
Generating High-Level Event-B System
Models from KAOS Requirements Models

Christophe Ponsard* — Xavier Devroey**

* Centre d’Excellence en Technologies de l’Information et de la Communication
rue des frères Wright 29/3, B-6041 Gosselies, Belgique - cp@cetic.be

** Facultés Universitaires Notre Dame de la Paix, Faculté d’informatique
rue Grandgagnage 21, B-5000 Namur, Belgique - xavier.devroey@gmail.com

ABSTRACT. Model-driven engineering (MDE) generally starts from system design model. In this
paper, we show how MDE can be extended to the requirements level expressed in requirements
models (in KAOS) and be linked with a formal design language (in Event-B). The central idea
is to map Goal-Oriented agents to a hierarchy of Event-B machines. A design process is pro-
posed to decompose a system level agent/machine into finer grained agent/machines based on
their ability to control specific piece of information. The approach is semi-automated and tool
supported by an Eclipse plug-in connecting the KAOS/Objectiver tool and the Event-B/Rodin
tools. The benefits and limits of the approach on the resulting model quality are highlighted on
a non-trivial example. Alternative approaches developed by others are also discussed.

RÉSUMÉ. L’ingénierie dirigée par les modèles (IDM) commence généralement au stade de
l’architecture système. Dans cet article, nous montrons comment l’IDM peut être étendue au
stade des exigences sur la base d’un modèle d’exigences (en KAOS) avec pour objectif de réa-
liser le lien avec un langage de conception formel (en Event-B). L’idée centrale est de mettre
en correspondance des agents orientés-buts avec des hiérarchies de décomposition et raffi-
nement de machines Event-B. Le processus de conception proposé consiste à décomposer les
agent/machine de niveau système en agent/machines de granularité de plus en plus fine sur base
de leur capacité de contrôler des informations spécifiques. L’approche est semi-automatisée et
supportée par un plug-in Eclipse réalisant la connexion entre l’outil Objectiver/KAOS et la
plateforme Rodin/Event-B. Les bénéfices et limites de l’approche au niveau du modèle résultant
sont discutés et illustré sur un exemple non-trivial. Des approches alternatives sont également
abordées et comparées.

KEYWORDS: Requirements Engineering, Model-Driven Engineering, KAOS, Event-B, Rodin, Ob-
jectiver

MOTS-CLÉS : Ingénierie des exigences, ingénierie dirigée par les modèles, KAOS, Event-B, Rodin,
Objectiver

1. Introduction

Systematic software development proceeds through a number of phases organ-
ised in some lifecycle. Each phase is the producer of a number of artefacts used
by later phase, e.g. requirements documents, architecture specifications, tests plans,
etc. Model-driven engineering (MDE) enables a systematically interconnection of
those artefacts by providing underlying (meta)model to each of them and techniques
to transform one artefact into another.

Most of the current MDE chains actually start from the design phase. One reason is
that the earlier phase, the Requirements Engineering (RE) phase is generally quite in-
formal and managed using structured text documents or a requirements database. With
such techniques, only weak traceability is possible. Starting earlier in the process is
however interesting because it is proven that the RE phase is the most critical. Intro-
ducing richer model at this phase improves the quality of the requirements. Specific
Goal-Oriented Requirements Engineering methods such as KAOS [22] and i*/Tropos
[8] have been developed to this end. A few extensions to existing frameworks are also
appearing (e.g. in SysML). These methodologies can be interconnected to system
design models.

The purpose of this paper is to explore the interconnection of requirements mod-
els and the system-level design. The KAOS language is used as good representative
of requirements models. For system modelling, Event-B [1] is used because of its
simplicity, formal semantics and the availability of an industrial model-driven toolset
called Rodin [20]. Our main requirements for this mapping are the following: Trace-
ability, Modularity, Scalability, and Automation Level.

