


Preface

AVOCS, the workshop on Automated Verification of Critical Systems, is an annual
meeting that brings together researchers and practitioners to exchange new results on
tools and techniques relating to the verification of critical systems. Topics of interest
include all aspects of automated verification, including model checking, theorem prov-
ing, abstract interpretation and refinement; application areas include various types of
critical systems (safety-critical, security-critical, business-critical, performance-critical,
etc.). Contributions that describe different techniques or industrial case studies are
encouraged.

This volume contains the pre-proceedings of the 11th workshop on Automated Ver-
ification of Critical Systems that was hosted by Newcastle University and took place
during September 1214, 2011 in Newcastle upon Tyne, UK.

Previous AVOCS workshops were held at the University of Oxford (2001 and 2007),
the University of Birmingham (2002), the University of Southampton (2003), The Royal
Society in London (2004), the University of Warwick (2005), LORIA, Nancy (2006),
the University of Glasgow (2008), Gregynog (organized by Swansea University) and
Heinrich-Heine-Universität Düsseldorf (2010). AVOCS 2012 will take place in Bamberg,
Germany.

AVOCS 2011 received 18 submissions (with authors from 13 countries) for Full Papers,
out of which 12 papers were selected for presentation at the workshop. Furthermore,
AVOCS received 11 submissions for Short Contributions out of which 8 were accepted
for presentation. The selection process was carried out by the Program Committee,
taking into account the originality, quality, and relevance of the material presented in
each submission. The selected preliminary Papers are included in this volume, together
with the contributions from the invited speakers Janet Barnes and Tom Maibaum. All
full papers will subsequently appear in an Electronic Communications of EASST.

We wish to thank all authors who submitted their papers to AVOCS 2011, Jodi
Hossbach for help with workshop organization, the Program Committee for its excellent
work and the reviewers who supported the Program Committee in the evaluation and
selection process.

We are grateful to the School of Computing Science at Newcastle University for hosting
the event and thank CSR, Formal Methods Europe and Microsoft for sponsoring AVOCS
2011. We also gratefully acknowledge the use of EasyChair, the conference management
system developed by Andrei Voronkov.
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Abstract: Altran Praxis has used formal methods within its high integrity develop-
ment approach, Correctness by Construction (CbyC), for a number of years. The
Tokeneer ID Station (TIS) developed for the US National Security Agency (NSA)
is one example of a development using formal methods and the CbyC approach.
This project used a number of rigorous techniques including formalisation of the
specification using the Z Notation, refinement of the specification to a formal de-
sign, software development in SPARK with proof of absence of run-time errors of
the software and proof of system properties. The project has stood up well to the
intense scrutiny it has been subject to since it became available to the wider commu-
nity in 2008, with only five errors being found. Despite the general success of the
approach there are challenges to using formal methods in an industrial context. By
looking at a number of key properties that affect the success of deployment of tools
and techniques in industry we attempt to put the challenges of industrial deployment
of formal methods into perspective.

Keywords: Correctness by Construction, Formal Methods, SPARK, Tokeneer, Z

1 Introduction

The application of formal methods to the development of software has long been considered by
industry as niche; only applicable to the development of core functions in particularly critical
domains, where safety or security is paramount. Industry in general perceives the application of
formal methods to be prohibitive for a number of reasons: cost, familiarity and maturity often
being cited [Hal90].

Altran Praxis has applied formal methods in a number of its development projects [Hal96,
HC02, KHCP00, TIS]. This paper looks at the way that Altran Praxis approaches software
development via its Correctness by Construction approach [Ame06], considering how formal
methods support the fundamental goals of the approach. It then explores the Tokeneer project as
an example of a CbyC implementation where formal methods were adopted at every point in the
lifecycle. Taking the view of an experienced industrial user of formal methods this paper takes a
critical look at some of the criteria that impact the actual and perceived success of the adoption
of formal methods. In conclusion, this paper questions whether industry is in a position to drop
long held prejudices that Formal Methods are too challenging to use in practice and considers
what changes are needed to fully overcome such prejudices.
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2 Correctness by Construction

Over 20 years Altran Praxis has distilled the essence of best practice, captured from observation
and experiences, into a principle of software development referred to as Correctness by Construc-
tion (CbyC). The key philosophy of CbyC is to avoid the introduction of errors; but where errors
are injected, to find and remove them as early as possible; and to gather certification evidence
efficiently as a natural by-product of the process.

2.1 Applying Correctness by Construction

Correctness by Construction does not prescribe particular tools or techniques in order to achieve
its aims. However, it does propose a number of characteristics to be applied across the develop-
ment lifecycle.

• Use unambiguous notations. Ambiguity makes it difficult to determine whether or not
errors exist and misinterpretation is a source of error introduction. Using a notation that
has a well defined and well understood semantics removes ambiguity. Such notations often
benefit from tool support, which can assist in verification.

• Take small steps. By taking small semantic steps between stages of the lifecycle it is easy
to demonstrate that one development stage has been correctly refined from its predecessor.

• Use appropriate notations. Accept that a given notation may be powerful at expressing
certain system properties but clumsy for expressing others. The aim is to use notations
that allow the system properties or behaviour to be expressed simply. Don’t attempt to use
a single notation if this results in key system properties being difficult to express. Awk-
ward expressions can be difficult to interpret or verify. Similarly, use the most appropriate
verification techniques at each stage. Expect the outputs at each stage in the lifecycle to
be clear and simple to understand.

• Don’t repeat information. Each stage of the lifecycle should have a well defined purpose
and focus on the new detail being introduced rather than repeat information. It is then clear
what information has been introduced and what needs to be verified — rather than wasting
energy verifying that information has been correctly copied from one source to another.
Duplication can also be expensive during maintenance as it may become inconsistent and
thus a source of error and confusion.

• Check each stage before progressing. Each design step should be verified as soon as
possible to eliminate errors introduced in that stage. Effective reviews are crucial; reviews
should clearly identify what an artefact is being reviewed against and the purpose of the
review. Where review checks can be automated — such as coding style checks — then
tool support should be used early.

