

Refined events merge and split use functions
CHILD1 and CHILD2 to compute the new value
count. Note that when the system is ready for
recovery and is in the normal state the number of
bundles in the system is always 2scale.

Recursive Specification
for Model Distribution

One of the obstacles we face in the further re-
finement of our models is handling the details

Figure 6. State diagram of a model realising concerted two-stage correction

70

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

pertaining to the scale of the system. Since the
model characterizes the system for some arbitrary
scale value (hence, it is a modelling parameter),
the proofs have to be done also for the case of
some arbitrary scale. The nature of the scaling
mechanism modelling is such that the properties
of a system of a given scale are naturally expressed
as an extension of the properties of a system of a
smaller scale. In our case the hypercube consists
of two hypercubes of the previous dimension.
The Event-B modelling language and the proof
semantics do not provide means for handling
complex recursive data types and, as the result,
the proofs are sometimes more difficult to prove
and models are less natural.

To overcome the problem, we propose to
change the point of view and to define a model
as a single step of a recursive process definition.
In other words, we fix the scale of the system and
build a model for the given scale by connecting two
similar systems of smaller scales. Importantly, the
definitions of model state transitions (the Event-B
events) are the same for the main system and for
its sub-systems. This makes it possible to approach
the model analysis described below as a step of
an induction procedure where scale is becoming
the induction parameter. The induction base is
a system of the zero scale with a single bundle.

The overall model is now a composition of two
models of the first refinement which introduced
variable scale. The composition process Box 4 is
a simple juxtaposition of model states and events
but with an addition of invariants linking the states
of the composed models.

An exception arises when any component is
in the exceptional state. So the abstract variables

few and many are glued by a disjunction of the
same component variables (see Box 5).

A gluing invariant for the variables scale is
more complex. The scale of the compound ma-
chine and of its components are the same in the
normal state (see Box 6).

According to invariant inv8 the exceptional
state of the whole system may be caused by the
exceptional state of the first component while the
second may be already be in a normal state. While
the scale of the first component is still less than
that of the second one (the first component recon-
figuration lags behind the second one), invariant
inv11 defines the scale of the system to be equal
to the scale of the smaller component (see Box
7). Other three invariants define the scale of the
whole system in similar cases.

Initially, both components are in the normal
state.

event INITIALISATION
then
few1, many1, scale1:= FALSE, FALSE, 0
few2, many2, scale2:= FALSE, FALSE, 0
end

The underflow1 event happens when the first
component detects a too small bundle before the

Box 3.

axm3 CHILD1 ∈ BUNDLE ––> BUNDLE
axm4 CHILD2 ∈ BUNDLE ––> BUNDLE
axm5 ∀ b . b ∈ BUNDLE => CHILD1(b) ≠ CHILD2(b)
axm6 ∀ b . b ∈ BUNDLE => SCALE(CHILD1(b)) = SCALE(CHILD2(b))
axm7 ∀ b . b ∈ BUNDLE => SCALE(CHILD1(b)) ≠ SCALE(b) + 1
axm8 (CHILD1 U CHILD2)~ ∈ BUNDLE \ {ROOT} ––> BUNDLE

Box 4.

inv1 few1 = FALSE \/ many1 = FALSE
inv2 few2 = FALSE \/ many2 = FALSE
inv3 scale1 ∈ ℕ
inv4 scale2 ∈ ℕ
inv5 scale1 = 0 => few1 = FALSE
inv6 scale2 = 0 => few2 = FALSE

71

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

second component. The merge1 event merges
the bundles. The overflow1 and split1 events
are similar. The second component has the same
four events.

event underflow1 refines underflow
where
few1 = FALSE
many1 = FALSE
few2 = FALSE
many2 = FALSE
scale1 > 0
then
few1 := TRUE
end
event merge1 refines merge
where
few1 = TRUE
few2 = FALSE
scale2 = scale1 – 1
then
few1 := FALSE
scale1 := scale1 – 1
end

Other new events are omitted due to space
limitations.

RELATED WORKS

The dynamic function that distributes tasks across
agents (see the System Model section above) is
realised by implementing a topology connecting
agents and routing tasks. Two levels of abstraction
will be introduced here.

The first one groups agents into bundles to en-
sure reliability. If the state of a bundle is changed,
its agents have to communicate to quickly move
to a consistent state. A bundle also needs to be
partition-tolerant (Gilbert, 2002). Therefore, a
fully connected topology is optimal for connecting
agents in a bundle. This tends to be expensive, but
because of the limited bundle size in our case, the
cost of a fully connected topology is acceptable.

The second one connects bundles to ensure an
efficient routing of tasks. Here efficiency means
that bundles are directly connected to few neigh-
bours, and that the distance between any pair of
bundles is small.