In order to demonstrate out derivation methodology from goals to Event-B ma-
chine, we consider the example of a mine sump as illustrated in Figure 1. In this
system, water is collected into the sump from the mine and the level of water is kept
within bounds by operating a pump. Additionally, a bell alarm must be immediately
sounded if methane is detected in the sump and the pump must be shut down, to avoid
explosion due to potential sparks from the pump.

Figure 1. The Mine Pump System inspired from [13]

The paper is structured as follows. Section 2 and 3 respectively give some back-
ground on the requirements modelling and system modelling languages used, i.e.
KAOS and Event-B. Section 4 details our transformation process and illustrates it
on our running example. Section 5 highlights the implementation. Related work is
presented and compared to our work in section 6. Finally the last section summarises
our work and discusses some perspectives.

2. Background on Goal-Oriented Requirements Engineering

Requirements engineering involves elicitation, analysis and specification of the
requirements of a system. Clear understanding of these requirements serves as a foun-
dation for assessing and managing the subsequent development phases. Goal-oriented
requirements engineering methodologies, such as KAOS [22] and i∗/Tropos [8], focus
on justifying why a system is needed through the specification of its high-level goals.
These goals drive the requirements elaboration process, which results in the definition
of domain-specific requirements that can be implemented by the system components
under development.

A goal is a prescriptive statement of intent about some (existing or to-be) sys-
tem whose satisfaction generally requires the cooperation of some of the agents that
constitute the system. Goals are optionally formalized in a real-time temporal logic
[12]. They are depicted using (blue) parallelograms. Agents are active components,
such as humans, devices, legacy or eventual software’s components, that play some
role towards goal satisfaction. Therefore, some agents define the software (depicted
as hexagons) whereas the others define its environment (depicted as hexagons with a
little person in it). Goals may be functional or non-functional in nature. Unlike goals,
domain properties are descriptive statements about the environment (physical laws,
organizational policies, etc.), they are depicted as (yellow) parallelograms which are
never connected to any agent.

Goals may be organised in an AND-refinement hierarchy [22], where higher-level
goals are generally strategic and coarse-grained whereas lower-level goals are tech-
nical and fine-grained. A goal is related to its sub-goals through AND-links. AND-
refinement are represented by (yellow) circles between goals. They could additionally
include domain properties or environment assumptions. This means that satisfying all
the sub-goals in the refinement is a sufficient condition in the domain for satisfying the
goal. Goal refinement ends when every sub-goal is realisable by some agent assigned
to it. Goals are called requirements when they are assigned to the software to-be
and are graphically differentiated from other goals by thick borders. Assignments are
depicted as a (red) node connecting a requirement and an agent.

Figure 2 shows a simplified goal model for our proposed mine sump system. The
overall goal of the system (shown at the top of the diagram) is to keep the mine safe
and the main refinement strategy is to avoid a number of obstacles to safety (flooding,
explosion) or to the correct operation (damaged pump). Further refining of these goals

yields four low level requirements under the responsibility of the system (to specify
when the pump should be started/stopped and the alarm triggered), a domain property
(water level) and an expectation (about how miners should respond when the alarm
goes off).

Figure 2. Goal/Obstacle Model of the Mine Sump System

Formally, goals at all levels can be represented in real-time linear temporal logic,
which in addition to the usual first order logic operators (∧ ∨ ¬ →↔), it provides a
number of temporal operators for the future: ◦ (next), 2 (always), 3 (eventually) and
3≤d (bounded eventually). We do not consider past LTL in the scope of this paper.
Furthermore, we write P ⇒ Q to mean 2(P → Q).

For sake of simplicity and because mapping of class-like model on Event-B has
already been addressed [21], the domain is not structured in a complex object model
but simply represented by five attributes of the mine system: highWater, lowWater,
pump, methane and bell. Note that highWater and lowWater cannot hold at the
same time. Based on this vocabulary, the PumpStoppedWHENGasDetected can be
formalised as follows:

Requirement Achieve[PumpStoppedWHENGasDetected]
Refines Avoid[Explosion]
FormalDef (∀m : Mine) m.methane ⇒ ◦m.pump = Off

The final model is the agent model showing the flow of information between
agents. A flow between two agents requires the sender and receiver to control and

monitor the considered information, respectively. Figure 3 shows the agent model for
our mine sump system. Note that a piece of information can only be controlled by a
single agent.