• Justify decisions. Document the justifications for why design decisions were made, why
they are appropriate, and any arguments demonstrating correctness of the decision. Such
justifications support future analysis — especially in the event of implementing changes to
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a system, but more importantly the process of documenting what you do is highly effective
at driving out errors during development.

• Solve difficult problems first. Manage development risks by solving difficult problems
early. This also drives down the level of internal change that might otherwise be introduced
if risks mature later.

Many of the approaches advocated here also contribute to the provision of strong verification
evidence that, if collected appropriately, can contribute positively to the construction of a cer-
tification argument, demonstrating that the system has been built respecting safety or security
needs. None of the concepts are new or radical; if anything it is the careful application of sound
engineering practices using understood tools and techniques that has made this approach suc-
cessful.

2.2 Using formal methods within the CbyC framework

The CbyC approach is particularly powerful when instantiated with formal methods and ap-
proaches. Formal methods have precise semantics and often have an associated language of
reasoning that enables the user to unequivocally demonstrate the truth or otherwise of a property.
Specification languages such as the Z Notation [Spi85] benefit from a richness of notation that
allow the application to be described in terms of real world entities and relationships; Z supports
both the concepts of refinement and encapsulation. In Z, data and operation refinement allow an
abstract specification to be refined toward a concrete, executable realisation. Z’s schema notation
allows detail to be hidden except at the point of introduction and makes complex specifications
manageable, giving focus to the aspects of interest at a given point in a specification and al-
lowing the problem to be decomposed into small, manageable fragments. Notations such as CSP
[Hoa85] are powerful for modelling and reasoning about concurrency problems, especially when
used in conjunction with model checkers such as FDR [FDR]. SPARK is a subset of the Ada
programming language enhanced with contracts that has a formal semantics and is supported by
a suite of tools: the Examiner, Simplifier and Proof Checker, that allow conformance to language
and program properties to be proven. All these notations (Z, CSP and SPARK) provide points in
the development lifecycle prior to the production of object code, when there are artefacts with a
clear semantics. This enables these artefacts, specification and design documents, or source code,
to be formally verified, either as a refinement of a previous lifecycle phase, or more commonly,
as possessing key properties.

Interestingly, many of the benefits of formal notations do not come from the application of
verification techniques, tool supported or otherwise, but from the additional attention to detail
imposed on the author when applying the techniques. Although tools can help to demonstrate
(partial) completeness or correctness it is often before the point of application of such tools that
benefits are first realised as the very act of expression within a formal notation causes the author
to explore the problem domain with a logical mindset — thereby detecting and investigating
incompleteness in the requirements early in the lifecycle.

Having said that, the ability to use tool support to automatically check properties of the system
and even simulate aspects of the system under development is extremely powerful at detecting
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early lifecycle errors and demonstrating properties of the final system to the customer or key
stakeholders.

3 The Tokeneer ID Station Experiment

The aim of the Tokeneer ID Station (TIS) Experiment [TIS], commissioned by the US National
Security Agency (NSA), was to determine whether it was possible to write software to the stan-
dards imposed by EAL5 of the Common Criteria [ISO99] in a cost effective manner.

The method by which the experiment was undertaken was for Altran Praxis to redevelop a
well defined component of the existing Tokeneer System [RL98] using the CbyC approach ap-
plied using formal notations at every stage of the development lifecycle. Tokeneer was a system
previously developed by the NSA as an unclassified demonstration of the use of smart cards and
biometrics. CbyC was applied in the redevelopment of the core functions of one component of
the Tokeneer system. The development was assessed against EAL5 of the Common Criteria to
determine whether the approach achieved the necessary assurance evidence to certify a security
system to EAL5. By monitoring the skills needed to perform each stage of the development
approach and the effort involved it was also possible to establish whether the approach was cost
effective.

The experiment was time boxed and some activities were not completed but an estimate of the
cost to complete the activity was provided in all cases to allow the true cost of the approach to
be determined.

3.1 The Tokeneer system

Tokeneer provides protection to secure information held on a network of workstations situated in
a physically secure enclave. The Enrolment Station issues tokens to users. To do this it relies on
a Certificate Authority (CA) to generate user ID Certificates and an Attribute Authority (AA) to
generate attribute certificates containing clearance and privilege information and biometric infor-
mation. The TIS provides protection to the enclave by checking whether the user is authorized
to enter the enclave and adding a certificate to the user token that authorizes the user to operate
on the workstations within the enclave. The workstations check the certificate added by the TIS
station to determine whether the user is authorized to use the facilities it provides.

Once initialised, the TIS holds public keys for the CA and AA. The primary function of the
TIS is controlling user entry. The entry process being as follows: the user presents a token
to the TIS containing three certificates, the user ID certificate, a biometric certificate containing
fingerprint data, and a privilege certificate containing the role and privileges held by the owner of
the token; the TIS checks the validity of these certificates and ensures they are signed by known
authorities. The user then presents their finger to a fingerprint reader and the TIS authenticates
the user by comparing the biometric data on the token with a scan of the user’s finger. If this data
matches and the user privileges allow them access to the enclave then a further authentication
certificate is added to the token, (this is a certificate of relatively short duration) and then unlocks
the enclave door, permitting access. If at any point the TIS deems there to be a breach of security
an alarm is raised. There are also a number of administrator functions that TIS offers to users
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properties of the particular installation such as operating hours and security classification of 
the enclave. 
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Figure 1:Overall Tokeneer System 
The complete Tokeneer system consists of a secure enclave and a set of system components, 
some housed inside the enclave and some outside. 
 
Only the core functions of the TIS were developed using the full high integrity Correctness by 
Construction approach. Biometric and cryptographic components were simulated as were all 
external devices. The interfaces to external devices were developed using industry good 
practice but without the application of formal methods.  
 
The customer introduced a change to the requirements part way through the design as a test to 
the robustness of the process. They added a requirement for the system to permit entry to the 
enclave to a user who had a valid authentication certificate on their token without needing to 
repeat the biometric checks. 