Box 5.

inv7 few = TRUE <=> few1 = TRUE \/ few2 = TRUE
inv8 many = TRUE <=> many1 = TRUE \/ many2 = TRUE

Box 7.

inv11 many1 = TRUE /\ many2 = FALSE /\ scale2 = scale1 + 1 => scale1 = scale
inv12 many2 = TRUE /\ many1 = FALSE /\ scale1 = scale2 + 1 => scale2 = scale
inv13 few1 = TRUE /\ few2 = FALSE /\ scale2 = scale1 – 1 => scale1 = scale
inv14 few2 = TRUE /\ few1 = FALSE /\ scale1 = scale2 – 1 => scale2 = scale

Box 6.

inv9 few1 = FALSE /\ many1 = FALSE /\ few2 = FALSE /\ many2 = FALSE => scale1 = scale
inv10 few1 = FALSE /\ many1 = FALSE /\ few2 = FALSE /\ many2 = FALSE => scale2 = scale

72

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

We distinguish two kinds of topologies sup-
porting effective routing: regular and irregular.
The regular topology can be analytically expressed
in design time, while the irregular topology can
only be constrained in design time and reified
only in run time of the system. Obviously, regular
topologies are easier to verify formally.

One promising direction is the hypercube
(Schlosser, 2002) and cube-connected cycles
(Preparata & Vuillemin, 1981) topologies, mainly
thanks to their symmetry properties, which facili-
tate reasoning and scalability and provide shorter
communication paths (Fang et al, 2005). However,
supporting a highly symmetrical topology in a
dynamic environment such as ours requires ad-
ditional effort, including dealing with reliability
considerations. The disadvantage of the hypercube
design (Schlosser, 2002) is that in this case only
one agent is responsible for a hypercube vertex. If
this agent fails, some requests may be lost before
the system has a chance to discover the problem.
In other words, all these agents represent single
points of failure.

There is a large amount of research on irregu-
lar topologies that aims to distribute tasks across
agents in a probabilistic way (Stoica et al, 2001;
Rowstron & Druschel, 2001; Maymounkov &
Mazieres, 2002; Zhao et al, 2004). Because it is
based on distributed hash tables, it does not al-
low explicit reasoning about ensuring reliability
through fault tolerance or about introducing the
required level of redundancy. It is worth noticing,
however, that applying hash functions (Ratnasamy
et al, 2001) to routing tasks could be useful for
load balancing of bundles.

FUTURE WORK

Our work can be expanded in several directions.
One of them is allowing several agents to be

located on the same physical node. This will mean
that in the worst case all agents of a bundle reside
in the same single node. If the node fails, all the

bundle tasks are lost despite agent redundancy. To
resolve this problem, the bundle agents will need
to be automatically placed into different physical
nodes. A similar situation arises in ensuring coarse-
grained reliability, when agents of a bundle are
placed on distant server racks or even data centres.

Another direction is ensuring smoother scaling.
In our case exactly two bundles may be merged
or split. Therefore, the count of bundles in the
system is a power of 2. A further reification of
our design would be to consider using rational
values lower than 2 for scale factors. In this case,
for instance, two bundles will be split into three
and three bundles into four. The system will have
2, 3, 4, 6, 8, 12, 16 and so on bundles, which will
allow us to reduce the task traffic between bundles
while scaling.

A third direction is to design a balancing mecha-
nism and introduce it as the next refinement step.
In the current design we specify it very briefly in
the events fluctuate and prepare. This mechanism
needs to ensure that all bundles preserve a similar
size. This can be achieved by moving agents from
larger bundles to smaller ones.

The fourth, most challenging direction is to
generalize our formal approach to support ir-
regular topologies. Such topologies are promising
because they require fewer resources to maintain
a high symmetry. Therefore, in theory irregular
topologies will be more efficient.

CONCLUSION

The main contribution of our work is the formal
development, by refinement, of large-scale dy-
namically reconfigurable multi-agent systems.
This development meets the reliability and scal-
ability requirements while ensuring the overall
system correctness. In this development groups of
replicated agents (so-called bundles) are explicitly
defined, starting at a certain abstraction level, for
reasoning about reliability. One critical aspect of
the system is that a bundle cannot be allowed to

73

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

become too small, as the system may not be able
to fulfil its obligations to its environment in that
case. To tackle this, bundles that become small are
merged with others. The merging of a local pair
of bundles initiates a global merging process that
halves the bundle total. Similarly, when a bundle
has too many agents, all the bundles are split at
once. Such design scales well to accommodate
large numbers of bundles (and thus agents). In fact,
this design is an implementation of a hypercube
topology to connect bundles and route tasks.

We started our formal development from
requirement specifications, developing two
models of the system to explore two different
design approaches. One of them relies on as a
straightforward solution to how bundles are to
be merged and split. Another one recursively
decomposes the entire system into two com-
ponents with an interface similar to that of the
whole. To simplify the model development, we
rely on a number of assumptions about bundle
states, bundle availability and the properties of
the medium connecting bundles. While this is a
typical approach to modelling a distributed system,
we do realize that unless these assumptions are
relaxed, it may not be possible to realise such a
system in practice (Gilbert, 2002). Our plan is to
continue the development to bring it closer to an
implementable program.