Figure 3. Agent Model of the Mine Sump System

It is worth noting that a number of verifications can already be addressed at this
level: goal and obstacle refinements, conflicts resolution. Some tool support is avail-
able [18], mostly based on model-checking. The Event-B mapping will bridge the
gap with the next development step but will also give access to a larger set of tools,
including proof-based ones.

3. System Design with Event-B

Event-B is a specification language for developing discrete systems [1]. Behavioural
aspects of Event-B models are expressed by means of machines. A machine is defined
in terms of a global state consisting of a set of variables, and some events that cause
the state to change by updating the values of the variables as defined by the generalised
substitution of the event. Events are guarded by a condition, which when satisfied im-
plies that the event is permitted to execute by applying its generalised substitution in
the current state of the machine. Event-B also incorporates a refinement methodol-
ogy, which can be used by software architects to incrementally develop a model of
a system starting from the initial most abstract specification and following gradually
through layers of detail until the model is close to the implementation. Invariants de-
noting desirable behaviour can be specified at each layer of detail as well as across
different layers.

In Event-B, an event is defined by a name e, a guard G, expressed as a first-order
logical assertion on the state variables, and a substitution S, that updates the values of
the state variables. It is syntactically written: ev ::= EVENT e WHENG THEN S END .

4. Derivation Process

Starting from an operational KAOS specification, the aim of the derivation process
is to produce an abstract Event-B model of the system. Our goal is not to produce a

complete and finalised model but rather to produce a sound structure composed of
a set of contexts and machines. For this purpose we only consider the semi-formal
structure of the requirements model which is always present while the formal level
is generally optional and confined to specific critical (part of) systems. Formal re-
quirements definition could however also be exploited to drive further refinement as
discussed later.

Figure 4. Overview of the transformation

The global process is shown in Figure 4. It is composed of the following steps
which are detailed in the rest of this section:

1) starting from the KAOS object model, create an initial Event-B machine and an
initial Event-B context to represent the data and general update events.

2) decompose the initial machine using state base decomposition to assign an
Event-B machine to each KAOS agent.

3) for each agent machine, derive in a sub-machine refining the agent machine, the
events from the requirements/expectations assigned to corresponding KAOS agent.

Throughout the whole process, rich traceability links are generated between the
KAOS and Event models. They enable a fine-grained and semantically meaningful
control of the impact change in both directions.

4.1. Derivation of Event-B Context and Machine from KAOS Object Model

In KAOS, every concept referenced in a goal definition is defined in the object
model, which is an Entity-Relationship diagrams [15]. Event-B relies on set theory
to define and manipulate data. Transforming an object model into the set-notation of
Event-B is like transforming a classical object into relational mapping. It is already
addressed by the UML-B plug-in of Rodin [21]. This mapping is summarised in
Table 1, for example entities (classes) are mapped to sets, inclusion is used to model
specialisation, attributes to injections to name a few.

Table 1. UML-B to Even-B Mapping (taken from [7])

The result applied to our case study is as follows:

CONTEXT MineContext
SETS

ONOFF; LEVEL; MINE_SET
CONSTANTS

ON; OFF; LOW; MEDIUM; HIGH; M
AXIOMS
axm1 : partition(ONOFF;{ON};{OFF})
axm2 : partition(LEVEL;{LOW};{MED};{HIGH})
axm3 : partition(MINE_SET;{M})
END

MACHINE MinePump
SEES MineContext
VARIABLES

MINE; pump; bell;
methane; waterLevel

INVARIANTS
inv1 : MINE 2 P(MINE_SET)
inv2 : pump 2 MINE !ONOFF
inv3 : bell 2 MINE !BOOL
inv4 : methane 2 MINE !BOOL
inv5 : waterLevel 2 MINE !LEVEL

4.2. Decomposition of the Initial Model According to Agents

The main structuring mechanism of Event-B machine which drives the proof pro-
cess is refinement. However managing large system requires other structuring mech-
anisms to break systems into subsystems. More recently, two decomposition mecha-
nisms have been added to Event-B [17]:

– Event-Based decomposition encapsulates the variables in different machines
together with the events or parts of events that concern those variables. A variable
will thus not appear in more than one machine. The events that have been split will
need to be synchronized in order to ensure the functionalities of the original machine.
The synchronization will take place by an exchange of inputs and outputs between the
synchronized machine’s events.

