AVECS'11

Proceedings of the

11th International Workshop
on Automated Verification
of Critical Systems

Newcastle
September 12 - 14, 2011

PREFACE

AVOCS, the workshop on Automated Verification of Critical Systems, is an annual
meeting that brings together researchers and practitioners to exchange new results on
tools and techniques relating to the verification of critical systems. Topics of interest
include all aspects of automated verification, including model checking, theorem prov-
ing, abstract interpretation and refinement; application areas include various types of
critical systems (safety-critical, security-critical, business-critical, performance-critical,
etc.). Contributions that describe different techniques or industrial case studies are
encouraged.

This volume contains the pre-proceedings of the 11th workshop on Automated Ver-
ification of Critical Systems that was hosted by Newcastle University and took place
during September 1214, 2011 in Newcastle upon Tyne, UK.

Previous AVOCS workshops were held at the University of Oxford (2001 and 2007),
the University of Birmingham (2002), the University of Southampton (2003), The Royal
Society in London (2004), the University of Warwick (2005), LORIA, Nancy (2006),
the University of Glasgow (2008), Gregynog (organized by Swansea University) and
Heinrich-Heine-Universitat Diisseldorf (2010). AVOCS 2012 will take place in Bamberg,
Germany.

AVOCS 2011 received 18 submissions (with authors from 13 countries) for Full Papers,
out of which 12 papers were selected for presentation at the workshop. Furthermore,
AVOCS received 11 submissions for Short Contributions out of which 8 were accepted
for presentation. The selection process was carried out by the Program Committee,
taking into account the originality, quality, and relevance of the material presented in
each submission. The selected preliminary Papers are included in this volume, together
with the contributions from the invited speakers Janet Barnes and Tom Maibaum. All
full papers will subsequently appear in an Electronic Communications of EASST.

We wish to thank all authors who submitted their papers to AVOCS 2011, Jodi
Hossbach for help with workshop organization, the Program Committee for its excellent
work and the reviewers who supported the Program Committee in the evaluation and
selection process.

We are grateful to the School of Computing Science at Newcastle University for hosting
the event and thank CSR, Formal Methods Europe and Microsoft for sponsoring AVOCS
2011. We also gratefully acknowledge the use of EasyChair, the conference management
system developed by Andrei Voronkov.

Jens Bendisposto

Cliff Jones

Michael Leuschel
Alexander Romanovsky

AVOCS 2011 Program Committee:

Jens Bendisposto (co-chair)
Antonio Casimiro

Michael Goldsmith

Tan Hayes

Cliff Jones (co-chair)
Michael Leuschel (co-chair)
Felix Loesch

Gerald Luettgen

Ursula Martin

Stefan Merz

Alice Miller

Markus Roggenbach
Alexander Romanovsky (co-chair)
Thomas Santen

Sebastian Wieczorek

Jim Woodcock

AVOCS 2011 Referees:

Names will be published in the final EASST Proceedings

Content

Janet Barnes
Experiences in the Industrial use of Formal Methods

Franz Weitl, Shin Nakajima
Integrated Model Checking of Static Structure and Dynamic Behavior using Temporal
Description Logics

Marco Bozzano, Alessandro Cimatti, Oleg Lisagor, Cristian Mattarei, Sergio Mover,
Marco Roveri, Stefano Tonetta
Symbolic Model Checking and Safety Assessment of Altarica models

Michael Jastram, Stefan Hallerstede, Lukas Ladenberger
Mixing Formal and Informal Model Elements for Tracing Requirements

Mohammad Reza Sarshogh, Michael Butler
Specification and refinement of discrete timing properties in Event-B

Nicolas Chausse, Helen Xu, Juergen Dingel, Karen Rudie
Combining Model Checking and Discrete-Event Supervisor Synthesis

Pieter Philippaerts, Frederic Vogels, Jan Smans, Bart Jacobs, Frank Piessens
The Belgian Electronic Identity Card: a Verification Case Study

Qiuzi Lu, Tianhua Xu, Tao Tang, Haifeng Wang, Yan Cao, Gengqin Chen
A Visualization Framework for the Modeling and Formal Analysis of a Computer Based
Interlocking System

Thai Son Hoang, Alexei Iliasov, Renato A Silva, Wei Wei
A Survey on Event-B Decomposition

Sabina Akhtar, Stephan Merz
Partial-Order Reduction for Verifying PLUSCAL-2 Algorithms

Sanaz Yeganefard, Michael Butler
Structuring Functional Requirements of Control Systems to Facilitate Refinement-based
Formalisation

Xiang Gan, Jori Dubrovin, Keijo Heljanko
A Symbolic Model Checking Approach to Verifying Satellite Onboard Software

Michael Fisher
Verifying Autonomous Systems

Lukas Ladenberger, Aryldo G Russo Jr.
Towards an automatic formal model generation and verification derived from a graphical
model

Yassin Chkouri, Jose Esteves, Elie Soubiran
Designing synchronous to asynchronous model translations for interlocking systems ver-
ification

Brijesh Dongol, Ian J. Hayes
Approximating idealised real-time specifications using time bands

Christophe Ponsard, Jean-Christophe Deprez, Renaud De Landtsheer
Is my Formal Method Tool Ready for the Industry?

Jan Tobias Miihlberg and Leo Freitas
Verifying FreeRTOS: from requirements to binary code

Marc Dragon, Andy Gimblett, Markus Roggenbach
A Simulator for Timed CSP

James Sharp, Helen Treharne and Steve Schneider
Assessing the Applicability of SVA in Analysing VHDL Models

Alexei Iliasov
Generation of certifiably correct programs from formal models

Eﬁ ECEASST

Experiences in the Industrial use of Formal Methods

Janet Barnes

janet.barnes @altran-praxis.com, http://www.altran-praxis.com/
Altran Praxis Ltd, 20 Manvers Street, Bath, UK.

Abstract: Altran Praxis has used formal methods within its high integrity develop-
ment approach, Correctness by Construction (CbyC), for a number of years. The
Tokeneer ID Station (TIS) developed for the US National Security Agency (NSA)
is one example of a development using formal methods and the CbyC approach.
This project used a number of rigorous techniques including formalisation of the
specification using the Z Notation, refinement of the specification to a formal de-
sign, software development in SPARK with proof of absence of run-time errors of
the software and proof of system properties. The project has stood up well to the
intense scrutiny it has been subject to since it became available to the wider commu-
nity in 2008, with only five errors being found. Despite the general success of the
approach there are challenges to using formal methods in an industrial context. By
looking at a number of key properties that affect the success of deployment of tools
and techniques in industry we attempt to put the challenges of industrial deployment
of formal methods into perspective.

Keywords: Correctness by Construction, Formal Methods, SPARK, Tokeneer, Z

1 Introduction

The application of formal methods to the development of software has long been considered by
industry as niche; only applicable to the development of core functions in particularly critical
domains, where safety or security is paramount. Industry in general perceives the application of
formal methods to be prohibitive for a number of reasons: cost, familiarity and maturity often
being cited [Hal90].

Altran Praxis has applied formal methods in a number of its development projects [Hal96,
HCO02, KHCPOO, TIS]. This paper looks at the way that Altran Praxis approaches software
development via its Correctness by Construction approach [Ame06], considering how formal
methods support the fundamental goals of the approach. It then explores the Tokeneer project as
an example of a CbyC implementation where formal methods were adopted at every point in the
lifecycle. Taking the view of an experienced industrial user of formal methods this paper takes a
critical look at some of the criteria that impact the actual and perceived success of the adoption
of formal methods. In conclusion, this paper questions whether industry is in a position to drop
long held prejudices that Formal Methods are too challenging to use in practice and considers
what changes are needed to fully overcome such prejudices.

1/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

2 Correctness by Construction

Over 20 years Altran Praxis has distilled the essence of best practice, captured from observation
and experiences, into a principle of software development referred to as Correctness by Construc-
tion (CbyC). The key philosophy of CbyC is to avoid the introduction of errors; but where errors
are injected, to find and remove them as early as possible; and to gather certification evidence
efficiently as a natural by-product of the process.

2.1

Applying Correctness by Construction

Correctness by Construction does not prescribe particular tools or techniques in order to achieve
its aims. However, it does propose a number of characteristics to be applied across the develop-
ment lifecycle.

Use unambiguous notations. Ambiguity makes it difficult to determine whether or not
errors exist and misinterpretation is a source of error introduction. Using a notation that
has a well defined and well understood semantics removes ambiguity. Such notations often
benefit from tool support, which can assist in verification.

Take small steps. By taking small semantic steps between stages of the lifecycle it is easy
to demonstrate that one development stage has been correctly refined from its predecessor.

Use appropriate notations. Accept that a given notation may be powerful at expressing
certain system properties but clumsy for expressing others. The aim is to use notations
that allow the system properties or behaviour to be expressed simply. Don’t attempt to use
a single notation if this results in key system properties being difficult to express. Awk-
ward expressions can be difficult to interpret or verify. Similarly, use the most appropriate
verification techniques at each stage. Expect the outputs at each stage in the lifecycle to
be clear and simple to understand.

Don’t repeat information. Each stage of the lifecycle should have a well defined purpose
and focus on the new detail being introduced rather than repeat information. It is then clear
what information has been introduced and what needs to be verified — rather than wasting
energy verifying that information has been correctly copied from one source to another.
Duplication can also be expensive during maintenance as it may become inconsistent and
thus a source of error and confusion.

Check each stage before progressing. Each design step should be verified as soon as
possible to eliminate errors introduced in that stage. Effective reviews are crucial; reviews
should clearly identify what an artefact is being reviewed against and the purpose of the
review. Where review checks can be automated — such as coding style checks — then
tool support should be used early.

Justify decisions. Document the justifications for why design decisions were made, why
they are appropriate, and any arguments demonstrating correctness of the decision. Such
justifications support future analysis — especially in the event of implementing changes to

Proc.

AVoCS 2011 2/15

Eﬁ ECEASST

a system, but more importantly the process of documenting what you do is highly effective
at driving out errors during development.

e Solve difficult problems first. Manage development risks by solving difficult problems
early. This also drives down the level of internal change that might otherwise be introduced
if risks mature later.

Many of the approaches advocated here also contribute to the provision of strong verification
evidence that, if collected appropriately, can contribute positively to the construction of a cer-
tification argument, demonstrating that the system has been built respecting safety or security
needs. None of the concepts are new or radical; if anything it is the careful application of sound
engineering practices using understood tools and techniques that has made this approach suc-
cessful.

2.2 Using formal methods within the CbyC framework

The CbyC approach is particularly powerful when instantiated with formal methods and ap-
proaches. Formal methods have precise semantics and often have an associated language of
reasoning that enables the user to unequivocally demonstrate the truth or otherwise of a property.
Specification languages such as the Z Notation [Spi85] benefit from a richness of notation that
allow the application to be described in terms of real world entities and relationships; Z supports
both the concepts of refinement and encapsulation. In Z, data and operation refinement allow an
abstract specification to be refined toward a concrete, executable realisation. Z’s schema notation
allows detail to be hidden except at the point of introduction and makes complex specifications
manageable, giving focus to the aspects of interest at a given point in a specification and al-
lowing the problem to be decomposed into small, manageable fragments. Notations such as CSP
[Hoa85] are powerful for modelling and reasoning about concurrency problems, especially when
used in conjunction with model checkers such as FDR [FDR]. SPARK is a subset of the Ada
programming language enhanced with contracts that has a formal semantics and is supported by
a suite of tools: the Examiner, Simplifier and Proof Checker, that allow conformance to language
and program properties to be proven. All these notations (Z, CSP and SPARK) provide points in
the development lifecycle prior to the production of object code, when there are artefacts with a
clear semantics. This enables these artefacts, specification and design documents, or source code,
to be formally verified, either as a refinement of a previous lifecycle phase, or more commonly,
as possessing key properties.

Interestingly, many of the benefits of formal notations do not come from the application of
verification techniques, tool supported or otherwise, but from the additional attention to detail
imposed on the author when applying the techniques. Although tools can help to demonstrate
(partial) completeness or correctness it is often before the point of application of such tools that
benefits are first realised as the very act of expression within a formal notation causes the author
to explore the problem domain with a logical mindset — thereby detecting and investigating
incompleteness in the requirements early in the lifecycle.