ACKNOWLEDGMENT

A. Iliasov and A. Romanovsky are supported by
the FP6 ICT DEPLOY Integrated Project and by
the EPSRC/UK TrAmS Platform Grant.

REFERENCES

Abrial, J.-R. (1996). The B-book: Assigning pro-
grams to meanings. New York, NY: Cambridge Uni-
versity Press. doi:10.1017/CBO9780511624162

Abrial, J.-R. (2010). Modeling in event-B: System
and software engineering. New York, NY: Cam-
bridge University Press.

Abrial, J.-R., & Metayer, L. V. (Eds.). (2005).
Rodin deliverable D7: Event B language. (Rodin
project - IST-511599). UK: School of Computing
Science, Newcastle University.

Bayer, R., & McCreight, E. (1972). Organization
and maintenance of large ordered indexes. [Ber-
lin, Germany: Springer.]. Acta Informatica, 1(3),
173–189. doi:10.1007/BF00288683

Colquhoun, J., & Watson, P. (2010). A P2P database
server based on BitTorrent (Tech. Rep. Series No.
CS-TR-1183). Newcastle, UK: Newcastle Univer-
sity, School of Computing Science.

Fang, J.-F., Lee, C.-M., Yen, E.-Y., Chen, R.-X., &
Feng, Y.-C. (2005). Novel broadcasting schemes
on cube-connected cycles. 2005 IEEE Pacific Rim
Conference on Communications, Computers and
Signal Processing (pp. 629-632).

Gilbert, S., & Lynch, N. (2002). Brewer’s con-
jecture and the feasibility of consistent, avail-
able, partition-tolerant Web services. [New York,
NY: ACM.]. ACM SIGACT News, 33(2), 51–59.
doi:10.1145/564585.564601

Maymounkov, P., & Mazieres, D. (2002). Kadem-
lia: A peer-to-peer Information System based on
the XOR metric. In Peer-to-Peer Systems . In
Lecture Notes in Computer Science (Vol. 2429,
pp. 53–65). Berlin, Germany: Springer.

Preparata, F. P., & Vuillemin, J. (1981). The
cube-connected cycles: A versatile network for
parallel computation. [New York, NY: ACM.].
Communications of the ACM, 24(5), 300–309.
doi:10.1145/358645.358660

Ratnasamy, S., Francis, P., Handley, M., Karp,
R., & Shenker, S. (2001). A scalable content-
addressable network. ACM SIGCOMM 2001.
Retrieved April 3, 2010, from http://berkeley.
intel-research.net /sylvia/cans.pdf

74

Formal Stepwise Development of Scalable and Reliable Multiagent Systems

Rowstron, A., & Druschel, P. (2001). Pastry:
Scalable, decentralized object location and rout-
ing for large-scale peer-to-peer systems. IFIP/
ACM International Conference on Distributed
Systems Platforms (Middleware) (pp. 329-350).
Heidelberg, Germany: Springer.

Schlosser, M., Sintek, M., Decker, S., & Nejdl, W.
(2002). HyperCuP — Hypercubes, ontologies, and
efficient search on peer-to-peer networks. In G.
Moro & M. Koubarakis (Ed.), First International
Workshop on Agents and Peer-to-Peer Computing,
Vol. 2530 of Lecture Notes in Computer Science
(pp. 112–124). Berlin, Germany: Springer.

Stoica, I., Morris, R., Karger, D., Kaashoek, M.
F., & Balakrishnan, H. (2001). Chord: A scalable
peer-to-peer lookup service for Internet applica-
tions. Proceedings of ACM SIGCOMM ‘01 (pp.
149-160). San Diego, CA, USA.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C.,
Joseph, A. D., & Kubiatowicz, J. D. (2004). Tap-
estry: A resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in
Communications: Special Issue on Recent Ad-
vances in Service Overlay Network, 22(1), 41–53.

KEY TERMS AND DEFINITIONS

B Method: A tool-supported formal method
based around the Abstract Machine Notation,
used in the development of computer software.

Formal Specification: Is a mathematical
description of software or hardware that may be
used to develop an implementation.

Mobile Agents: A mobile agent is a com-
position of computer software and data which
is able to migrate from one location to another
autonomously and continue its execution on the
destination location.

Multi-Agent Systems: A multi-agent system is
a system composed of multiple interacting agents.

Program Refinement: The verifiable trans-
formation of an abstract (high-level) formal
specification into a concrete (low-level) execut-
able program. Stepwise refinement allows this
process to be done in stages.

Redundancy: The provision of multiple
interchangeable components to perform a single
function in order to cope with failures and errors.

Reliability: The ability of a system or a com-
ponent to perform its required functions under
stated conditions for a specified period of time.

Scalability: A desirable property of a system
which indicates its ability to either handle grow-
ing amounts of work in a graceful manner or to
be enlarged.