– State-Based decomposition splits the variables in different machines. A vari-
able may thus be present in more than one machine. Such a variable is called shared
variables. One of the machines will be the one which effectively updates a shared
variable. To keep the other machines synchronised, a special event, called external
event, will be added to those other machines

The general idea is to propose an early decomposition to break an initial machine
into smaller pieces pertinent with the KAOS agents. The process is to derive separated
machines with the attributes monitored and controlled by the agent. The State-Based
decomposition is applied after the creation of the initial machine and context from
the KAOS object model with one agent machine per KAOS agent. The reason of this
choice is simple, the KAOS meta-model states that an attribute or association cannot
be controlled by more than one agent [10, 22]. So it means that in Event-B, a shared
variable will be updated in at most one agent machine, while an external event may be
placed with each variable coming from the KAOS object model in zero, one or more
other agent machines.

The following algorithm gives the different agents machines decomposing an ini-
tial machine InitM with an initial context InitC according to a given KAOS re-
sponsibility model:

FOR each KAOS agent ag:
Create an agent machine AgM
Declare the InitC context as seen by the AgM machine

FOREACH element elem of the KAOS object model monitored but not controlled by ag:
Copy the variables of InitM corresponding to this elem in AgM and mark those variables as shared
Copy the update event of InitM corresponding to this elem in AgM and mark this event as external

FOREACH element elem of the KAOS object model controlled by ag
Copy the variables of InitM corresponding to this elem in AgM and mark those variables as shared
Copy the update event of InitM corresponding to this elem in AgM and mark this event as internal

FOREACH invariant Inv of InitM:
IF Inv uses only variables present in AgM,

i.e. variables bound to an element of the KAOS object model controlled or monitored by ag,
THEN copy Inv in AgM

The result of the decomposition is shown in the Figure 5. Its structure is the fol-

lowing:

– a top level MinePump and its associated MineContext context defining all
the required sets. The MinePump machine is totally unconstrained with respect to
the requirements.

– four decomposed machines using state-based decomposition. They show the
state variable monitored and controlled by the agent mapped on that machine, the
constrained event reflecting the controlled variables such as updatePump for the
PumpController and the external events for synchronizing with other machines (re-
flecting the monitored variables).

Figure 5. Result of the Decomposition Step

4.3. Implementing Requirements and Expectations Assigned to an Agent

At this point, each agent machine has now a list of shared variables with invariants
related to those variables and a list of events representing the evolution in time of those
variables. Those events are partitioned into internal events for the variables linked to
KAOS elements controlled by the KAOS agent and external events for the KAOS
elements monitored by the KAOS agent.

It is now time to cope with the requirements expressed in the KAOS model. Those
will be directly formalised into Event-B (as not formalised earlier) and will be trans-

lated into specific model elements following the way they are attached to the require-
ments model.

– Maintain requirements will give rise to invariants on the machine under the
responsibility of the corresponding agent. This will in turn generate Proof-Obligation
on the machine events, i.e. strengthening of some Event guards

– Achieve requirements require more specific modelling to capture progress in-
formation (time modelling) and is not directly supported.

Higher-level goals can also be taken into account:

– Maintain goals can translate into system level invariants on the global state ma-
chine and trigger a number of proof-obligations through the whole model structure.
This is the equivalent of the goal-decomposition proof supported by formal require-
ments tools[18].

– Achieve goals can translate into temporal assertions to be model-checked by a
tool like ProB [11].