Having said that, the ability to use tool support to automatically check properties of the system
and even simulate aspects of the system under development is extremely powerful at detecting

3/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

early lifecycle errors and demonstrating properties of the final system to the customer or key
stakeholders.

3 The Tokeneer ID Station Experiment

The aim of the Tokeneer ID Station (TIS) Experiment [TIS], commissioned by the US National
Security Agency (NSA), was to determine whether it was possible to write software to the stan-
dards imposed by EALS of the Common Ceriteria [[SO99] in a cost effective manner.

The method by which the experiment was undertaken was for Altran Praxis to redevelop a
well defined component of the existing Tokeneer System [RL98] using the CbyC approach ap-
plied using formal notations at every stage of the development lifecycle. Tokeneer was a system
previously developed by the NSA as an unclassified demonstration of the use of smart cards and
biometrics. CbyC was applied in the redevelopment of the core functions of one component of
the Tokeneer system. The development was assessed against EALS5 of the Common Ceriteria to
determine whether the approach achieved the necessary assurance evidence to certify a security
system to EALS. By monitoring the skills needed to perform each stage of the development
approach and the effort involved it was also possible to establish whether the approach was cost
effective.

The experiment was time boxed and some activities were not completed but an estimate of the
cost to complete the activity was provided in all cases to allow the true cost of the approach to
be determined.

3.1 The Tokeneer system

Tokeneer provides protection to secure information held on a network of workstations situated in
a physically secure enclave. The Enrolment Station issues tokens to users. To do this it relies on
a Certificate Authority (CA) to generate user ID Certificates and an Attribute Authority (AA) to
generate attribute certificates containing clearance and privilege information and biometric infor-
mation. The TIS provides protection to the enclave by checking whether the user is authorized
to enter the enclave and adding a certificate to the user token that authorizes the user to operate
on the workstations within the enclave. The workstations check the certificate added by the TIS
station to determine whether the user is authorized to use the facilities it provides.

Once initialised, the TIS holds public keys for the CA and AA. The primary function of the
TIS is controlling user entry. The entry process being as follows: the user presents a token
to the TIS containing three certificates, the user ID certificate, a biometric certificate containing
fingerprint data, and a privilege certificate containing the role and privileges held by the owner of
the token; the TIS checks the validity of these certificates and ensures they are signed by known
authorities. The user then presents their finger to a fingerprint reader and the TIS authenticates
the user by comparing the biometric data on the token with a scan of the user’s finger. If this data
matches and the user privileges allow them access to the enclave then a further authentication
certificate is added to the token, (this is a certificate of relatively short duration) and then unlocks
the enclave door, permitting access. If at any point the TIS deems there to be a breach of security
an alarm is raised. There are also a number of administrator functions that TIS offers to users

Proc. AVoCS 2011 4/15

Eﬁ ECEASST

Protected

Enclave
Crypto

TIS
Portal

Library
Latch
Enrolment
Station

Alarm
simulator

Guard/
Administrator
interaction

Alarm
Interface

Certificate
Library

Admin
Interface

Token
Reader
simulator

Attribute
Authority

Certificate
Authority
Display Fingerprint Token

K
simulator Reader Reader

EY:
simulator simulator
System Simulated Software
component Device subsystem
User interaction

Figure 1: Overall Tokeneer System

Interface

Token
Reader
Interface

Display
Interface

Biometric
Subsystem

Portal
simulator

v

with the appropriate roles. These are archiving log data of all transactions, overriding the door
lock, and updating the configuration data which controls properties of the particular installation
such as operating hours and security classification of the enclave.

Only the core functions of the TIS were developed using the full high integrity Correctness
by Construction approach. Biometric and cryptographic components were simulated as were all
external devices. The interfaces to external devices were developed using industry good practice
but without the application of formal methods.

The customer introduced a change to the requirements part way through the design as a test
of the robustness of the process. They added a requirement for the system to permit entry to
the enclave to a user who had a valid authentication certificate on their token without needing to
repeat the biometric checks.

3.2 The lifecycle

The TIS development lifecycle is depicted in Figure 2, it comprised six distinct phases: require-
ments analysis, security analysis, specification, design, implementation, and test.
Requirements analysis followed Altran Praxis’ requirements engineering approach REVEAL
[HRHO1]. Key to this process was clear identification of the system boundary — important in
this experiment was a clear understanding of boundaries between core functionality, to be de-
veloped to EALS criteria, supporting software, and functionality out of scope of the experiment

5/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

Protection Profile Prior System
. Documentation .
H A
h . (1)
N s Requirements
: ,' Analysis
2) .' Security Target System ’c‘
Security ! Requirements
Analysis ¢ Specification S
.' ‘|
' + ¢)
S ificati
I“ security Formal : pecitcation
[} Properties Specification :'
[}
’ e
[
14
: v
" Formal Design System Test
Key ' P Specification
4)
Design '. - -
Development i * Stccaae=’
Product [} (6)
S INFORMED System Test
. Design N
External Input u‘
v ' ®
.l Implementation
SPARK K]
Implementation

Figure 2: The development process

— for instance the original Tokeneer system additionally used a password in the authentication
sequence. The context in which the TIS operated was also analysed giving a clear understanding
of the TIS environment, such as the certificates generated externally and the way in which the
door and its locking mechanism operated. Scenarios representing successful and erroneous inter-
actions with TIS were developed with the customer to gain a clear understanding of the required
behaviour of the system.

Security Analysis was performed orthogonally to the remainder of the development process,
it responded to the supplied Protection Profile with a security target and development of the
security properties required of the TIS. These activities focussed on the security needs of the
system without consideration of the required user functionality. A key output of this activity was
a Formal specification of the security properties developed using the Z notation.

Specification of the TIS took the form of a formal behavioural specification developed using
the Z notation. The specification provides an abstract model of the system, focusing on inter-
actions of the system with its real world interfaces, ignoring internal details. By developing a
behavioural model of the system it was possible for the details of the proposed behaviour of the
system to be presented early — before code production. With the help of customer review we
were confident that we were planning to build the right system.

Design was divided into two components. The Formal design, again developed in Z, is a
refinement of the specification introducing the internal details of how the system works — in

Proc. AVoCS 2011 6/15

E

ECEASST
Proof of Formal : Key
Security Formal /—'z: Specification
"\ ex PO Rt . 2) Input to
Properties \ / Specification - eessessensseessnsel activity
presteeeeeencloenr \:wwnnnnoonooooooooev: © Assurance
. Proof of Security : - Refinement Proof ¢ * Activity ¢
Properties Formal Design /’; of Formal Design : *eeemonenogenet
(2) < i 2) :
.. Y
Object being
e : \\> """""" Brosiaf | assured
* Proof of Security : : I;uncti;)tpal
t Properties : : roperties :
© (SPARK Proof) :;LZ?;MED :, (SRARK Prooh. .}
System Test
Specification
SPARK < o .
\': System Test Implementation /_\ Static Analysis
: — \ :

Figure 3: Assurance Activities

the case of TIS the design resolved some priority issues which led to the specification being
potentially non-deterministic in its behaviour, additionally the details of logging and the structure
of certificates as raw data streams were introduced.

The INFORMED design [Ame01] focused on developing a software architecture, it identifies
implementation modules and the information flow between them, it apportions each component
of the formal design to the program module that implements that component, it also covers file
structures and constraints not covered formally.

Implementation of the core TIS is written in SPARK [Bar03] using both flow and proof
contracts. Data and information flow analysis and proof of absence of run-time errors were
done before code review and compilation. Implementation from the formal design was relatively
straightforward — with simple mappings between predicates and code fragments.

Testing was limited to system testing, which was based on achieving a basic level of coverage
of all the schemas in the Formal Design. Ordinarily this would have been undertaken with code
coverage metrics being collected to ensure an adequate coverage of the source code had been
achieved. The Formal Design provided a very clear definition of the required behaviour of the
system on which to base tests.

The aspects of the implementation process that were more radical were the verification activi-
ties. These focused on verifying the correctness of each lifecycle phase early. Further, by using
consistent Formal notations for the Security Properties, the Formal Specification and the Formal
Design, it was possible to prove that the Formal Specification adhered to the Security Properties
and that the Formal Design was a refinement of the Specification. The other area where proof
was applied was in the code, in addition to proving the absence of run-time errors, some of the
security properties were expressed as SPARK proof contracts, the code was then proven to con-

7/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

form to these properties. Figure 3 demonstrates the assurance activities undertaken, excluding
review which occurs as each component is complete. Each assurance activity was undertaken
as soon as all the inputs to the activity were complete and before proceeding to the next lifecy-
cle activity allowing errors introduced at each phase to be driven out by more than just review
scrutiny.

3.3 Results and subsequent scrutiny

The key outputs of the project were a 100 page behavioural Z specification; the core software
comprised 9,939 lines of code with 6,036 lines of flow contracts and 1999 lines of proof con-
tracts. The supporting software, written in Ada95, comprised 3,697 lines of code. The entire
development required 260-man days, provided by three people working part time over 9 months.
The productivity over the project as a whole was 38 lines of code per day, with the coding rate of
the core software working out at 208 lines of code per day against a rate of 182 for the support
software. Analysis [BC03] showed that the process had been developed to EAL5 and in some
areas had exceeded the requirements of EALS particularly in the levels of formalism applied.

The whole project archive was donated to the Verified Software Repository in 2008 [TIS] and
has subsequently been subjected to wide ranging scrutiny. To date, five defects have been found
in the core software. These defects are fully documented in [WAC10] and were found through
a combination of application of improved tools and critical review. Two of these are completely
benign in the code as it stands, the other three represent potential insecurities in the software.
Of these three, one would have been detected by the latest variants of the toolsets used on the
project — assuming the most demanding levels of checks were selected, a further would have
been detected by undertaking program proof of the remaining security properties and the last
could have been detected following scrutiny of code coverage results.

These results are encouraging and suggest that, with the latest tools, the application of formal
methods supports the development of high quality software suitable for critical domains. Of
course, we can never be certain that every fault has been found but the level and variety of
external scrutiny to date gives considerable confidence in the state of the Tokeneer core software.

Further, the results presented in [MW10] show that following extensive review of the whole
code base and the use of CodePeer the most significant errors were found in the support software.
This was written by the same engineers as the core software, but without the application of
formal techniques such as SPARK and development from a formally specified design, giving a
fair indication that the development process used on the core software did indeed produce higher
quality software.

4 Challenges using formal methods in industry

It is clear from the results of Tokeneer that the application of formal methods can result in the
efficient delivery of high quality software. However, the uptake of many of the approaches on
an industrial scale has been limited. From a technical and commercial viewpoint this seems
like a missed opportunity on the part of industry in general. To try and understand the reasons
behind the apparent lack of industrial enthusiasm, the remainder of the paper seeks to establish

Proc. AVoCS 2011 8/15

Eﬁ ECEASST

more abstract qualities of development and verification approaches which impact their successful
adoption, taking as read that any formal approach will offer unambiguous notations and the
opportunity for analysis of the system.

We propose that the following list is a representative, but not necessarily exhaustive, character-
isation of desirable properties of any development notation, regardless of whether it constitutes
a formal notation:

e scalable,
e notation approachable to all stakeholders,
e expressive (ease of capturing the problem),

tool supported.

It is often the ability to satisfy these demands that influences the adoption of an approach,
rather than the more obvious technical questions of whether the method or tools fulfil the goals of
expressing the desired functionality and contributing towards a correct software implementation.
In the following sections we consider these attributes in more detail and measure the success of
the notations used in the development of Tokeneer against these criteria.

4.1 Scalable

This is a property that is well understood as being key to industrial applicability. There are two
aspects to scalability, first whether the notation allows large problems to be expressed in a way
that is still manageable to the authors and consumers of the artefact; secondly whether tooling
associated with the notation is able to perform efficiently when processing representations of
large problems. We look in more detail at the former problem. The problem of scalability is
constant across the development lifecycle — a system that is complex is likely to have many re-
quirements, a large design and a considerable code base. Effective notations offer encapsulation
and modularisation which aid the presentation of information in manageable portions.