3.2 The lifecycle 
The TIS development lifecycle is depicted in Figure 2, it comprised six distinct phases: 
requirements analysis, security analysis, specification, design, implementation and test. 
 

Figure 1: Overall Tokeneer System

with the appropriate roles. These are archiving log data of all transactions, overriding the door
lock, and updating the configuration data which controls properties of the particular installation
such as operating hours and security classification of the enclave.

Only the core functions of the TIS were developed using the full high integrity Correctness
by Construction approach. Biometric and cryptographic components were simulated as were all
external devices. The interfaces to external devices were developed using industry good practice
but without the application of formal methods.

The customer introduced a change to the requirements part way through the design as a test
of the robustness of the process. They added a requirement for the system to permit entry to
the enclave to a user who had a valid authentication certificate on their token without needing to
repeat the biometric checks.

3.2 The lifecycle

The TIS development lifecycle is depicted in Figure 2, it comprised six distinct phases: require-
ments analysis, security analysis, specification, design, implementation, and test.

Requirements analysis followed Altran Praxis’ requirements engineering approach REVEAL
[HRH01]. Key to this process was clear identification of the system boundary — important in
this experiment was a clear understanding of boundaries between core functionality, to be de-
veloped to EAL5 criteria, supporting software, and functionality out of scope of the experiment
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Figure 2: The development process

— for instance the original Tokeneer system additionally used a password in the authentication
sequence. The context in which the TIS operated was also analysed giving a clear understanding
of the TIS environment, such as the certificates generated externally and the way in which the
door and its locking mechanism operated. Scenarios representing successful and erroneous inter-
actions with TIS were developed with the customer to gain a clear understanding of the required
behaviour of the system.

Security Analysis was performed orthogonally to the remainder of the development process,
it responded to the supplied Protection Profile with a security target and development of the
security properties required of the TIS. These activities focussed on the security needs of the
system without consideration of the required user functionality. A key output of this activity was
a Formal specification of the security properties developed using the Z notation.

Specification of the TIS took the form of a formal behavioural specification developed using
the Z notation. The specification provides an abstract model of the system, focusing on inter-
actions of the system with its real world interfaces, ignoring internal details. By developing a
behavioural model of the system it was possible for the details of the proposed behaviour of the
system to be presented early — before code production. With the help of customer review we
were confident that we were planning to build the right system.

Design was divided into two components. The Formal design, again developed in Z, is a
refinement of the specification introducing the internal details of how the system works — in
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Figure 3: Assurance Activities

the case of TIS the design resolved some priority issues which led to the specification being
potentially non-deterministic in its behaviour, additionally the details of logging and the structure
of certificates as raw data streams were introduced.

The INFORMED design [Ame01] focused on developing a software architecture, it identifies
implementation modules and the information flow between them, it apportions each component
of the formal design to the program module that implements that component, it also covers file
structures and constraints not covered formally.

Implementation of the core TIS is written in SPARK [Bar03] using both flow and proof
contracts. Data and information flow analysis and proof of absence of run-time errors were
done before code review and compilation. Implementation from the formal design was relatively
straightforward — with simple mappings between predicates and code fragments.

Testing was limited to system testing, which was based on achieving a basic level of coverage
of all the schemas in the Formal Design. Ordinarily this would have been undertaken with code
coverage metrics being collected to ensure an adequate coverage of the source code had been
achieved. The Formal Design provided a very clear definition of the required behaviour of the
system on which to base tests.

The aspects of the implementation process that were more radical were the verification activi-
ties. These focused on verifying the correctness of each lifecycle phase early. Further, by using
consistent Formal notations for the Security Properties, the Formal Specification and the Formal
Design, it was possible to prove that the Formal Specification adhered to the Security Properties
and that the Formal Design was a refinement of the Specification. The other area where proof
was applied was in the code, in addition to proving the absence of run-time errors, some of the
security properties were expressed as SPARK proof contracts, the code was then proven to con-
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form to these properties. Figure 3 demonstrates the assurance activities undertaken, excluding
review which occurs as each component is complete. Each assurance activity was undertaken
as soon as all the inputs to the activity were complete and before proceeding to the next lifecy-
cle activity allowing errors introduced at each phase to be driven out by more than just review
scrutiny.

3.3 Results and subsequent scrutiny

The key outputs of the project were a 100 page behavioural Z specification; the core software
comprised 9,939 lines of code with 6,036 lines of flow contracts and 1999 lines of proof con-
tracts. The supporting software, written in Ada95, comprised 3,697 lines of code. The entire
development required 260-man days, provided by three people working part time over 9 months.
The productivity over the project as a whole was 38 lines of code per day, with the coding rate of
the core software working out at 208 lines of code per day against a rate of 182 for the support
software. Analysis [BC03] showed that the process had been developed to EAL5 and in some
areas had exceeded the requirements of EAL5 particularly in the levels of formalism applied.

The whole project archive was donated to the Verified Software Repository in 2008 [TIS] and
has subsequently been subjected to wide ranging scrutiny. To date, five defects have been found
in the core software. These defects are fully documented in [WAC10] and were found through
a combination of application of improved tools and critical review. Two of these are completely
benign in the code as it stands, the other three represent potential insecurities in the software.
Of these three, one would have been detected by the latest variants of the toolsets used on the
project — assuming the most demanding levels of checks were selected, a further would have
been detected by undertaking program proof of the remaining security properties and the last
could have been detected following scrutiny of code coverage results.

These results are encouraging and suggest that, with the latest tools, the application of formal
methods supports the development of high quality software suitable for critical domains. Of
course, we can never be certain that every fault has been found but the level and variety of
external scrutiny to date gives considerable confidence in the state of the Tokeneer core software.

Further, the results presented in [MW10] show that following extensive review of the whole
code base and the use of CodePeer the most significant errors were found in the support software.
This was written by the same engineers as the core software, but without the application of
formal techniques such as SPARK and development from a formally specified design, giving a
fair indication that the development process used on the core software did indeed produce higher
quality software.