To introduce KAOS requirements for one agent machine, we will first create a
refinement of the agent machine. Every requirement and expectation under the re-
sponsibility of the KAOS agent may be translated by zero one or more variable, zero
one or more invariants and/or zero one or more events in this sub-machine. For in-
stance, a requirement saying that the agent has to keep an error rate value under a
certain level may be translated as an invariant in Event-B. Another requirement say-
ing that the agent has to update a value of the system according to a value coming
from the environment may be translated as an event in Event-B.

If the requirement updates the value of an element elem of the KAOS object
model, then the events evts implementing the requirement/expectation will refine
the update event declared in the agent machine and associated to elem. So, every
event in the sub-machine updating a variable declared in the parent agent machine
will refine the update event that modifies the value of this variable in the parent agent
machine. We assume here that the KAOS model is consistent and that the refined
events are all internal events, meaning that the KAOS element they are coming from
is effectively controlled by the KAOS agent linked to the refined agent machine.

// Internal Event derived from requirement
// Achieve[Pump Started WHEN HighWater EXPT if Gas Detected]
EVENT high_water_detected
REFINES updatePump
ANY m
WHERE
grd1: m in MINE
grd2: waterLevel(m) = HIGH
grd3: methane(m) = FALSE
grd4: pump(m) = OFF

THEN
act1: pump(m) := ON

For example, the above piece of Event-B presents the implementation of the re-
quirements under the responsibility of the PumpController agent. In this refine-
ment, the updatePump internal event is refined in a more concrete event called
high_water _detected in order to enforce the requirement Achieve[Pump Started
WHEN HighWater EXPT if Gas Detected]. Other requirements are processed simi-
larly.

5. Implementation

Both the Objectiver tool for KAOS [19] and the Rodin tool for Event-B [20] have
published their meta-model and have also proposed their implementation by using
the Eclipse Modelling Framework (EMF). It is possible to use model transformation
techniques on the basis of these models to define how the KAOS model translates into
the Event-B model.

The transformation has been implemented in the ATLAS Transformation Lan-
guage (ATL) [6]. It is a model-to-model transformation language based on the OMG’s
QVT specification [16]. It uses both declarative and imperative constructs. Declarative
constructs are preferred but imperative ones are available to ease complex transforma-
tions. An ATL transformation program will therefore correspond to the set of rules
defining how source elements are matched to target elements with the initialization of
these target elements [9]. The model transformation flow is shown in the Figure 6.

Figure 6. ATL Transformation Flow

The transformation is composed of about 10 rules covering most of the KAOS
meta-model. Example of an important transformation rule is described here. It shows
how a KAOS agent is mapped onto an Event-B machine based on the algorithm de-
scribed in the section 4.2. An important aspect is that traceability links (derivedFromAgent
and derivedMachine) are also generated and are available for managing the model

evolution (e.g. enabling impact analysis of changes or possibly an incremental syn-
chronisation, in both directions).

-- An agent is translated into a machine
-- decomposing the initial machine.
rule AgentRule{

from
agent : KAOS!Agent

to
machine : SIMPLEEVENTB!Machine (
id <- agent.name+’_MACHINE’,
name <- agent.name,
comment <- ’Create from the KAOS Agent :’+agent.name,
variables <- Set{},
invariants <- Set{},
variants <- Set{},
events <- Set{},
refines <- Set{},
refinedBy <- Set{},
views <- Set{},
decomposedIn <- Set{},
recomposedIn <- Set{},
derivedFromAgent <- link,
decomposing <- self.initialDecomp),

link : SIMPLEEVENTB!AgentDerivation(
derivedMachine <- machine,
agentId <- agent.id,
agentName <- agent.name

)

do{
self.project.traces
<- self.project.traces.including(link);

self.project.elements
<- self.project.elements.including(machine);

self.initialDecomp.decompMachines
<- self.initialDecomp.decompMachines.including(machine);

}
}

Besides Rodin, the implementation also relies on the UML-B plug-in to manage
the data mapping (KAOS object model) and the decomposition plug-in to manage the
model structure.