Tokeneer is small as industrial applications go. It has Altran Praxis’ smallest Z specification
covering full functional behaviour. Altran Praxis’ most recent Z specification contains over 3000
schemas, the final developed system being of the order of 150KLOC of SPARK Ada demon-
strating that the Z notation and SPARK are scalable. Larger SPARK developments have been
undertaken outside of Altran Praxis.

In Z we can decompose the system state into logically cohesive components, developing struc-
ture within the system data model and allowing system behaviour to be decomposed into opera-
tions acting on a particular partition of the state. Overall system behaviour is achieved through
composition of partial behaviours. This allows the participants of the specification to be able to
contemplate the system using a divide and conquer approach, only ever needing to consider a
small fragment in detail at any one time.

SPARK similarly allows the system to be analysed in fragments — making use of a rich
package specification to allow components to be analyzed in isolation. Data abstraction also
allows detail to be hidden from public contracts of a package and prevents contract proliferation.

9/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

Key

~N
~
~N
~N
~
~N
~

Specification ——-- ———— Source Code Development
Artefact

Reader

Figure 4: Artefacts and stakeholders

4.2 Approachable notation

A notation is considered approachable if it is usable by all those stakeholders who need to interact
with it. The usability of a notation will depend on the familiarity of the notation — this familiarity
can be acquired through use, although the ability to make such a transition to a notation will often
be influenced by the underlying skills of the individual who needs to acquire the notation. To
this end there are two things that influence the success of the notation to be approachable: the
diversity of stakeholders who need to be involved with the notation and the difference between
the notation and the languages already familiar to the stakeholders.

A system specification is likely to have a large number of stakeholders with diverse expertise,
from end-users and customers to coders. The end-user and the customer are unlikely to be experts
in the specification notation, although for the specification to be truly effective both the customer
and the end-user will need to understand the system that is being specified — by doing so they
will gain confidence that the system that is about to be built will offer the desired functionality.
In the case of Tokeneer we were privileged to have a Z expert as our customer. However, where
the customer and end-users are not experts in the notation we introduce a potential language
barrier at a crucial early stage in the development lifecycle. It is at the point of developing
the specification that we are first likely to uncover omissions from the requirements, details of
corner case behaviours that the requirements don’t define. Finding and resolving these at the
point of specifying the system is highly efficient and reduces surprises in the system behaviour
and increases the likelihood that we construct the desired product.

There are that can be employed to reduce the language barrier — Altran Praxis has a policy
of supplying a high level of English language description alongside the formal notation although
reading just the (imprecise) English text will loose the value of the precise formal notation. Pro-
vision of training can be effective where there is not too great a disparity between customer,
end-user skills and the selected notation, However, training requires a high level of customer
commitment and can be problematic where the customer or end-user representation is large.
Animation and scenario modelling are powerful as they allow demonstration of features of the
system based on the specification, however a large specification can result in state space explo-
sions and exploring all cases exhibited by the animation could be prohibitive in terms of time.

Proc. AVoCS 2011 10/15

Eﬁ ECEASST

Even relatively simple aspects such as the documentation environment can prove significant
hurdles in terms of familiarity of notation. For example the predominant text preparation method
for Z is via the use of I&IgXwhile the industrial norm for document production is Microsoft
Word or the like. In recent years tools have been developed to support the direct incorporation
of Z paragraphs into Word documents [HalO8] thereby simplifying the process of generating
documentation which incorporates textual descriptions, diagrams and formal paragraphs.

It is attractive from a commercial supplier perspective to obtain agreement to the specification
and deliver to the specification; however this is only a practical proposition where the customer
is truly engaged in the notation. A more realistic goal is for the specification to be viewed
as an artefact internal to the development which allows pertinent questions to be asked of the
customer or end-user; the questions being asked in a language familiar to the customer. Taking
this approach we need to accept that it is highly possible that when producing a specification
there will be differences of interpretation and that these differences may not be realised until the
system is validated — this feels like a lost opportunity although it is no less powerful than using
informal or semi-structured notations to deliver the system specification — where the notation
would be insufficiently precise to detect many of the points of clarification that are uncovered
when writing a formal specification.

Altran Praxis’ experience with the use of Z as a specification language is that Z reading skills
are easily acquired by coders and verifiers alike, suggesting that software engineers typically
possess the necessary logical deductive skills appropriate to interpreting the Z notation.

By contrast the number of stakeholders involved with the source code, who might be required
to understand notations associated with formal code analysis or proof are fewer. Furthermore, it
is often possible to express the proof language in a semantics which represents a modest exten-
sion from the code semantics. There is a small semantic gap between the SPARK language and
Ada making it a relatively painless transition for an Ada programmer to be able to correctly ex-
press and interpret SPARK contracts and the verification conditions generated by the associated
tools.

4.3 Expressiveness

One of the fundamental characteristics of the CbyC approach to software development is to take
small steps between lifecycle stages so that at no point is there a large semantic gap during the
refinement from specification to code. Taking this idea back a stage further it is important to
be able to describe the system in its real-world context as easily as possible in the specification.
Often to achieve this we need to express complex properties of the system’s interaction with the
environment. To this end a highly expressive notation can be extremely effective, allowing a wide
range of concepts to be captured without significant overhead of constructing building blocks
that take the specifier’s attention away form the problem domain and the task of expressing the
behaviour of the system within that domain. Formal refinement techniques can then be used
to transition from an abstract representation toward a design that can be simply implemented.
However, the richer the language the harder it is to become an expert in the full language — this
seems to be a true dilemma, not only to humans as users of the notation but to the provision of
tool support to provide automatic verification.

Our experience in the development of industrial scale specifications is that the use of Z as a

11/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

highly expressive notation is extremely powerful in allowing the engineer to focus on capturing
the correct description of the system’s behaviour, without excessive distractions from having to
find a way of encoding the relationships with a restrictive language.

Expressiveness becomes less of a critical characteristic of the notation as we move through
the lifecycle toward code. Industrially used programming languages such as Ada and C and their
language subsets such as SPARK Ada and MISRA C are sufficiently expressive to implement
the system.

4.4 Tool support

One of the benefits of using formal notations is that they have sound semantics which make them
amenable to tool supported verification, from the most basic syntax checking to automated or
semi-automated proof. Without the underlying semantic definition it is difficult to make anything
but basic checks on an artefact.

Automated verification is a highly powerful way of finding errors and inconsistencies in the
outputs of the development lifecycle. Furthermore it is typically repeatable and should not be
subject to human error. However, for automated verification to be cost effective, that is detect
a sufficiently high density of faults in a sufficiently short period of time, there are a number of
characteristics that need to be exhibited by the automated verification technique. The tools that
support the technique need to be

o fast,
e trustworthy and supported,
e casily interpretable.

4.4.1 Speed

An effective verification tool must be sufficiently fast that the checks to be run repeatedly in
a cycle of develop — check — correct — check. The speed of a tool is highly dependant on the
modularity of the notation; the class of checks being undertaken and the amount of the system
that the tool needs to interpret to enable it to perform its analysis. The speed of the Examiner is
achieved by the analysis of one package body only being reliant on the enriched specifications
of the other packages that are used by the package under analysis. The fuzz type checker [Spi] is
fast due to the limited scope of its analysis. Both are sufficiently fast that they can be repeatedly
run during development to ensure that the development output is being constructed correctly.
Any checks that need to be run overnight cannot easily be used effectively as development is
undertaken — although they can be used in the performance of final verification activities.

4.4.2 Correctness and Support

It is important to discuss correctness and support together as it is unlikely that any software
product is completely fault free, but if support is readily available to handle faults found then
the product can be considered fit for purpose. When a method and associated tools are selected
for use on a project in industry the answers to the following questions will be fundamental to
whether the tools are selected for use:

Proc. AVoCS 2011 12/15

Eﬁ ECEASST

Can I get help in using the product?
Will the product be fixed promptly if I find a fault with it?
Will the product still be supported in 10 or 20 years time?

Will the product be considered appropriate by any certifying body?
If a development programme has chosen to include a tool in its development or verification
strategy then training of personnel in the use of the tool and technology will be paramount, not
knowing how to use a product to its best effect is expensive in time and a waste of the investment
in the technology.

If a tool is found to be faulty in some respect then it is crucial for the development programme
to either upgrade to a corrected version of the tool or fully understand the limitations otherwise
there can be profound cost implications on the programme as a revised development or verifica-
tion technique would need to be introduced. There is a widely held view that a product being
open source means that it can be corrected, but this assumes that the source can be understood
by the user. Even where the source for a tool is supplied there are significant costs and risks
involved to anyone proposing modification to the tool.

Life expectancy of the tool suite is often of key concern to industrial developers. Many con-
tracts include ongoing maintenance requirements and if the system is to be maintained then its
development environment needs to be maintained and supported for the in service life of the
software product. Although this is a risk with any tool, the risk is perceived to be greater where
the tool is not itself available with a support contract.

Where the software under development is of a safety or security critical nature it is likely that
a regulatory body will assess the processes, methods and tools used during development. Any
tool where the output is used to gain verification credit will be expected to have an appropriate
pedigree — either gained through a good history of use in the field, or by demonstration that the
tool itself has been developed to a high standard.

4.4.3 Interpretation of output

Quality of the output of a verification tool dramatically impacts the time consumed analysing
output and correcting inputs. Developments in tools to include hyperlinked renditions of the
material analysed to aid navigation to the source of errors have been powerful at reducing anal-
ysis time. The Z Word tools [HalO8] do this to great effect allowing the user to run fuzz on the
Word document and then jump from each error message to the source of the error in the Word
document.

The level of false alerting of a tool can be crucial to its effectiveness, a tool that identifies a
large number of potential problematic outcomes in the output will absorb a considerable amount
of manpower in checking and justifying those cases that the tool could not provide a negative or
affirmative outcome. One of the significant successes of the Examiner and Simplifier is the high
percentage of verification conditions (VCs) generated through checking for absence of run-time
errors that are automatically discharged. This makes the activity of checking the outstanding
VCs manageable and has made the proof of absence of run-time errors in SPARK programs an
option that is widely used.

183/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

5 Conclusion

Formal methods have a huge amount to offer industry in terms of providing unambiguous no-
tations that are suited to formal verification that can in turn be automated. Many industrial
standards for development of software at the highest integrity levels encourage the use of formal
methods [[SO99, DEF97, EN 01] — to the point that it can be cheaper to conform to the standard
by using a development approach that makes use of formal methods than relying on a test driven
argument for certification. The results of the Tokeneer project are a clear demonstration that
the application of formal methods is a cost effective route to the development of high integrity
software. Despite this, the adoption of formal methods by industry is perceived as difficult. This
paper has looked at some of the less technical aspects that influence decisions about the process
by which software is developed and has considered why these aspects rather than the technical
merits of the approach are likely to be significant barriers to acceptance of formal methods.

Of the four key industrial indicators for the acceptability of a general development notation
considered in this paper, scalability and expressiveness are being addressed by formal methods.
The approachability of the notation is more challenging where the notation becomes exposed to
a wide range of stakeholders, so this indicator is most applicable to early lifecycle activities such
as systems specification, where interaction with the customer or end user becomes necessary
to establish the desired behaviour. A number of tactics have been explored that suggest that
approachability of the notation can be addressed by careful choice of the manner of presentation.

This suggests that the most significant barrier to industrial acceptance is the availability of
supported tools — there is a relative plethora of tools available open source that provide the
desired levels of automation, however, this is insufficient. In an industrial context, the need for
tool qualification, fitness for purpose arguments, training and ongoing support make the adoption
of open source tools without support contracts too high a risk on exactly the classes of project
that would most benefit from automated verification. To overcome this hurdle, formal methods
tools need committed maintenance — this requires collaboration between industry and academia
to place supported products in the marketplace at a price that allows adoption on both modest
and large scale applications.

Acknowledgements: My gratitude goes to John Barnes, Rod Chapman and Neil White for
their comments on the draft of this paper.

Bibliography

[Ame01] P. Amey. The INFORMED Design Method for SPARK. 2001. Available on request
from Altran Praxis. http://www.altran-praxis.com/

[Ame06] P. Amey. Correctness by Construction. S.P8001.11.1. 2006. Available on request
from Altran Praxis. http://www.altran-praxis.com/

[Bar03] J. G. P. Barnes. High Integrity Software: The SPARK Approach to Safety and Secu-
rity. Addison-Wesley, 2003.