4 Challenges using formal methods in industry

It is clear from the results of Tokeneer that the application of formal methods can result in the
efficient delivery of high quality software. However, the uptake of many of the approaches on
an industrial scale has been limited. From a technical and commercial viewpoint this seems
like a missed opportunity on the part of industry in general. To try and understand the reasons
behind the apparent lack of industrial enthusiasm, the remainder of the paper seeks to establish
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more abstract qualities of development and verification approaches which impact their successful
adoption, taking as read that any formal approach will offer unambiguous notations and the
opportunity for analysis of the system.

We propose that the following list is a representative, but not necessarily exhaustive, character-
isation of desirable properties of any development notation, regardless of whether it constitutes
a formal notation:
• scalable,
• notation approachable to all stakeholders,
• expressive (ease of capturing the problem),
• tool supported.

It is often the ability to satisfy these demands that influences the adoption of an approach,
rather than the more obvious technical questions of whether the method or tools fulfil the goals of
expressing the desired functionality and contributing towards a correct software implementation.
In the following sections we consider these attributes in more detail and measure the success of
the notations used in the development of Tokeneer against these criteria.

4.1 Scalable

This is a property that is well understood as being key to industrial applicability. There are two
aspects to scalability, first whether the notation allows large problems to be expressed in a way
that is still manageable to the authors and consumers of the artefact; secondly whether tooling
associated with the notation is able to perform efficiently when processing representations of
large problems. We look in more detail at the former problem. The problem of scalability is
constant across the development lifecycle — a system that is complex is likely to have many re-
quirements, a large design and a considerable code base. Effective notations offer encapsulation
and modularisation which aid the presentation of information in manageable portions.

Tokeneer is small as industrial applications go. It has Altran Praxis’ smallest Z specification
covering full functional behaviour. Altran Praxis’ most recent Z specification contains over 3000
schemas, the final developed system being of the order of 150KLOC of SPARK Ada demon-
strating that the Z notation and SPARK are scalable. Larger SPARK developments have been
undertaken outside of Altran Praxis.

In Z we can decompose the system state into logically cohesive components, developing struc-
ture within the system data model and allowing system behaviour to be decomposed into opera-
tions acting on a particular partition of the state. Overall system behaviour is achieved through
composition of partial behaviours. This allows the participants of the specification to be able to
contemplate the system using a divide and conquer approach, only ever needing to consider a
small fragment in detail at any one time.

SPARK similarly allows the system to be analysed in fragments — making use of a rich
package specification to allow components to be analyzed in isolation. Data abstraction also
allows detail to be hidden from public contracts of a package and prevents contract proliferation.
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Figure 4: Artefacts and stakeholders

4.2 Approachable notation

A notation is considered approachable if it is usable by all those stakeholders who need to interact
with it. The usability of a notation will depend on the familiarity of the notation — this familiarity
can be acquired through use, although the ability to make such a transition to a notation will often
be influenced by the underlying skills of the individual who needs to acquire the notation. To
this end there are two things that influence the success of the notation to be approachable: the
diversity of stakeholders who need to be involved with the notation and the difference between
the notation and the languages already familiar to the stakeholders.

A system specification is likely to have a large number of stakeholders with diverse expertise,
from end-users and customers to coders. The end-user and the customer are unlikely to be experts
in the specification notation, although for the specification to be truly effective both the customer
and the end-user will need to understand the system that is being specified — by doing so they
will gain confidence that the system that is about to be built will offer the desired functionality.
In the case of Tokeneer we were privileged to have a Z expert as our customer. However, where
the customer and end-users are not experts in the notation we introduce a potential language
barrier at a crucial early stage in the development lifecycle. It is at the point of developing
the specification that we are first likely to uncover omissions from the requirements, details of
corner case behaviours that the requirements don’t define. Finding and resolving these at the
point of specifying the system is highly efficient and reduces surprises in the system behaviour
and increases the likelihood that we construct the desired product.

There are that can be employed to reduce the language barrier — Altran Praxis has a policy
of supplying a high level of English language description alongside the formal notation although
reading just the (imprecise) English text will loose the value of the precise formal notation. Pro-
vision of training can be effective where there is not too great a disparity between customer,
end-user skills and the selected notation, However, training requires a high level of customer
commitment and can be problematic where the customer or end-user representation is large.
Animation and scenario modelling are powerful as they allow demonstration of features of the
system based on the specification, however a large specification can result in state space explo-
sions and exploring all cases exhibited by the animation could be prohibitive in terms of time.
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Even relatively simple aspects such as the documentation environment can prove significant
hurdles in terms of familiarity of notation. For example the predominant text preparation method
for Z is via the use of LATEXwhile the industrial norm for document production is Microsoft
Word or the like. In recent years tools have been developed to support the direct incorporation
of Z paragraphs into Word documents [Hal08] thereby simplifying the process of generating
documentation which incorporates textual descriptions, diagrams and formal paragraphs.

It is attractive from a commercial supplier perspective to obtain agreement to the specification
and deliver to the specification; however this is only a practical proposition where the customer
is truly engaged in the notation. A more realistic goal is for the specification to be viewed
as an artefact internal to the development which allows pertinent questions to be asked of the
customer or end-user; the questions being asked in a language familiar to the customer. Taking
this approach we need to accept that it is highly possible that when producing a specification
there will be differences of interpretation and that these differences may not be realised until the
system is validated — this feels like a lost opportunity although it is no less powerful than using
informal or semi-structured notations to deliver the system specification — where the notation
would be insufficiently precise to detect many of the points of clarification that are uncovered
when writing a formal specification.

Altran Praxis’ experience with the use of Z as a specification language is that Z reading skills
are easily acquired by coders and verifiers alike, suggesting that software engineers typically
possess the necessary logical deductive skills appropriate to interpreting the Z notation.