In its actual state, the prototype is limited to the first and second steps of our
approach. The initial context, the initial machine and its decomposition in agent
machines are automatically derived from a KAOS model. Step three, where agent

machines are refined and requirements/expectations are implemented, has to be done
manually.

The prototype available as Eclipse plug-in. Binaries and sources are download-
able from http://www.cetic.be/IMG/zip/KAOS2Event-B.zip. It also
includes the full ATL model transformation file.

6. Related Work

Other approaches have been designed to address the problem to bridge the gap be-
tween RE models and formal specifications. Different groups have explored the con-
nection of the pair of languages considered (KAOS with Event-B) either in a generic
or more specific context (such as safety or security).

Matoussi describes a process to transform a KAOS goal model into an Event-B
specification [14]. This process takes as input a KAOS goal model that is not made
operational and produces an Event-B model corresponding to a specification that sat-
isfies the requirements described in the input model. This process is based and limited
to a few refinement patterns (milestone, case-based...). The idea is that each refine-
ment pattern used in the KAOS model will correspond to a refinement step in the
Event-B model.

To derive an Event-B model from a KAOS model, Aziz propose to include in
Event-B the notion of triggered event [2]. This new notion will be used to translate
the next (◦) and bounded sooner-or-later (♦≤d) time operators used in the formal defi-
nition of requirements and expectations in KAOS, into Event-B events. The approach
is quite formal but does not address our scalability and modularity goals.

Finally De Landtsheer approach is based on the translation of linear temporal logic
formula expressed exclusively with past operators into an event-based security policy
[4]. The idea was essentially developed for the Polpa policy language but was partially
adapted to Event-B.

Table 2 compares the above approaches based on the requirements expressed in
the introduction of this paper.

Other requirements have also been explored. In [5], Formal Tropos is mapped
on business processes. In [3], agents modelling concurrent systems in a distributed
environment are transposed into Event-B machines.

7. Discussion and Conclusions

In this paper we proposed a model transformation from requirements models to
system design models. The transformation processed by mirroring the agent structure
into and Event-B model and also supports the requirements formalisation process. The
direct benefits are that quality requirements will results in better, easier to formalise

Criterion Matoussi Aziz De Landtsheer Our Approach
Traceability Possible for events Possible for trigger-

events
Possible for sets of
Event-B elements

Mandatory to ensure
consistency between
models

Modularity No, full re-generation
needed

No, full re-generation
needed

No, full re-generation
needed

Yes, traceabil-
ity mechanisms
avoid complete
re-generation

Incrementality Unidirectional, if in
the first phase

Unidirectional, a new
goal will give a new
trigger-event

Unidirectional, a new
formal definition will
give a new Event-B
elements set

Possibly bidirec-
tional, modifications
in one model may be
reflected in the other

Scalability Two machines,
constructed by refine-
ment

One machine One machine Initial decomposition

Automation Semi-automatic Automatic Automatic Semi-automatic
Restrictions Restricted to Imme-

diate Achieve goals
and milestone/or re-
finement patterns

Restricted to three
Achieve goal types

Goal must be for-
mally defined with
temporal past opera-
tors

No restriction on in-
put, but will need the
analyst’s skills

Table 2. Comparison of different approaches

and prove system models. The strong traceability through the model also allows the
analysts to easily identify and correct RE mistakes discovered in the design phase.

Although traceability mechanisms are provided, an important limitation is the ab-
sence of direct traceability links between KAOS requirements and Event-B elements.
Those are indirect through the relationships bindings requirements with agents and
their monitored/controlled information. At this point, we also did not make the choice
to formalise requirements because this formalisation is quite an overhead at require-
ments level and is partially redundant with the formal Event-B design language. There
are also potential semantic issues to address when trying to fully align the respective
formal semantics. Some critical properties could however benefit from early formali-
sation, especially using linear temporal logic which capture global system behaviour
that cannot be specified as such in Event-B, but could be verified using a model-
checker like ProB [11]. Our future work will explore this kind of extensions as well
as better automation/user interaction support and larger scale validation.