Proc. AVoCS 2011 14 /15

E

ECEASST

[BCO3]

[DEF97]

[EN 01]

[FDR]
[Hal90]
[Hal96]

[HalO08]

[HCO2]

[Hoa85]

[HRHO1]

[ISO99]

[KHCPOO]

[MW10]

[RLI98]

[Spi]

[Spi85]
[TIS]

[WAC10]

J. E. Barnes, D. Cooper. EALS Demonstrator: Summary Report. S.P1229.81.1. Dec.
2003. in [TIS].

DEFSTAN 00-55 (Part 1). Requirements For Safety Related Software in Defence
Equipment. Aug. 1997.

CENELEC BS EN 50128. Railway applications — Communications, signalling and
processing systems — Software for railway control and protection systems. 2001.

FDR?2 refinement checker. Formal Systems (Europe) Ltd. http://www.fsel.com/
A. Hall. Seven Myths of Formal Methods. IEEE Software 7(5), 1990.

A. Hall. Using Formal Methods to Develop an ATC Information System. /IEEE Soft-
ware 13(2), 1996.

A. Hall. Integrating Z Into Large Projects: Tools and Techniques. In Borger et al.
(eds.), Short Papers of the ABZ 2008 Conference. 2008.

A. Hall, R. Chapman. Correctness by Construction: Developing a Commercial Se-
cure System. IEEE Software 19(1), Jan. 2002.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

J. Hammond, R. Rawlings, A. Hall. Will it Work? In RE’01, 5th IEEE International
Symposium on Requirements Engineering. 2001.

ISO 15408. Common Criteria for Information Technology Security Evaluation.
1999. Version 2.1.

S. King, J. Hammond, R. Chapman, A. Pryor. Is Proof More Cost Effective than
Testing? IEEE Transactions on Software Engineering 26(8), 2000.

Y. Moy, A. Wallenburg. Tokeneer: Beyond Formal Program Verification. 2010.
http://www.open-do.org/wp-content/uploads/2010/04/ERTS2010_final.pdf

L. Reinert, S. Luther. TOKENEER User Authentication Techniques Using Public
Key Certificates, Part 3: An Example Implementation. Technical report, NSA Cen-
tral Security Service INFOSEC Engineering, 1998.

J. M. Spivey. The fuzz type-checker for Z. http://Spivey.oriel.ox.ac.uk/mike/fuzz
J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition, 1985.

Tokeneer ID Station EALS5 Demonstrator Project.
http://www.altran-praxis.com/security.aspx

J. Woodcock, E. G. Aydal, R. Chapman. The Tokeneer Experiments. In Jones et al.
(eds.), Reflections on the work of C.A.R. Hoare. Springer-Verlag, 2010.

15/15

Volume X (2011)

Eﬁ ECEASST

Integrated Model Checking of Static Structure and Dynamic
Behavior using Temporal Description Logics

Franz Weitl and Shin Nakajima

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430 Japan

Abstract: This paper presents a new notation for the formal representation of the
static structure and dynamic behavior of software, based on description logics and
temporal logics. The static structure as described by UML class diagrams is rep-
resented formally by description logics while the dynamic behavior is represented
by linear temporal logic and state transition systems. We integrate these descrip-
tions of static and dynamic aspects into a single formalism called LTLp;. LTLpz
enables a concise and natural yet precise definition of the behavior of software w.r.t.
UML class diagrams and state transition diagrams. We demonstrate our approach
on the sake warehouse problem. Further, we describe how properties of finite LTLpy,
models can be analyzed based on bounded model checking and SMT (satisfiability
modulo theory) solving. We implemented a restricted SMT solver for finite sets and
relations. This SMT solver helped to reduce the model checking runtime signifi-
cantly as compared to bounded model checking with SAL.

Keywords: Bounded Model Checking, Temporal Description Logics, SMT

1 Introduction

UML class diagrams and state transition diagrams are widely adopted for modeling software. It is
desirable to detect flaws in these models as early as possible prior to implementation. We propose
a new integrated approach on representing and checking consistency criteria for system models
consisting of class diagrams and state transition diagrams. We base our approach on description
logic, temporal logic, bounded model checking, and satisfiability modulo theory (SMT) solving.

Description logics are expressive for representing the static structure of some application do-
main. Their expressiveness is closely related to UML class diagrams [BCGOS5]. Temporal logics
are well-suited to describe the behavior of processes in a formal yet abstract way. We propose
to combine these formalisms in a family of temporal description logics called LTLp;, to be able
to address both the static and dynamic aspects of modeled systems. This goes beyond existing
approaches such as Alloy [Jac02] or Spin [Hol97] which focus either on the static structure or
on the dynamic behavior of the modeled system.

For the formal verification of LTLp; properties, we propose a new approach based on bounded
model checking and SMT solving. In a first step, LTLp; models and formulae are transformed
for a certain bound k into a non-temporal SMT(DL) formula which is a Boolean formula over a
restricted theory of finite sets and relations. We implemented a solver for this theory based on
OpenSMT [Bru09]. Experimental results show a higher performance as compared to Boolean
encodings of relational models and SAT solving.

1/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

The contributions of the paper are:

1. Definition of the family of temporal description logics LTLp; as a generalization of
ALC—LTL proposed in [BGLOS].

2. Demonstration of the usefulness of LTLp;, for representing static and dynamic properties
of software models w.r.t. UML class and state transition diagrams.

3. Approach on model checking LTLp;, based on bounded model checking and SMT solving.

The rest of the paper is organized as follows: first, we introduce the sake warehouse problem
as a demonstration case, and model its static structure and dynamic behavior. Next, we define
LTLp, and discuss its application to the sake warehouse scenario. In the sequel, we present
our approach on bounded model checking LTLp; using SMT solving. Finally, we compare our
approach with existing work and conclude the paper.

2 Sake Warehouse Scenario

We demonstrate our approach using the sake (Japanese liquor) warehouse scenario which has
been published in 1984 [Yam84] as a shared scenario for comparing different modeling and
programming methods. In Japan, it has been used extensively to evaluate modeling and analysis
methods [NF97]. We summarize the scenario as follows: A sake shop has a warehouse in which
containers are stored. A container contains bottles of one or more brands of sake. Customers
place orders to the shop. Each order may include one or more brands of sake. If all ordered
brands are on stock, the order is delivered immediately to the customer. Otherwise, the customer
is notified and the order is put on a list of pending orders. Whenever new containers enter the
warehouse, pending orders are checked and delivered in case of sufficient stock.
We use this scenario to illustrate the following steps of our approach:

1. Modeling the static structure in terms of a UML class diagram.
2. Modeling the dynamic behavior in terms of a state transition diagram.
3. Representing target properties w.r.t. the models of step 1) and 2).

4. Checking target properties, using SMT-based bounded model checking.

2.1 Sake Warehouse — Static Structure

Figure 1 depicts a UML model of the static structure of the sake shop scenario.

A sake shop keeps a stock and maintains a list of pending orders (Figure 1 top). The stock
consists of a number of containers each of which may contain bottles of several sake brands
(Figure 1 lhs). The sake shop receives new containers at regular intervals (Figure 1 lhs top).

The sake shop handles orders which are placed by customers (Figure 1 center). Each order
contains one or more requested sake brands (Figure 1 lhs). During the order handling process,
an order may become delivered, or pending if it cannot be delivered immediately because of
insufficient stock (Figure 1 bottom). Pending orders are put on the pending list (i.e., list of

Proc. AVoCS 2011 2/17

ECEASST

1 1 I
Stock | g SakeShop w%nding List
-capacity keeps -name 1 1
1 * ;
has +entries()
1 1|28 1<>
* S § * % *
[0}
. * < * 1
Container o Order Customer
-id -id places [name
-capacity -recvDate -address i
w
*
. /N
* c 8
1Y *
Sake Brand 3 | Delivered Pending
-name 1..% -delivDate -pendingDate
-nbOfBottles
Notified
-notificationDate

Figure 1: class diagram modeling the static structure of the sake shop.

pending orders) (Figure 1 rhs) and become notified (Figure 1 bottom) as soon as the shop keeper
issues a notification about the delayed order to the customer.

2.2 Sake Warehouse — Behavior
Figure 2 models the basic behavior of the sake shopkeeper.

Stock Sufficient
for any Pending

Order?
(_ yes no
Pending Order Removed < y }F >(Waiting for Order or New Stock)<
Gending Order Delivered)%(smck UpdatedHontainer Received) (Customer Notiﬁe(D (Order Received) (Order Deliveredj
Stock Updated

Figure 2: state transition diagram modeling the behavior of the sake shopkeeper.

Pending Order Added

Ordered Brands
on Stock?

3/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

Initially, the shopkeeper waits for an order or new incoming stock (Figure 2 rhs top). When an
order is received, it is checked, whether all ordered brands are on stock (Figure 2 rhs bottom).
If this is the case, the stock is updated and the order is delivered (Figure 2 rhs). Otherwise, the
order is added to the list of pending orders and the customer is notified (Figure 2 center).

If the sake shop receives a container, it is put on the stock and the stock is updated (Figure
2 lhs center). Next, it is checked, if there are any pending orders and if the updated stock is
sufficient for delivering any of them (Figure 2 lhs top). If this is the case, an appropriate order
will be picked, removed from the list of pending orders and delivered (Figure 2 lhs). Further
pending orders may be delivered as long as there is sufficient stock (Figure 2 lhs).

3 Sake Warehouse — Representation of Target Properties

We aim at representing properties w.r.t. both the static model and the behavior model of some ap-
plication domain. In the case of our sample scenario, the following properties may be important
to meet:

P1 Whenever a customer places an order, the customer will receive some response which may
either be the delivery of the order or a notification that the order is pending because of
insufficient stock (cf. [NakO8]).

P2 Orders may not be pending forever, i.e., orders delayed due to insufficient stock will be
delivered eventually.

P3 If orders are pending then repeatedly incoming stock will eventually cause an order to be
delivered.

P4 Pending orders will be handled with higher priority, i.e., a pending order of some brand X
will be delivered before new orders of brand X (cf. [Nak08]).

We propose LTLpy for the formal representation of such criteria. LTLp; is a modular compo-
sition of linear temporal logic and description logic (DL). This allows for the representation
of properties that address both the static structure and dynamic behavior since the semantics of
UML class diagrams can be represented well by DL, and properties of state transition diagrams
can be expressed by LTL. Before we define syntax and semantics of LTLp;, we briefly review
LTL and description logics.

3.1 Preliminaries - LTL

LTL (linear temporal logics) [Eme90] is supported by many model checking tools for the speci-
fication of requirements that should be met by automata-based models of the system’s behavior.

Definition 1 (LTL syntax)
Let P be a set of symbols representing atomic propositions and a € P an atomic proposition.
Then LTL formulae p,q are built according to the following rules:
p,q — a (atomic proposition) | =p (not) | pAg (and) | pV g (or) | p — g (implies) |
Xp (next) | Fp (future/eventually) | Gp (globally/always) | p U ¢ (until) O

Proc. AVoCS 2011 4 /17

Eﬁ ECEASST

LTL formulae are interpreted w.r.t. state transition systems M = (S,R,L) where S is a non-
empty, finite set of states, R C § x § is a left-total transition relation and L : § — Z(P) is a
labeling of states s € S with sets of atomic propositions L(s) C P that hold at s.

Definition 2 (LTL semantics)

Let M = (S,R,L) be a finite state transition system and x = (so,s1,...) an infinite path in M,
i.e.,s; € Sand (s;,s+1) € R foreach i € N. Let x; = (s;,,+1, ...) denote the tail of x starting from
state s;. Let @ be an atomic proposition and p,q LTL formulae. Then

xEa iff a € L(so)

xE-p iff x}£p

xEp AV =] q iff x| p[and or implies] x |= ¢

xE=Xp iff x; =p

xE=Fp iff thereisi e N:x; |=p

xE=Gp iff forallieN:x;=p

xEpUg iff thereisie€ N:x;[=qgandforall j€{0,....i—1}:xj=p

x |= p expresses that path x satisfies p (or p holds on path x, respectively). An LTL formula p is
considered to hold at a state s € S, denoted as s |= p, iff for all paths x = (s,s1,52,...) in (S,R)
starting at s, it holds: x |= p. O

3.2 Preliminaries — Description Logics

Description logics is a family of fragments of first order predicate logics that are well-suited for
formalizing the meaning of UML class diagrams (cf. [BCGO05]).