By contrast the number of stakeholders involved with the source code, who might be required
to understand notations associated with formal code analysis or proof are fewer. Furthermore, it
is often possible to express the proof language in a semantics which represents a modest exten-
sion from the code semantics. There is a small semantic gap between the SPARK language and
Ada making it a relatively painless transition for an Ada programmer to be able to correctly ex-
press and interpret SPARK contracts and the verification conditions generated by the associated
tools.

4.3 Expressiveness

One of the fundamental characteristics of the CbyC approach to software development is to take
small steps between lifecycle stages so that at no point is there a large semantic gap during the
refinement from specification to code. Taking this idea back a stage further it is important to
be able to describe the system in its real-world context as easily as possible in the specification.
Often to achieve this we need to express complex properties of the system’s interaction with the
environment. To this end a highly expressive notation can be extremely effective, allowing a wide
range of concepts to be captured without significant overhead of constructing building blocks
that take the specifier’s attention away form the problem domain and the task of expressing the
behaviour of the system within that domain. Formal refinement techniques can then be used
to transition from an abstract representation toward a design that can be simply implemented.
However, the richer the language the harder it is to become an expert in the full language — this
seems to be a true dilemma, not only to humans as users of the notation but to the provision of
tool support to provide automatic verification.

Our experience in the development of industrial scale specifications is that the use of Z as a
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highly expressive notation is extremely powerful in allowing the engineer to focus on capturing
the correct description of the system’s behaviour, without excessive distractions from having to
find a way of encoding the relationships with a restrictive language.

Expressiveness becomes less of a critical characteristic of the notation as we move through
the lifecycle toward code. Industrially used programming languages such as Ada and C and their
language subsets such as SPARK Ada and MISRA C are sufficiently expressive to implement
the system.

4.4 Tool support

One of the benefits of using formal notations is that they have sound semantics which make them
amenable to tool supported verification, from the most basic syntax checking to automated or
semi-automated proof. Without the underlying semantic definition it is difficult to make anything
but basic checks on an artefact.

Automated verification is a highly powerful way of finding errors and inconsistencies in the
outputs of the development lifecycle. Furthermore it is typically repeatable and should not be
subject to human error. However, for automated verification to be cost effective, that is detect
a sufficiently high density of faults in a sufficiently short period of time, there are a number of
characteristics that need to be exhibited by the automated verification technique. The tools that
support the technique need to be
• fast,
• trustworthy and supported,
• easily interpretable.

4.4.1 Speed

An effective verification tool must be sufficiently fast that the checks to be run repeatedly in
a cycle of develop – check – correct – check. The speed of a tool is highly dependant on the
modularity of the notation; the class of checks being undertaken and the amount of the system
that the tool needs to interpret to enable it to perform its analysis. The speed of the Examiner is
achieved by the analysis of one package body only being reliant on the enriched specifications
of the other packages that are used by the package under analysis. The fuzz type checker [Spi] is
fast due to the limited scope of its analysis. Both are sufficiently fast that they can be repeatedly
run during development to ensure that the development output is being constructed correctly.
Any checks that need to be run overnight cannot easily be used effectively as development is
undertaken — although they can be used in the performance of final verification activities.

4.4.2 Correctness and Support

It is important to discuss correctness and support together as it is unlikely that any software
product is completely fault free, but if support is readily available to handle faults found then
the product can be considered fit for purpose. When a method and associated tools are selected
for use on a project in industry the answers to the following questions will be fundamental to
whether the tools are selected for use:
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Can I get help in using the product?
Will the product be fixed promptly if I find a fault with it?
Will the product still be supported in 10 or 20 years time?
Will the product be considered appropriate by any certifying body?

If a development programme has chosen to include a tool in its development or verification
strategy then training of personnel in the use of the tool and technology will be paramount, not
knowing how to use a product to its best effect is expensive in time and a waste of the investment
in the technology.

If a tool is found to be faulty in some respect then it is crucial for the development programme
to either upgrade to a corrected version of the tool or fully understand the limitations otherwise
there can be profound cost implications on the programme as a revised development or verifica-
tion technique would need to be introduced. There is a widely held view that a product being
open source means that it can be corrected, but this assumes that the source can be understood
by the user. Even where the source for a tool is supplied there are significant costs and risks
involved to anyone proposing modification to the tool.

Life expectancy of the tool suite is often of key concern to industrial developers. Many con-
tracts include ongoing maintenance requirements and if the system is to be maintained then its
development environment needs to be maintained and supported for the in service life of the
software product. Although this is a risk with any tool, the risk is perceived to be greater where
the tool is not itself available with a support contract.

Where the software under development is of a safety or security critical nature it is likely that
a regulatory body will assess the processes, methods and tools used during development. Any
tool where the output is used to gain verification credit will be expected to have an appropriate
pedigree — either gained through a good history of use in the field, or by demonstration that the
tool itself has been developed to a high standard.

4.4.3 Interpretation of output

Quality of the output of a verification tool dramatically impacts the time consumed analysing
output and correcting inputs. Developments in tools to include hyperlinked renditions of the
material analysed to aid navigation to the source of errors have been powerful at reducing anal-
ysis time. The Z Word tools [Hal08] do this to great effect allowing the user to run fuzz on the
Word document and then jump from each error message to the source of the error in the Word
document.

The level of false alerting of a tool can be crucial to its effectiveness, a tool that identifies a
large number of potential problematic outcomes in the output will absorb a considerable amount
of manpower in checking and justifying those cases that the tool could not provide a negative or
affirmative outcome. One of the significant successes of the Examiner and Simplifier is the high
percentage of verification conditions (VCs) generated through checking for absence of run-time
errors that are automatically discharged. This makes the activity of checking the outstanding
VCs manageable and has made the proof of absence of run-time errors in SPARK programs an
option that is widely used.
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5 Conclusion

Formal methods have a huge amount to offer industry in terms of providing unambiguous no-
tations that are suited to formal verification that can in turn be automated. Many industrial
standards for development of software at the highest integrity levels encourage the use of formal
methods [ISO99, DEF97, EN 01] — to the point that it can be cheaper to conform to the standard
by using a development approach that makes use of formal methods than relying on a test driven
argument for certification. The results of the Tokeneer project are a clear demonstration that
the application of formal methods is a cost effective route to the development of high integrity
software. Despite this, the adoption of formal methods by industry is perceived as difficult. This
paper has looked at some of the less technical aspects that influence decisions about the process
by which software is developed and has considered why these aspects rather than the technical
merits of the approach are likely to be significant barriers to acceptance of formal methods.