Acknowledgement

This work is funded by the European Commission under the EU project DEPLOY
(project reference number 214158). We thanks the anonymous reviewers and Syed
Naqvi for their helpful comments.

References

[1] Abrial J.-R., Modeling in Event-B: System and Software Engineering, Cambridge
University Press, first edition, June 2010.

[2] Aziz B., Arenas A., Bicarregui J., Ponsard C., Massonet P., “From Goal-Oriented
Requirements to Event-B Specifications”, The First NASA Formal Methods Sym-
posium (NFM 2009), April 2009.

[3] Ball E., “An Incremental Process for the Development of Multi-agent Systems in
Event-B”, PhD thesis, University of Southampton, August 2008.

[4] De Landtsheer R., Ponsard C., Massonet P., “Deriving Event-Based Usage Con-
trol Policies from Declarative Security Requirements Models”, Second Int. Work-
shop on Security in Model Driven Architecture, Univ. of Pierre et Marie Curie,
June 2010.

[5] Decreus K., Poels G., “Mapping semantically enriched Formal Tropos to business
process models”, Proceedings of the 2009 ACM symposium on Applied Comput-
ing, SAC ’09, New York, NY, USA, 2009, ACM, p. 371–376.

[6] Eclipse, “ATLAS Transformation Language”, http://www.eclipse.org/
m2m/.

[7] Event-B Wiki, “Event-B and Rodin Documentation Wiki”, http://wiki.
event-b.org.

[8] Fuxman A., Liu L., Mylopoulos J., Pistore M., Roveri M., Traverso P., “Speci-
fying and Analyzing Early Requirements in Tropos”, Requirements Engineering,
vol. 9, num. 2, 2004, p. 132–150, Springer-Verlag New York, Inc.

[9] Jouault F., Allilaire F., Bézivin J., Kurtev I., “ATL: A model transformation tool”,
Science of Computer Programming, vol. 72, num. 1-2, 2008, p. 31–39, Elsevier.

[10] Letier E., “Reasoning about Agents in Goal-Oriented Requirements Engineer-
ing”, PhD thesis, Université Catholique de Louvain, May 2001.

[11] Leuschel M., Butler M., “ProB: An Automated Analysis Toolset for the B
Method”, Journal Software Tools for Technology Transfer, vol. 10, num. 2, 2008,
p. 185–, Springer-Verlag.

[12] Manna Z., Pnueli A., The Reactive Behavior of Reactive and Concurrent System,
Springer-Verlag, 1992.

[13] Matai J., Real-Time Systems: Specification, Verification and Analysis, Prentice
Hall International, 1996.

[14] Matoussi A., “Expressing KAOS Goal Models with Event-B”, Proceedings of
Formal Methods 2009 Doctoral Symposium, Eindhoven, The Netherlands, Novem-
ber 2009, p. 60-67.

[15] OMG, “UML”, http://www.uml.org.

[16] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifica-
tion”, July 2007, v 1.0.

[17] Pascal C., Silva R., “Event-B Model Decomposition: A-style vs. B-style”, octo-
ber 2009.

[18] Ponsard C., Massonet P., Molderez J. F., Rifaut A., van Lamsweerde A., Van
H. T., “Early Verification and Validation of Mission Critical Systems”, Journal of
Formal Methods in System Design, vol. 30, num. 3, 2007.

[19] Respect-IT, “Objectiver”, http://www.objectiver.com.

[20] Rodin Open Source Project, “Rodin Event-B toolset”, http://
sourceforge.net/projects/rodin-b-sharp/.

[21] Snook C., Butler M., “UML-B and Event-B: an integration of languages and
tools”, The IASTED Int. Conf. on Software Engineering - SE2008, February 2008.

[22] van Lamsweerde A., Requirements Engineering: From System Goals to UML
Models to Software Specifications, Wiley, March 2009.