As for this paper, we choose the description logic ALC for further illustration. However, the
modularity of our approach allows for adopting any other decidable description logics depending
on expressiveness and performance requirements. We briefly review the syntax and semantics of
ALC as defined, for instance, in [BNO3].

Definition 3 (ALC syntax)

Let € be a set of symbols called atomic concepts representing sets, and & be a set of symbols
disjoint from % called atomic roles representing binary relations.

Let A € € be an atomic concept and R € & an atomic role. Then ALC concepts C,D and ALC
formulae f, respectively, are built according to the following rules:

C,D — A (atomic concept) | =C (complement) | C 1D (intersection) | C U D (union) |
3R.C (existential quantification) | VR.C (universal quantification)
f — CLC D (subsumption) | C = D (equality)

T (universal concept) abbreviates A Ll A and L (empty concept) abbreviates A1 —A. O

Example 1 (ALC syntax)
Consider the atomic concepts Order, Delivered, Pending, Notified, SakeBrand, Container,
PendingList representing classes, and the atomic roles contains, lists, in representing binary

5/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

relations according to Figure 1. Then the following are ALC formulae:

ay : Delivered U Pending T Order Every delivered or pending thing is an order.

ay : Order = dcontains.SakeBrand Orders contain at least one sake brand.

as : PendingList C Vlists.Pending Each pending list contains pending orders, only.
ays : Order M —Delivered C Notified Every order that is not delivered is notified.

as : Order MY contains.3in.Container Orders, which contain sake brands, only, that are...

C Delivered ...available in some container, are delivered.

ag : Order M —Vcontains.3in. The set of orders, the sake brands of which are...
(Container M Jon.Stock)) ...not all available in some container on stock, are...
= Pending) ... equal to the set of pending orders. O

Formulae a; through a3 represent some but not all properties expressed by the class diagram
in Figure 1. Formulae a4 through ag, in turn, specify complex properties that are not represented
in the class diagram of Figure 1. For a general discussion of the relationship between description
logics and UML class diagrams, we refer to reader to [BCGO5].

Note that, in our application scenario, the truth of formulae a; through a¢ may or may not
depend on time. Since aj,a,, and az formalize static properties expressed in the class diagram of
Figure 1, they are expected to hold regardless of time. In contrast, the truth of a4,as and ag may
vary throughout the order handling process. For instance, a4 may be false at the time a new order
is received. However, a4 should become true shortly after an order becomes pending because of
insufficient stock. In the case of as, orders of brands, which are on stock, may not be delivered
immediately but at some later time. As for ag, an order of some brand that is not on stock may
become pending not immediately but eventually. ALC and any other standard description logic
cannot capture such time dependencies. To solve this problem we will combine ALC with LTL
in section 3.3.

ALC formulae are interpreted w.r.t. an interpretation domain A and an interpretation function
1" of atomic concepts and roles such that A’ C A and R’ C A x A for each atomic concept A € ¢
and atomic role R € Z.

Definition 4 (ALC semantics)

Let I = (A,-1) be an interpretation of atomic concepts and roles, C,D ALC concepts and R an
atomic role. Let R!(a) = {b € A | (a,b) € R'} denote the image of relation R’ for some a € A.
Then

(=C) = A\C
(cup) = c'up!
(cnp) = c'nD!
(3R.C) = {acA|FecR (a):becC}

(VR.C)! = {acA|VbeR (a):bcC}
I=CcCD iff c'cDf
I=C=D iff C'=D'

Proc. AVoCS 2011 6/17

Eﬁ ECEASST

33 LTLpy

We propose the family of temporal logics LTLp; for the representation of properties w.r.t. mod-
els of both the static structure and the dynamic behavior. LTLpy is similiar to ALC—LTL as
introduced in [BGLO08]. Section 5 contains a detailed comparison of LTLp; with ALC—LTL and
other temporal description logics.

Definition 5 (LTLp syntax)

Let P be a set of symbols representing atomic propositions and DL be the set of formulae of
some decidable description logic DL. Let a € AUDL be an atomic proposition or DL formula.
Then LTLpy, formulae p,q are built according to the following rules:

p,q — a (atomic prop. or DL formula) | —p (not) | pAg (and) | pV g (or) | p — g (implies) |
Xp (next) | Fp (future/eventually) | Gp (globally/always) | p U ¢ (until) O

Remark 1 (LTLpy syntax)

LTLp extends LTL by allowing DL formulae in addition to atomic propositions at locations
where only atomic propositions are allowed in LTL. Hence both LTL and DL are contained in
LTLp.. O

Example 2 (LTLpy syntax)

Consider the logic LTL4zc, i.e., let DL in Definition 5 refer to ALC. Since LTL4z¢ subsumes
ALC, the formulae of Examples 1 are also LTL4z¢ formulae. However, the following LTLaz¢
formulae are neither in LTL nor in ALC.

lag : F(PendingList C —3lists.Pending) The list of pending orders will eventually be empty.

la) : G(—(3places.Order C 1) — Always if somebody places an order then...
F(Order C Delivered U Notified)) ...eventually any order will be delivered or notified.
lay : GF(Pending T Delivered) Always, eventually pending orders are delivered.
las : G(—(Pending C 1) — (GF Always, if there is some pending order then...
(SakeShop T Freceives.Container) ...if the sake shop receives some container infinitely
— F—(Delivered C 1))) ...often then eventually there will be a delivered order.
lay : G((Order M 3contains.BrandX Always, non-pending orders of brand X...
M—Pending C —Delivered) ...will not be delivered...
U(Pending MYcontains.BrandX ...until all pending orders, which contain nothing...
C Delivered)) ...but BrandX, are delivered.

la, through la, are formal representations of properties P1 through P4 listed in the introduction
of section 3. O

LTLp, formulae are interpreted w.r.t. finite relational state transition systems M = (S,R,L,A,I)
where S is a non-empty, finite set of states, R C § x S is a left-total transition relation, L : § —
Z(A) is a labeling of states s € S with sets of atomic propositions L(s) C A that hold at s, Ais a
finite set representing some domain of objects, and I : § — {- (S)} is a state-dependent interpre-
tation function such that AZ(%) CAand R! (s) C A x A for each state s € S, atomic concept A € E,
and atomic role R € %, respectively.

7/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

Definition 6 (LTLp; semantics)
Let M = (S,R,L,A,I) be a finite relational state transition system and x = (s, sy, ...) an infinite
path in M. Let d be a DL formula. Then

xEdiff I(so) =d

The semantics of all other cases (atomic proposition a, Boolean connectives =, A,V,—, and
temporal connectives X, F, G, U is identical to the semantics of LTL (Definition 2). O

Example 3 (LTLpz semantics)
Consider the formula GF(Order C Delivered), i.e., “always it holds eventually that any order is
delivered”. Consider the path x = (so,s1,52,50,51,52,50, ...) Where

Order'®) = {01} Delivered'®) = ¢
Order'™) = {01,02} Delivered'™") = {01}
Order'™® = {01,02} Delivered'"? = {01,02}

1.e., there are two orders o1 and 02 which appear in state sg and 51, respectively, and which will be
delivered in state s and s,, respectively. Then x = G(Order C Delivered) because, for instance,
Order'®0) ¢ Delivered'*0). However, x = GF(Order C Delivered) because in each state s; of x
eventually s, will be reached and Order’"?) C Delivered'*?.

O

4 Model Checking LTLp;

Definition 7 (LTLp; model checking)

Let M = (S,R,L,A,I) be a finite relational state transition system, s € S a state, and f a LTLp,
formula. Then the LTLp, model checking problem for M, s, and f is to decide if x = f for all
infinite paths (s,s1,52,...) in (S, R) starting from s. O

Theorem 1 (LTL reduction)

Let M = (S,R,L,A,I) be a finite relational state transition system and f be a LTLp, formula.
Let D = {di,....,d,}, n € N, be the set of DL formulae in f. Let A = {aj,...,a,} be a set of
atomic propositions not appearing in f such that there is a bijection d : A <> D : d(a;) = d,.
Let /' = f[di/a1][d2/a3)]...|d,/ay) be the formula derived from f by substituting all description
logics formula in f with atomic propositions.

Let M’ = (S,R,L’) be such a transition system that L' (s) = L(s) U{a € A | I(s) = d(a)}.

Then f” is a LTL formula and M’ a LTL transition system and it holds for each s € S: M, x = f
for all paths x in M’ starting from state s iff M, x = f’ for all paths x in M starting from s.

Proof. This is a direct consequence of the syntax and semantics definition of LTL and LTLpy.
O]

Remark 2 (LTL reduction)
By theorem 1, a model checking algorithm for LTLp; can be constructed by composing a
LTL model checker and DL model checker as follows: First, using the DL model checker to

Proc. AVoCS 2011 8/17

Eﬁ ECEASST

calculate the labeling function L’ in Theorem 1, and then check for M’,x = f’ using the LTL
model checker. This straight forward approach, however, is not efficient in the case of systems
with many states. Hence, we strive for a more tight interaction between the LTL and DL model
checker, using SMT-based bounded model checking. 0

4.1 Bounded LTLp; Model Checking

In bounded model checking [BCC 03], a transition system M, an initial state s and a LTL formula
f is transformed for a given bound k € N into such a non-temporal formula of the form Tj ; x A
—(fk) that the following holds: if Ty s x A —(fk) is satisfiable then there is a counterexample for
M,s |= f the length of which is less or equal to k and hence M, s = f. We illustrate the approach
of bounded model checking and its application to LTLp; in the following example.

Example 4 (bounded LTLp; model checking)

Consider the following scenario in an order handling process. Initially, there is no order.
Next, a new order ol is received and the reception of the order is notified to the customer. Next,
another order 02 is received and the previously received order o1 is delivered. The following state
transition system M models this scenario, adopting set type variables order, notified, delivered for
representing the set of orders, notified, and delivered orders, respectively:

state so order = notified = delivered = (; no orders, no deliveries, no notifications.

state s; order < order U{ol}; new order ol,

notified < notified U{ol}; reception of ol is notified to the customer.
state s, order < order U{02}; new order 02,

delivered < delivered U{ol}; ol is delivered.
state s3 = sp return to state so.

Let the DL concepts Order, Delivered, Notified represent the set of orders, deliveries, and notifi-
cations as used above. Consider the property “At any time, any order, which is not delivered, is
notified””:

f = G(Order —Delivered C Notified)

We attempt to find a counterexample for f of a certain maximum length & in the state transition
system M starting at so. As for the given scenario, a sensible bound is k = 2. First, we represent
paths in M with maximum length k by a formula 7j, ,, x in which all variables are indexed by
state (static single assignment form). For k = 2 we get:

Trvs,2 = (orderg=0) A (notifiedyg = 0) A (deliveredy = 0) N
(order; = ordergU{ol}) A (notified; = notifiedy U{ol}) A (delivered; = deliveredy) N
(order; = order; U{02}) A (notified, = notified;) A (delivered; = delivered; U{ol})

Next, f is transformed into a non-temporal formula f; equivalent to f in the scope k. In the given
scenario, if f holds in M then Order 1 —Delivered C Notified holds in each state s, s1, and s».