Of the four key industrial indicators for the acceptability of a general development notation
considered in this paper, scalability and expressiveness are being addressed by formal methods.
The approachability of the notation is more challenging where the notation becomes exposed to
a wide range of stakeholders, so this indicator is most applicable to early lifecycle activities such
as systems specification, where interaction with the customer or end user becomes necessary
to establish the desired behaviour. A number of tactics have been explored that suggest that
approachability of the notation can be addressed by careful choice of the manner of presentation.

This suggests that the most significant barrier to industrial acceptance is the availability of
supported tools — there is a relative plethora of tools available open source that provide the
desired levels of automation, however, this is insufficient. In an industrial context, the need for
tool qualification, fitness for purpose arguments, training and ongoing support make the adoption
of open source tools without support contracts too high a risk on exactly the classes of project
that would most benefit from automated verification. To overcome this hurdle, formal methods
tools need committed maintenance — this requires collaboration between industry and academia
to place supported products in the marketplace at a price that allows adoption on both modest
and large scale applications.

Acknowledgements: My gratitude goes to John Barnes, Rod Chapman and Neil White for
their comments on the draft of this paper.
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Integrated Model Checking of Static Structure and Dynamic
Behavior using Temporal Description Logics
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Abstract: This paper presents a new notation for the formal representation of the
static structure and dynamic behavior of software, based on description logics and
temporal logics. The static structure as described by UML class diagrams is rep-
resented formally by description logics while the dynamic behavior is represented
by linear temporal logic and state transition systems. We integrate these descrip-
tions of static and dynamic aspects into a single formalism called LTLDL. LTLDL

enables a concise and natural yet precise definition of the behavior of software w.r.t.
UML class diagrams and state transition diagrams. We demonstrate our approach
on the sake warehouse problem. Further, we describe how properties of finite LTLDL

models can be analyzed based on bounded model checking and SMT (satisfiability
modulo theory) solving. We implemented a restricted SMT solver for finite sets and
relations. This SMT solver helped to reduce the model checking runtime signifi-
cantly as compared to bounded model checking with SAL.

Keywords: Bounded Model Checking, Temporal Description Logics, SMT

1 Introduction

UML class diagrams and state transition diagrams are widely adopted for modeling software. It is
desirable to detect flaws in these models as early as possible prior to implementation. We propose
a new integrated approach on representing and checking consistency criteria for system models
consisting of class diagrams and state transition diagrams. We base our approach on description
logic, temporal logic, bounded model checking, and satisfiability modulo theory (SMT) solving.

Description logics are expressive for representing the static structure of some application do-
main. Their expressiveness is closely related to UML class diagrams [BCG05]. Temporal logics
are well-suited to describe the behavior of processes in a formal yet abstract way. We propose
to combine these formalisms in a family of temporal description logics called LTLDL, to be able
to address both the static and dynamic aspects of modeled systems. This goes beyond existing
approaches such as Alloy [Jac02] or Spin [Hol97] which focus either on the static structure or
on the dynamic behavior of the modeled system.

For the formal verification of LTLDL properties, we propose a new approach based on bounded
model checking and SMT solving. In a first step, LTLDL models and formulae are transformed
for a certain bound k into a non-temporal SMT(DL) formula which is a Boolean formula over a
restricted theory of finite sets and relations. We implemented a solver for this theory based on
OpenSMT [Bru09]. Experimental results show a higher performance as compared to Boolean
encodings of relational models and SAT solving.
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The contributions of the paper are:

1. Definition of the family of temporal description logics LTLDL as a generalization of
ALC−LTL proposed in [BGL08].

2. Demonstration of the usefulness of LTLDL for representing static and dynamic properties
of software models w.r.t. UML class and state transition diagrams.

3. Approach on model checking LTLDL, based on bounded model checking and SMT solving.

The rest of the paper is organized as follows: first, we introduce the sake warehouse problem
as a demonstration case, and model its static structure and dynamic behavior. Next, we define
LTLDL and discuss its application to the sake warehouse scenario. In the sequel, we present
our approach on bounded model checking LTLDL using SMT solving. Finally, we compare our
approach with existing work and conclude the paper.

2 Sake Warehouse Scenario

We demonstrate our approach using the sake (Japanese liquor) warehouse scenario which has
been published in 1984 [Yam84] as a shared scenario for comparing different modeling and
programming methods. In Japan, it has been used extensively to evaluate modeling and analysis
methods [NF97]. We summarize the scenario as follows: A sake shop has a warehouse in which
containers are stored. A container contains bottles of one or more brands of sake. Customers
place orders to the shop. Each order may include one or more brands of sake. If all ordered
brands are on stock, the order is delivered immediately to the customer. Otherwise, the customer
is notified and the order is put on a list of pending orders. Whenever new containers enter the
warehouse, pending orders are checked and delivered in case of sufficient stock.

We use this scenario to illustrate the following steps of our approach:

1. Modeling the static structure in terms of a UML class diagram.

2. Modeling the dynamic behavior in terms of a state transition diagram.

3. Representing target properties w.r.t. the models of step 1) and 2).

4. Checking target properties, using SMT-based bounded model checking.

2.1 Sake Warehouse – Static Structure

Figure 1 depicts a UML model of the static structure of the sake shop scenario.
A sake shop keeps a stock and maintains a list of pending orders (Figure 1 top). The stock

consists of a number of containers each of which may contain bottles of several sake brands
(Figure 1 lhs). The sake shop receives new containers at regular intervals (Figure 1 lhs top).

The sake shop handles orders which are placed by customers (Figure 1 center). Each order
contains one or more requested sake brands (Figure 1 lhs). During the order handling process,
an order may become delivered, or pending if it cannot be delivered immediately because of
insufficient stock (Figure 1 bottom). Pending orders are put on the pending list (i.e., list of
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Figure 1: class diagram modeling the static structure of the sake shop.

pending orders) (Figure 1 rhs) and become notified (Figure 1 bottom) as soon as the shop keeper
issues a notification about the delayed order to the customer.

2.2 Sake Warehouse – Behavior

Figure 2 models the basic behavior of the sake shopkeeper.
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Figure 2: state transition diagram modeling the behavior of the sake shopkeeper.
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Initially, the shopkeeper waits for an order or new incoming stock (Figure 2 rhs top). When an
order is received, it is checked, whether all ordered brands are on stock (Figure 2 rhs bottom).
If this is the case, the stock is updated and the order is delivered (Figure 2 rhs). Otherwise, the
order is added to the list of pending orders and the customer is notified (Figure 2 center).

If the sake shop receives a container, it is put on the stock and the stock is updated (Figure
2 lhs center). Next, it is checked, if there are any pending orders and if the updated stock is
sufficient for delivering any of them (Figure 2 lhs top). If this is the case, an appropriate order
will be picked, removed from the list of pending orders and delivered (Figure 2 lhs). Further
pending orders may be delivered as long as there is sufficient stock (Figure 2 lhs).

3 Sake Warehouse – Representation of Target Properties

We aim at representing properties w.r.t. both the static model and the behavior model of some ap-
plication domain. In the case of our sample scenario, the following properties may be important
to meet:

P1 Whenever a customer places an order, the customer will receive some response which may
either be the delivery of the order or a notification that the order is pending because of
insufficient stock (cf. [Nak08]).

P2 Orders may not be pending forever, i.e., orders delayed due to insufficient stock will be
delivered eventually.

P3 If orders are pending then repeatedly incoming stock will eventually cause an order to be
delivered.

P4 Pending orders will be handled with higher priority, i.e., a pending order of some brand X
will be delivered before new orders of brand X (cf. [Nak08]).

We propose LTLDL for the formal representation of such criteria. LTLDL is a modular compo-
sition of linear temporal logic and description logic (DL). This allows for the representation
of properties that address both the static structure and dynamic behavior since the semantics of
UML class diagrams can be represented well by DL, and properties of state transition diagrams
can be expressed by LTL. Before we define syntax and semantics of LTLDL, we briefly review
LTL and description logics.

3.1 Preliminaries – LTL

LTL (linear temporal logics) [Eme90] is supported by many model checking tools for the speci-
fication of requirements that should be met by automata-based models of the system’s behavior.

Definition 1 (LTL syntax)
Let P be a set of symbols representing atomic propositions and a ∈ P an atomic proposition.

Then LTL formulae p,q are built according to the following rules:

p,q → a (atomic proposition) | ¬p (not) | p∧q (and) | p∨q (or) | p→ q (implies) |
Xp (next) | Fp (future/eventually) | Gp (globally/always) | p U q (until)
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LTL formulae are interpreted w.r.t. state transition systems M = (S,R,L) where S is a non-
empty, finite set of states, R ⊆ S× S is a left-total transition relation and L : S→P(P) is a
labeling of states s ∈ S with sets of atomic propositions L(s)⊆ P that hold at s.

Definition 2 (LTL semantics)
Let M = (S,R,L) be a finite state transition system and x = (s0,s1, ...) an infinite path in M,

i.e., si ∈ S and (si,si+1) ∈ R for each i ∈N. Let xi = (si,si+1, ...) denote the tail of x starting from
state si. Let a be an atomic proposition and p,q LTL formulae. Then

x |= a iff a ∈ L(s0)
x |= ¬p iff x 6|= p
x |= p [∧ ∨→] q iff x |= p [and or implies] x |= q
x |= Xp iff x1 |= p
x |= Fp iff there is i ∈ N : xi |= p
x |= Gp iff for all i ∈ N : xi |= p
x |= p U q iff there is i ∈ N : xi |= q and for all j ∈ {0, ..., i−1} : x j |= p

x |= p expresses that path x satisfies p (or p holds on path x, respectively). An LTL formula p is
considered to hold at a state s ∈ S, denoted as s |= p, iff for all paths x = (s,s1,s2, ...) in (S,R)
starting at s, it holds: x |= p.

3.2 Preliminaries – Description Logics

Description logics is a family of fragments of first order predicate logics that are well-suited for
formalizing the meaning of UML class diagrams (cf. [BCG05]).

As for this paper, we choose the description logic ALC for further illustration. However, the
modularity of our approach allows for adopting any other decidable description logics depending
on expressiveness and performance requirements. We briefly review the syntax and semantics of
ALC as defined, for instance, in [BN03].

Definition 3 (ALC syntax)
Let C be a set of symbols called atomic concepts representing sets, and R be a set of symbols

disjoint from C called atomic roles representing binary relations.
Let A ∈ C be an atomic concept and R ∈R an atomic role. Then ALC concepts C,D and ALC

formulae f , respectively, are built according to the following rules:

C,D → A (atomic concept) | ¬C (complement) |CuD (intersection) |CtD (union) |
∃R.C (existential quantification) | ∀R.C (universal quantification)

f → C v D (subsumption) |C .
= D (equality)

> (universal concept) abbreviates At¬A and ⊥ (empty concept) abbreviates Au¬A.

Example 1 (ALC syntax)
Consider the atomic concepts Order, Delivered, Pending, Notified, SakeBrand, Container,

PendingList representing classes, and the atomic roles contains, lists, in representing binary
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relations according to Figure 1. Then the following are ALC formulae:

a1 : DeliveredtPendingv Order Every delivered or pending thing is an order.
a2 : Order .