9/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

Adopting the semantics definition of the ALC connectives I, -, and C we get:

f» = (orderg\deliveredy C notifiedy) N
(order;\delivered; C notified;) \
(order;\delivered, C notified;)

Finally, we check if Ty 5,2 A = f> is satisfiable. From Ty 5, 2, we get:

order; = order; U{02} = ordergU{ol}U{02} ={ol,02}
delivered, = delivered; U{ol} = deliveredyU{ol} = {ol}
notified, = notified; = notifiedyg\U{ol} ={ol}
order;\delivered, = {02,01}\{ol} = {02}

and thus order;\delivered, Z notified; which violates f,. Hence Ty 502 N\ f2 1s satisfied and we
conclude M, sy I~ f. O

4.2 SMT(DL)

As illustrated by Example 4, we transform LTLp; models and formulae into formulae that con-
tain set-type variables and operations corresponding to the semantics of DL connectives. These
formulae can be interpreted as SMT formulae with sets and relations as background theory. We
define the language SMT(DL) for the representation for such formulae. The concrete (i.e., ma-
chine processible) syntax of SMT(DL) is defined by the following rules:

formula — NOT formula | formula AND formula | formula OR formula | term
term — TRUE | FALSE | boolvar | set = set | rel = rel | subset(set,set)
set — EMPTYSET | setvar | insert(set,int) | remove(set,int) |
union(set,set) | intersect(set,set) | minus(set,set) | some(rel,set) | all(rel,set)
rel — EMPTYREL | relvar | insertrel(rel,int,int) | removerel(rel,int, int)

Table 1: SMT(DL) syntax definition

The basic symbols are composed by the disjoint sets of Boolean variables boolvar, set vari-
ables setvar, variables for binary relations relvar, and integer numbers int serving as elements of
sets and relations. Formulae are built using Boolean connectives NOT, AND, OR. Basic formu-
lae are terms, which may be either Boolean atoms or set expressions corresponding to the DL
connectives = and C. Besides the constant “EMPTYSET”, set variables setvar may be used to
represent sets. Further, “insert(set,inf)” represents a function inserting a single integer value into
a set and “remove(set,inf)” removes an element from a set. Line 4 of Table 1 defines set operators
corresponding to the syntax of the DL expressions CUD, CrD, ~C, 3R.C, VR.C. Finally, binary
relations may be manipulated by “insertrel”, which inserts a pair of integer values into a relation,
and “removerel”, which removes a pair of integer values from a relation.

Example 5 (SMT(DL) concrete syntax)
Formula Ty 4, » of Example 4 reads in SMT(DL) syntax as follows:

Proc. AVoCS 2011 10/17

Eﬁ ECEASST

(order0 = EMPTYSET) AND (notified0 = EMPTYSET) AND (delivered0 = EMPTYSET) AND
(orderl = insert(order0Q, 1)) AND (notified1 = insert(notified0, 1)) AND (delivered1 = delivered0) AND

(order2 = insert(order1, 2)) AND (notified2 = notified1) AND (delivered?2 = insert(deliveredl,1))

Note that orders ol and 02 in formula Ty, s, » are represented by integer values 1 and 2, respec-
tively. This is valid in general because we assume a finite interpretation domain (cf. Definition
6) which can be mapped onto integer numbers without loss of information.

Formula f, of Example 4 reads in SMT(DL) syntax as follows:

subset(minus(order0,delivered0),notified0) AND
subset(minus(order1,deliveredl),notified1) AND

subset(minus(order2,delivered2),notified2)

4.3 Prototypical Implementation and Experimental Results

We implemented a partial solver for SMT(DL) based on OpenSMT [Bru09] which is an open
source SMT solver implemented in C++. For the representation of SMT(DL) formulae, we use
the standard format SMT-LIB 1.2. The current implementation is limited to SMT(DL) formulae,
the set and relation expressions of which are bound to finite domains and do not contain cyclic
definitions such as “s = insert(s,1)”. The latter is not a restriction in our application because, in
bounded model checking, LTLp; models are transformed into static single assignment form (cf.
Example 4) which do not contain any cyclic definitions by construction.

The aim of the subsequent experiment is to determine the runtime of model checking LTLpy,
as compared to existing bounded model checkers. The runtime of bounded model checking is
dominated by checking the satisfiability of the generated formula Ty s A —fi (cf. Example 4).
To determine the scaling of runtime w.r.t. the input size, we use a parameterized scenario similar
to that in Example 4, as follows:

state s order = notified = delivered = 0,

state s order < order U{o;}; notified < notified U {o;};

state s, order < order U{o,}; delivered + delivered U{o;,02};
state 53 order < order U{o03}; notified < notified U{03};

state sy order < order U{o4}; delivered < delivered U{03,04};

state sp,—1 order < order U{oz,—;}; notified < notified U{oz,—1};
state §o, order < order U {0z, }; delivered < delivered U{02,—1,02,};
state so,41 order < order U{ozn41};

As a property, we check, if each undelivered order is notified at any time (cf. Example 4):
f = G(Order —Delivered C Notified)

The only state violating f is s2,+1. To detect the error by bounded model checking, the bound
k must be chosen greater or equal to 27+ 1, making the case increasingly challenging for larger
n. Moreover, the maximum sizes of the sets for representing received, notified, and delivered
orders grow linearly in n.

11/17 Volume ?7? (2011)

Integrated Model Checking using TDL Ea

To compare the performance of our approach with existing ones, we chose the SAL tool
[MOR™04] since it integrates a variety of state-of-the-art model checking algorithms, including
SAT and SMT-based bounded model checking. SAL uses the SMT solver Yices 1.03 [DMO06]
as a backend engine for bounded model checking. The scenario above can be described com-
pactly in terms of the SAL input language by representing the characteristic function 15: S5 —
{false,true} : {x € S | 15(x) = true} = S of each set S as a Boolean array (cf. [KRW09]). The
bounded model checker of SAL translates an input file for a given bound k into a SAT or SMT
formula which is then solved by Yices. For our experiment, we chose the transformation into
SAT because this yielded higher performance.

An alternative SMT(DL)-based representation (cf. Example 5) for different problem sizes n
and bounds k has been generated. Generally, we distinguish two cases. 1) k =2nrn+ 1: in this
case, the generated SAT and SMT(DL) formulae are satisfiable, i.e., the property violation is
detected; 2) k = 2n: the generated SAT and SMT(DL) formulae are not satisfiable.

s —m-SMT(DL) k=2n+1 s
N 2 g | OESMIDLk=2n g X)

/ / Yices k=2n+1 /
10 / ,/‘ ——Yices k=2n 10 /t
5 5

O-Mn 0 n

S RO ’1900 & Yoo R
Experiment 1 Experiment 2

O O OO
BRI QSR RN
& & S

Figure 3: execution time of SMT(DL) solving as compared to SAT solving with Yices for differ-
ent input sizes n in Experiment 1 and 2.

Figure 3 (lhs: Experiment 1) shows the runtime of Yices and our SMT(DL) solver for the two
cases k =2n-+ 1 and k = 2n and increasing input sizes n, obtained on a desktop computer with
and 6 GB RAM and Intel Core i7 processor at 3.8 GHz. While the runtime of Yices for k = 2n
is slightly lower than in the case of n = 2n + 1, the runtime of SMT(DL) is identical for both
cases. In the case of n = 100, Yices takes 17.5 seconds for k = 201 and 16.2 seconds for k = 200.
In about the same time, the SMT(DL) solver processes a formula 80 times as large (n = 8000,
k =16000/16001).

Figure 3 (rhs: Experiment 2) shows the runtime of Yices and our SMT(DL) solver for check-
ing the formula

f' = G(=(3places.Order C 1) — XX(Order—Delivered C Notified))

in a LTLp, model corresponding to the state transition diagram of Figure 2. f’ reads: “Always
(G), if someone places an order (—(3places.Order C 1)) then two states later (XX) each order
that has not been delivered is notified (Order 1 —Delivered = Notified)”.

In this scenario, Yices takes 17.6 seconds for n = 20 if a counterexample is found, and 16.2
seconds if no counterexample is found. We suppose that the Boolean encoding of the binary rela-
tion places in formula f” is the major source of additional complexity. In contrast, the runtime of

Proc. AVoCS 2011 12/17

Eﬁ ECEASST

the SMT(DL) solver is hardly affected by the presence of a binary relation in Experiment 2. This
indicates that supporting sets and relations in SMT solving can significantly speed up bounded
model checking of relational models as compared to SAT-based bounded model checking.

5 Related Work

Description logics are well-known to be appropriate for the formal representation of conceptual
data models such ER diagrams and UML class diagrams. For instance, [CLN98] proposes a
unifying description logics for the logical representation of class-based data models such as ER
and object-oriented data models. [BCGOS5] presents an encoding of UML class diagrams in the
description logic ALCQI to discover inconsistencies in models by means of description logic
reasoning. We extend these approaches by combining a description logic with a temporal logic
to support the representation of properties related to both state transition diagrams and class
diagrams.

In the past, several combinations of description logics and temporal logic have been sug-
gested [AFO1, LWZ08]. A first temporal extension of the description logic ALC called ALCT
was suggested by Schild [Sch93]. In ALCT, the temporal connectives G, F, and U can be ap-
plied to concepts but not to axioms. A similar combination of LTL and ALC is called LTLaz¢
in [LWZ08]. In contrast, ALC—LTL, as introduced in [BGLO08], supports the application of
temporal connectives to ALC axioms but not to ALC concepts.

LTLpz, as proposed in this paper, follows the latter approach because, this way, a higher
degree of modularity between the temporal and non-temporal part of the logic is achieved. This
simplifies the formalization of properties in close correspondence with UML class diagrams (DL
component) and state transition diagrams (LTL component), as well as the implementation of a
model checker. However, LTLp; is different from ALC—LTL in the following aspects:

e LTLpy is a family of logics, obtained by a modular combination of some DL with LTL,
rather than a single logic.

e While in ALC—LTL, atomic propositions are replaced by ALC axioms, LTLp;, supports DL
formulae in addition to atomic propositions. This ensures compatibility with propositional
LTL widely adopted in model checking.

e In contrast to ALC—LTL, we do not consider ABox assertions in LTLp;, since they seem
to be dispensable for formalizing general domain models represented by UML class dia-
grams.

e As opposed to ALC—LTL, we do not consider rigid symbols, i.e., concepts and roles the
interpretations of which do not depend on states. Incorporating rigid symbols to LTLp,
may be an interesting topic of future research.

[BGLO8] focusses on the satisfiability problem of ALC—LTL and the impact of rigid symbols
on the complexity of solving the satisfiability problem. In this paper, we do not consider the
satisfiability problem but the model checking problem of LTLp;. A thorough investigation of
complexity properties will be an issue of future work.

18/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

[BBL09] proposes runtime verification based on ALC—LTL. In runtime verification, a mon-
itor constantly observes the behavior of a system in execution and determines if the observed
prefix of an execution trace conforms to a temporal formula. Each state of the execution trace
is represented in a potentially incomplete way by a set of ALC ABox assertions (open world
assumption). In our work, we adopt a model checking approach, i.e., all possible behaviors of
a system described by a state transition system are considered. However, the information about
each single state is assumed to be complete (closed world assumption).

An algorithm for model checking the temporal description logics ALCCTL has been proposed
in [Wei08]. In this paper, we consider the bounded model checking problem of LTLp;, and reduce
it to SMT solving which we believe is a new approach that simplifies the integration of LTLp,
model checking into an existing model checking environment such as SAL and helps to increase
the performance of model checking for bounded sets and relations.

State-of-the-art model checkers supporting linear temporal logic are Spin [Hol97], SAL
[MOR"04], and NuSMV [CCG"02]. However, the input languages of these model checkers
do not support set and relation data types and hence are inefficient for representing properties
w.r.t. relational models.

Alloy is a declarative object-oriented modeling notation, the semantics of which is based on
sets and relations [Jac02]. The notation supports the formulation of assertions. Dynamic aspects
may be addressed in terms of pre- and post-conditions or by explicitly representing time as a
linearly ordered set of states. However, temporal logic for the representation of behavioral prop-
erties is not supported. A tool based on SAT solving automatically analyzes whether assertions
hold in models where the sizes of all sets and relations are bounded by some user chosen con-
stants [JSSO0]. In [GT11], an alternative approach is presented which is not limited to bounded
sets: Alloy relational specifications are translated into first order quantified SMT formulae which
are passed on to the SMT solver Z3 [MBO08]. However, since the Alloy specification language is
undecidable, the SMT solver may fail to prove assertions.

Event B [Abr10] is a formal specification language for the required behavior of a system,
based on set theory and logic. A central concept is the refinement-based modeling for system
requirements. Consistency and refinement checking of specifications, based on theorem proving,
is supported by the Rodin tool [ABH " 10] which generates and manages the necessary proofs.
However, user interaction may be required for certain types of proofs. ProB [LB08], an anima-
tion and model checking tool for (Event) B specifications, supports model checking of properties
expressed in LTL. Similar to Alloy, data types such as sets and relations must be restricted to
small sizes for exhaustive analysis. LTLpy is less expressive than the temporal logic supported
by ProB but the supported constructs are closely related to UML class and state transition dia-
grams. We believe that this simplifies the identification and formalization of relevant consistency
properties which is usually considered as a rather difficult task.

The syntax definition for SMT(DL) (Table 1) is inspired by [KRW09] which suggests a format
for representing finite lists, sets, and maps as part of the SMT-Lib 2.0 format. As for solving
formulae over finite sets, a mapping onto Boolean arrays is suggested. We have adopted this
approach in our experiments with SAL and Yices (see section 4.3). To the best of our knowledge,
none of the currently available SMT solvers implements dedicated decision procedures for sets
and relations.

Proc. AVoCS 2011 14 /17

Eﬁ ECEASST

6 Conclusion

We have presented a new integrated approach on representing both static and dynamic aspects of
software models. We defined LTLp;, as a modular composition of linear temporal logic LTL and
a description logic DL. LTLp supports representing properties w.r.t. both UML class diagrams
and state transition diagrams. We believe that the close correspondence of LTLp; formulae to
these commonly used diagram notations facilitates the identification and formalization of impor-
tant consistency requirements at an early development stage. Further, we have demonstrated how
LTLp, formulae can be checked by SMT-based bounded model checking. We have implemented
a prototypical SMT solver for formulae containing set-type expressions corresponding to the se-
mantics of LTLp; connectives. As compared to reducing set-type expressions to Boolean arrays,
about two orders of magnitude as large problems could be solved in the same execution time.

In this paper, we discussed LTLp; from an application-oriented perspective and demonstrated
its usefulness and performance by a case study. Fundamental properties of LTLp; such as ex-
pressiveness and runtime complexity of model checking and deciding satisfiability are left to be
studied in future work.

In our current experiments, we use the input language of SAL for representing LTLp; models,
adopting a Boolean encoding for sets and relations. A more adequate representation language
for LTLpz models offering explicit support for sets and relations is a major issue of ongoing
work. Ongoing is also the improvement of the implemented SMT solver in terms of supported
types of formulae and performance. Issues are, for instance, the support of cyclic expressions
and negation in unbounded domains (cf. section 4.3). To this end, a mapping of SMT(DL)
formulae onto either first order quantified SMT formulae or description logic knowledge bases
seems to be promising and calls for further examination. Finally, further case studies to compare
our approach with existing approaches such as Event-B and Alloy are necessary. In addition,
the comparison with existing state-of-the-art model checkers such as CBMC [CKL04] and SMT
solvers, which support quantified formulae such as Z3 [MBO08], is an important issue of future
work.

Acknowledgements: This work is funded by the program “Research at International Science
and Technology Centers” of the German Academic Exchange Service (DAAD). We thank the
reviewers for their detailed comments which helped to improve the paper significantly and gave
directions for future work.

Bibliography

[ABH"10] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, L. Voisin. Rodin: an
open toolset for modelling and reasoning in Event-B. STTT 12(6):447-466, 2010.

[Abr10] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

[AFO1] A. Artale, E. Franconi. A Survey of Temporal Extensions of Description Logics.
Annals of Mathematics and Artificial Intelligence (AMAI) 30(1-4):171-210, 2001.

15/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

[BBLO9]

[BCC103]

[BCGOS5]

[BCM*03]

[BGLOS]

[BNO3]

[Bru09]

[CCGT02]

[CKLO04]

[CLNOg]

[DMO6]

[Eme90]

F. Baader, A. Bauer, M. Lippmann. Runtime Verification Using a Temporal De-
scription Logic. In Ghilardi and Sebastiani (eds.), Frontiers of Combining Systems.
LNCS 5749, pp. 149-164. Springer-Verlag, 2009.

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu. Bounded Model Check-
ing. In Zelkowitz (ed.), Highly Dependable Software. Advances in Computers 58,
pp. 118-149. Academic Press, 2003.

D. Berardi, D. Calvanese, G. D. Giacomo. Reasoning on UML Class Diagrams.
Artificial Intelligence 168(1-2):70-118, 2005.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (eds.). The
Description Logic Handbook - Theory, Implementation and Applications. Cam-
bridge University Press, 2003.

F. Baader, S. Ghilardi, C. Lutz. LTL over description logic axioms. In Proceedings
of the 11th Inernational Conference on Principles of Knowledge Representation and
Reasoning (KR 2008). Pp. 684—694. Morgan Kaufmann, Sydney, Australia, 2008.

F. Baader, W. Nutt. Basic description logics. In [BCM " 03]. Chapter 2, pp. 47 — 100.
2003.

R. Bruttomesso. An Extension of the Davis-Putnam Procedure and its Application
to Preprocessing in SMT. In Proceedings of the 7th International Workshop on Sat-
isfiability Modulo Theories (SMT2009). Montreal, Canada, 2009.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, A. Tacchella. NuSMYV 2: An opensource tool for symbolic model checking.
In Proceedings of Computer Aided Verification (CAV 02). LNCS 2404. Springer,
2002.

E. Clarke, D. Kroening, F. Lerda. A Tool for Checking ANSI-C Programs. In Jensen
and Podelski (eds.), Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2004). LNCS 2988, pp. 168—176. Springer-Verlag, 2004.

D. Calvanese, M. Lenzerini, D. Nardi. Logics for databases and information sys-
tems. In Chomicki and Saake (eds.). Chapter 8 Description logics for conceptual
data modeling, pp. 229-263. Kluwer Academic Publishers, Norwell, MA, USA,
1998.

B. Dutertre, L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).
In Proceedings of the 18th Computer-Aided Verification Conference (CAV’06).
LNCS 4144, pp. 81-94. Springer-Verlag, 2006.

E. Emerson. Temporal and Modal Logic. In Leeuwen (ed.), Handbook of Theo-
retical Computer Science: Formal Models and Semantics. Pp. 996-1072. Elsevier,
1990.

Proc. AVoCS 2011 16/17

E

ECEASST

[GT11]

[Hol97]

[Jac02]

[JSS00]

[KRWO09]

[LBOS]

[LWZ08]

[MBO8]

[MOR™"04]

[NakO8]

[NF97]

[Sch93]

[Wei08]

[Yam84]

A. A. E. Ghazi, M. Taghdiri. Relational Reasoning via SMT Solving. In /7th Inter-
national Symposium on Formal Methods (FM). Limerick, Ireland, 2011.

G. J. Holzmann. The Model Checker Spin. IEEE Transactions on Software Engi-
neering 23(5):279-295, 1997.

D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Transactions
on Software Engineering and Methodology (TOSEM’02) 11(2):256-290, 2002.

D. Jackson, I. Schechter, I. Shlyakhter. Alcoa: the alloy constraint analyzer. In
Proceedings of the 22nd International Conference on Software Engineering (ICSE
2000). Pp. 730-733. ACM Press, 2000.

D. Kroning, P. Riimmer, G. Weissenbacher. A Proposal for a Theory of
Finite Sets, Lists, and Maps for the SMT-Lib Standard. Published on
http://www.cprover.org/SMT-LIB-LSM/, 2009. Visited 9 Jan 2010.

M. Leuschel, M. Butler. ProB: An Automated Analysis Toolset for the B Method.
Journal Software Tools for Technology Transfer 10(2):185-203, 2008.

C. Lutz, F. Wolter, M. Zakharyaschev. Temporal Description Logics: A Survey. In
Proceedings of the 15th International Symposium on Temporal Representation and
Reasoning (TIME ’08). Pp. 3—14. IEEE Computer Society, Washington, DC, USA,
2008.

L. de Moura, N. Bjorner. Z3: An Efficient SMT Solver. In Proceedings of the Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’08). LNCS 4963, pp. 337-340. Springer-Verlag, 2008.

L. de Moura, S. Owre, H. RueB, J. Rushby, N. Shankar, M. Sorea, A. Tiwari. SAL
2. Tool description presented at CAV 2004. LNCS 3114, pp. 496-500. Springer-
Verlag, 2004.

S. Nakajima. Model Checking with SPIN. Chapter 9: Case Study(4). Kindaika-
gakusha, Tokyo, Japan, 2008.

S. Nakajima, K. Futatsugi. An object-oriented modeling method for algebraic spec-
ifications in CafeOBJ. In Proceedings of the 19th international conference on Soft-
ware engineering (ICSE ’97). Pp. 34-44. Boston, Massachusetts, United States,
1997.

K. Schild. Combining terminological logics with tense logic. In Proceedings of the
6th Portuguese Conference on Artificial Intelligence. Pp. 105-120. Porto, 1993.

F. Weitl. Document Verification with Temporal Description Logics. PhD thesis, Uni-
versity of Passau, 2008.

T. Yamasaki. Surveys of Program Design Methods Using a Common Example Prob-
lem. Journal of IPS Japan 25(9):934, 1984. In Japanese.

17/17

Volume ?? (2011)

Eﬁ ECEASST

Symbolic Model Checking and Safety Assessment of Altarica models

Marco Bozzano ', Alessandro Cimatti |, Oleg Lisagor 2,
Cristian Mattarei !, Sergio Mover !, Marco Roveri ! and Stefano Tonetta !

'Fondazione Bruno Kessler, Trento, Italy
2The University of York, York, United Kingdom
{bozzano, cimatti,mattarei, mover, roveri, tonettas}@ fbk.eu
oleg.lisagor@cs.york.ac.uk

Abstract: Altarica is a language used to describe critical systems. In this paper we
present a novel approach to the analysis of Altarica models, based on a translation
into an extended version of NuSMV. This approach opens up the possibility to carry
out functional verification and safety assessment with symbolic techniques. An ex-
perimental evaluation on a set of industrial case studies demonstrates the advantages
of the approach over currently available tools.

Keywords: Model Checking, Safety Assessment, Fault Tree Analysis, Altarica

1 Introduction

The dramatic increase in complexity of safety-critical systems in recent years has motivated
a growing interest in model-based techniques for system verification. Such techniques must be
able to verify functional correctness, but also to carry out safety assessment, that is, assess system
behavior in the presence of faults [Ba03, ABB06, BV 10]. In particular, there has been a growing
interest in formal verification tools that can automate the generation of artefacts such as Fault
Trees and Failure Mode and Effects Analysis (FMEA) tables [FSA, BV07, BCK'10].

One of such tools is Cecilia OCAS [BBC04] — a model-based safety assessment platform
developed by Dassault Aviation, based on the Altarica [Alt, AGPR0OO] language. Altarica has
been used in the past for safety assessment of industrial systems, see, e.g., [BCS02, BBCT04].
Moreover, OCAS is being used at an industrial level for architectural safety assessment of avion-
ics systems. For example, the Flight Control System of Falcon 7x aircraft has been certified on
the basis of the OCAS analysis. OCAS is equipped with different model analysis tools, the main
ones are a trace simulator, and a sequence generator to generate minimal cut sets. However,
these tools are neither able to perform an exhaustive space examination, nor they are able to
model check temporal properties; even reachability analysis is bounded in depth. Furthermore,
developed as an in-house tool, the OCAS sequence generator does not correctly implement lan-
guage features that are not used within Dassault Aviation. In particular it is unable to adequately
explore non-deterministic instantaneous transitions, potentially leading to incomplete analysis
results (although the tool can be configured to provide a warning). Finally, the OCAS sequence
generator is based on explicit state techniques, hence it suffers from the state-explosion problem.

In this paper we propose a fully symbolic approach that overcomes these limitations, and
allows for the industrial usage of advanced symbolic verification and safety assessment tech-
niques. Our approach is based on the translation to an extended version of NuSMV [NuS], and

1/15 Volume X (2011)

Symbolic Model Checking and Safety Assessment of Altarica models Eﬁ

is tightly integrated with the OCAS environment. NuSMYV is a state-of-the art symbolic model
checker providing cutting-edge model checking technologies such as BDD-based [Bry92] and
SAT-based Bounded Model Checking (BMC) [BCCZ99] techniques. It supports both temporal
model checking (CTL and LTL temporal logics) and safety assessment, e.g., Fault Tree Analysis
(FTA) and FMEA, through its add-on NuSMV-SA. NuSMYV has been used in several industrial
contexts, for instance for verification and validation of aerospace systems [BCK ' 10].

More specifically, our contribution is as follows. First, we have isolated a fragment of Altar-
ica in the Dataflow formulation. This choice has been dictated by what is being made available
through the OCAS interface. As the semantics for this fragment is not fully documented, an addi-
tional effort has been required to provide a formal definition for its semantics, by adaptation from
the general definition of [AGPROO], and to validate its correctness with respect to the behavior
shown by OCAS and user expectations. In the course of our work, we have identified model fea-
tures that are not correctly managed in OCAS, clarified their intended semantics, and reflected
it in our tool. Based on the semantics, we have implemented a translator to convert Altarica
models into NuSMV. The translation uses HyDI [CMT11] as an intermediate language. The use
of HyDI proved to be convenient as it provides primitives to deal with networks of automata, and
different mechanisms for synchronizing them. The translator has been incorporated as a plugin,
named the NuSMV/OCAS plugin, into the OCAS environment, and it provides the following
functionalities: invariant checking, temporal model checking, and fault tree generation.

The NuSMV/OCAS plugin has been developed within the MISSA project [MIS] (More Inte-
grated Systems Safety Assessment), an EC-sponsored project involving various research centers
and industries from the avionics sector. We evaluated the plugin on a set of industrial-size case
studies developed in MISSA, and compared it with existing tools available in OCAS. The results
of the evaluation clearly show a significant advantage of symbolic techniques over explicit-state
techniques currently provided by OCAS, in terms of performance.

The paper is organized as follows. In Section 2 we give a short overview of the Altarica syntax
and semantics. In Section 3 we present the design of the translation. In Section 4 we describe the
integration into OCAS. In Section 5 we discuss the experimental evaluation. Finally, in Section
6 we present some related work, and in Section 7 we conclude and discuss future work.

2 Overview of Altarica

In this section we briefly describe the syntax of the Altarica language (Dataflow dialect imple-
mented in Cecilia OCAS) and its semantics - we refer the reader to [Alt, AGPROO] for additional
details. A simple example of Altarica model is presented in Figure 1. It consists of two counters
modulo 4 and an adder. The base component of an Altarica model is called node. Its structure
may comprise the following sections:

e sub: used to describe the hierarchy of the Altarica nodes; in this section, it is possible to
instantiate the subnodes which are the children of the current node;

e state: this section is used to declare the state variables of the (basic) node; the value of these
variables may change only upon firing of an event; this implies that their value does not
change in between two consecutive event firings (while other components are executing);

Proc. AVoCS 2011 2/15

ECEASST

1 node adder

2 flow

3 input1 :[0,3]:in;
4 input2:[0,3]:in;
5 value_out:[0,7]:out;
6 state

7 value :[0,7];

8 event

9 add,

10 fault.add;

11 trans

12 value < 7 |- add —> value := inputl + input2;

13 true |- fault.add —> value := 7
init
value := 0;
assert
value.out = value;
extern
law <event fault.add> = Exponential (0.1);
edon

-
IS

node observer

flow
out-ok :bool:out;
input1 :[0,3]:in;
input2:[0,3]:in;
inputS:[—1,6]:in;

assert
out.ok = (inputS = (inputil + input2));

I I N I N N Y e e
WOTAUBEWN OV -JaU

w
o
@
o
)
3

31 no
32

ed

47 no

de counter
flow
value.out:[0,3]:out;
state
value :[0,3];
event
inc, reset;
trans

value < 3 |- inc —> value := value + 1;
value = 3 |- reset = value := 0;

init
value := 0;

assert
value.out = value;
on

de main
event
total-reset;
sub
cl: counter;
c2: counter;
add: adder;
obs: observer;
sync
<total.reset, cl.reset, c2.reset>;
assert
cl.value_out = add.inputt,
c2.value-out = add.input2,
cl.value_out = obs.inputt,
c2.value-out = obs.input2,
add.value.out = obs.inputS;

Figure 1: An example Altarica model

init: this section is used to specify the initial value of state variables;
event: used for defining the events that can be fired and, thus, trigger a state transition;

flow: this section declares flow variables, used to describe the connections with the other

components; flow variables are linked to state variables by means of assertions; there are
two types of flow variables, namely input and output flow variables;

trans: this section is used to describe the transitions of the system; each transition consists

of a guard, the firing event, and a list of assignments; the assignments specify how the
system state changes when the corresponding event is fired; the guard is a precondition
that has to be satisfied for the transition to be taken;

assert: used to establish links from a flow variable to a state variable or another flow

variable; more specifically, it declares a set of equalities either between an output flow
variable and an expression over input flow and state variables (internal assert), or between
an input flow of a subnode and the output flow of another subnode (in-out assert), or
between an input flow of the node and an input flow of a subnode (in-in assert), or between
an output flow of the node and an output flow of a subnode (out-out assert);

e sync: used to define the synchronizations; a synchronization associates an event of the
node to the events of the subnodes; there are three types of synchronizations, namely
strong sync, weak sync, and Common Cause Failure (CCF) (cf. end of this section);

e extern: used to associate events with priorities and optional laws; priorities and some of
the laws constrain permissible order of event firing.

An Altarica model is a hierarchical graph composed of nodes. At the same level of the hi-
erarchy, nodes communicate through flows and synchronizations. The hierarchy yields a tree

structure, where two types of nodes are possible:

3/15

Volume X (2011)

Symbolic Model Checking and Safety Assessment of Altarica models Eﬁ

Figure 2: Altarica hierarchy

e component. a component represents a single process of the system, it cannot contain defi-
nition of subnodes or synchronizations;

e equipment: an equipment node represents a container for nodes; it may contain declara-
tions of subnodes and synchronizations, but it cannot have state variables.

As shown in Figure 2, this structure imposes that the component nodes represent the leafs,
whereas the equipment nodes are containers for the components. Moreover, there is a special
equipment node called main, which represents the root of the full Altarica model.

The semantics of the Altarica model is defined in terms of Interfaced Transition Systems
(ITSs) (cf. [AGPROO, Mat11]). Intuitively, the ITS associated with a component is given straight-
forwardly by the state variables (that define the states), the initial condition, the transitions, the
events and flow variables (which define the observations) of the node. The ITS associated to an
equipment node is given by the composition of the ITSs associated with the subnodes taking into
account synchronizations. The mechanisms for the different synchronizations are illustrated in
Figs. 3a, 3b and 3c, and explained in more detail in the following:

e strong sync (see example in Figure 3a): if we have a strong sync between the events e
and ey, the corresponding processes (components) p; and p, must move synchronously on
such events. This means that the transitions of p; fired by e; and the transitions of p, fired
by the event e, happens at the same time, and that e; is fired if and only if e; is fired; as
an example, the system in Figure 1 declares a strong synchronization, called total_reset,
synchronizing the reset on the two counters;

e weak sync (see Figure 3b): this type of synchronization represents a broadcast; partici-
pating events happen synchronously as in the strong sync, but only if the corresponding
transitions are enabled; this means that if the event e| of p; is fired and there exists a tran-
sition 1, of p, on the event e, whose guard is true, then e; is fired at the same time as e;;
otherwise (if the guard is false) e; is fired and p, does not change state; similarly, if e; is
fired and the guard on e, is false, p; does not change state;

o CCF sync (see Figure 3c): short for Common Cause Failure, this kind of synchronization
is similar to a weak synchronization, with the difference that individual processes are also

Proc. AVoCS 2011 4/15

E} ECEASST

&2 sync
(a) Strong synchronization (b) Weak synchronization (c) CCF synchronization

Figure 3: Synchronization examples

allowed to move on the events independently; this means that either we have a CCF sync
involving e; and e, (with the same rules of the weak sync) or e; is fired or e, is fired.

The evolution of an Altarica system can be further constrained by associating events with spe-
cial laws and priorities. By default, events are considered stochastic. These events are typically
used to model component failures and can be optionally associated with a probability distribu-
tion law (e.g., Exponential(A) law). These laws are used to establish interoperability with com-
mercial RAMS (Reliability, Availability, Maintainability and Safety) analysis tools and do not
affect qualitative behaviour of the system. However, a special law — Dirac(x) — is used to mark
instantaneous and temporal events (with x = 0 and x > 0 respectively). These events fire deter-
ministically x time steps after the guard of the corresponding transition becomes true. Whenever
more than one transition is possible at the same time, instantaneous events take precedence. The
precedence of transitions can be further constrained by event priorities (events with higher prior-
ity are fired first). For the sake of brevity, we do not describe the semantics of priorities in detail
— we refer to Section 3 for their encoding.

3 Translation

In this section we describe the encoding of the Altarica language into NuSMV. The formal trans-
lation [Matl1] has been designed using HyDI [CMT11] as an intermediate language. In the
following, we first introduce the HyDI language and then we focus on the translation of the main
characteristics of Altarica into HyDI- we refer to [CMT11] for a discussion of the translation
from HyDI to NuSMV. In particular, we discuss the management of:

e hierarchy: unlike Altarica, HyDI does not support hierarchical process definitions;
e flow variables and assertions: these definitions cannot be directly mapped into HyDI;
e event priorities: HyDI does not support the definition of event priorities;

e synchronizations: Altarica supports three kinds of synchronizations: strong, weak and
CCF, whereas HyDI supports only the first two.

Finally, we briefly discuss how to model the leaf nodes.

5/15 Volume X (2011)

Symbolic Model Checking and Safety Assessment of Altarica models Eﬁ

(a) Altarica structure (b) HyDI structure

Figure 4: Hierarchy translation

3.1 The HyDI language

HyDI is an extension of SMV [McM93] that supports the definition of networks of hybrid au-
tomata with different kinds of synchronizations. We restrict our presentation to the finite state
case, thus ignoring continuous variables and their evolution — see [CMT11] for a complete de-
scription. A HyDI program is given by a set of modules, a set of processes and a set of synchro-
nization constraints. A HyDI module extends SMV modules allowing one to specify synchro-
nization constraints. A module contains a set of declarations which define: a set of variables
(VAR); a set of input variables (IVAR); a set of initial constraints (INIT) defining the initial states;
a set of invariant conditions (/INVAR) which restricts the valid assignments to the variables; a set
of transition constraints (TRANS), defining the state transitions. A module can be instantiated in
the VAR section of another module. The main module is the top-level module of a program and
cannot be instantiated. The HyDI language allows one to define a network of processes which
run asynchronously on private events while they synchronize on shared events. The processes
are instantiated in the main module. The network is not hierarchical, since the synchronizations
are declared between processes. However, the definition of a single process may be hierarchical,
since it can contain the instantiation of sub-modules. The module used to instantiate a process
contains the definition of the set of discrete events (EVENT section) used to define its synchro-
nization with other processes. In the HyDI language a synchronization declares that two events
of two processes must be fired at the same time. A variant of this type of synchronization, called
“weak” synchronization, allows one to specify a guard which forces the synchronization only if
the guard evaluates to true. Finally, the order of occurrence of events can be further constrained
with a scheduler, modeled in HyDI by variables and constraints in the main module.

3.2 Hierarchy translation

The network of processes defined by Altarica is hierarchical in that the synchronizations may
be specified at the different levels of the Altarica tree structure. Thus, in order to encode the
Altarica specification into HyDI we perform a flattening of the Altarica hierarchy as depicted in
Figure 4b. Each Altarica equipment node is split into several new instances in order to create a

Proc. AVoCS 2011 6/15

Eﬁ ECEASST

hierarchy corresponding to the paths from the root to each leaf. This flattening is possible since
the instances of the equipment nodes cannot have definition of state variables.

For the flattening it is necessary to perform some additional transformations on the resulting
structure because of the constraints imposed by the HyDI language. In Altarica synchronization
definitions can be specified at all levels of the hierarchy (i.e., in the equipment nodes). In HyDI
they must be in the main module. Thus, we need to move all the synchronization definitions in
the top level HyDI main module. Another difference between HyDI and Altarica concerns the
definition of discrete events used in the synchronizations. In HyDI the declaration of discrete
events is done in the module definition of each instance and, thus, new events cannot be declared
in a submodule. Altarica, on the other hand, require