= ∃contains.SakeBrand Orders contain at least one sake brand.
a3 : PendingList v ∀lists.Pending Each pending list contains pending orders, only.
a4 : Orderu¬Delivered v Notified Every order that is not delivered is notified.
a5 : Orderu∀contains.∃in.Container Orders, which contain sake brands, only, that are...
v Delivered ...available in some container, are delivered.

a6 : Orderu¬∀contains.∃in. The set of orders, the sake brands of which are...
(Containeru∃on.Stock)) ...not all available in some container on stock, are...
.
= Pending) ... equal to the set of pending orders.

Formulae a1 through a3 represent some but not all properties expressed by the class diagram
in Figure 1. Formulae a4 through a6, in turn, specify complex properties that are not represented
in the class diagram of Figure 1. For a general discussion of the relationship between description
logics and UML class diagrams, we refer to reader to [BCG05].

Note that, in our application scenario, the truth of formulae a1 through a6 may or may not
depend on time. Since a1,a2, and a3 formalize static properties expressed in the class diagram of
Figure 1, they are expected to hold regardless of time. In contrast, the truth of a4,a5 and a6 may
vary throughout the order handling process. For instance, a4 may be false at the time a new order
is received. However, a4 should become true shortly after an order becomes pending because of
insufficient stock. In the case of a5, orders of brands, which are on stock, may not be delivered
immediately but at some later time. As for a6, an order of some brand that is not on stock may
become pending not immediately but eventually. ALC and any other standard description logic
cannot capture such time dependencies. To solve this problem we will combine ALC with LTL
in section 3.3.

ALC formulae are interpreted w.r.t. an interpretation domain ∆ and an interpretation function
·I of atomic concepts and roles such that AI ⊆ ∆ and RI ⊆ ∆×∆ for each atomic concept A ∈ C
and atomic role R ∈R.

Definition 4 (ALC semantics)
Let I = (∆, ·I) be an interpretation of atomic concepts and roles, C,D ALC concepts and R an

atomic role. Let RI(a) = {b ∈ ∆ | (a,b) ∈ RI} denote the image of relation RI for some a ∈ ∆.
Then

(¬C)I = ∆\C
(CtD)I = CI ∪DI

(CuD)I = CI ∩DI

(∃R.C)I = {a ∈ ∆ | ∃b ∈ RI(a) : b ∈CI}
(∀R.C)I = {a ∈ ∆ | ∀b ∈ RI(a) : b ∈CI}

I |=C v D iff CI ⊆ DI

I |=C .
= D iff CI = DI
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3.3 LTLDL

We propose the family of temporal logics LTLDL for the representation of properties w.r.t. mod-
els of both the static structure and the dynamic behavior. LTLDL is similiar to ALC−LTL as
introduced in [BGL08]. Section 5 contains a detailed comparison of LTLDL with ALC−LTL and
other temporal description logics.

Definition 5 (LTLDL syntax)
Let P be a set of symbols representing atomic propositions and DL be the set of formulae of

some decidable description logic DL. Let a ∈ A∪DL be an atomic proposition or DL formula.
Then LTLDL formulae p,q are built according to the following rules:

p,q → a (atomic prop. or DL formula) | ¬p (not) | p∧q (and) | p∨q (or) | p→ q (implies) |
Xp (next) | Fp (future/eventually) | Gp (globally/always) | p U q (until)

Remark 1 (LTLDL syntax)
LTLDL extends LTL by allowing DL formulae in addition to atomic propositions at locations

where only atomic propositions are allowed in LTL. Hence both LTL and DL are contained in
LTLDL.

Example 2 (LTLDL syntax)
Consider the logic LTLALC, i.e., let DL in Definition 5 refer to ALC. Since LTLALC subsumes

ALC, the formulae of Examples 1 are also LTLALC formulae. However, the following LTLALC

formulae are neither in LTL nor in ALC.

la0 : F(PendingList v ¬∃lists.Pending) The list of pending orders will eventually be empty.
la1 : G(¬(∃places.Order v⊥)→ Always if somebody places an order then...

F(Order v DeliveredtNotified)) ...eventually any order will be delivered or notified.
la2 : GF(Pendingv Delivered) Always, eventually pending orders are delivered.
la3 : G(¬(Pendingv⊥)→ (GF Always, if there is some pending order then...

(SakeShopv ∃receives.Container) ...if the sake shop receives some container infinitely
→ F¬(Delivered v⊥))) ...often then eventually there will be a delivered order.

la4 : G((Orderu∃contains.BrandX Always, non-pending orders of brand X...
u¬Pendingv ¬Delivered) ...will not be delivered...

U(Pendingu∀contains.BrandX ...until all pending orders, which contain nothing...
v Delivered)) ...but BrandX, are delivered.

la1 through la4 are formal representations of properties P1 through P4 listed in the introduction
of section 3.

LTLDL formulae are interpreted w.r.t. finite relational state transition systems M =(S,R,L,∆, I)
where S is a non-empty, finite set of states, R ⊆ S× S is a left-total transition relation, L : S→
P(A) is a labeling of states s ∈ S with sets of atomic propositions L(s)⊆ A that hold at s, ∆ is a
finite set representing some domain of objects, and I : S→ {·I(s)} is a state-dependent interpre-
tation function such that AI(s) ⊆ ∆ and RI(s) ⊆ ∆×∆ for each state s ∈ S, atomic concept A ∈ C ,
and atomic role R ∈R, respectively.
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Definition 6 (LTLDL semantics)
Let M = (S,R,L,∆, I) be a finite relational state transition system and x = (s0,s1, ...) an infinite

path in M. Let d be a DL formula. Then

x |= d iff I(s0) |= d

The semantics of all other cases (atomic proposition a, Boolean connectives ¬,∧,∨,→, and
temporal connectives X,F,G,U is identical to the semantics of LTL (Definition 2).

Example 3 (LTLDL semantics)
Consider the formula GF(Order v Delivered), i.e., “always it holds eventually that any order is

delivered”. Consider the path x = (s0,s1,s2,s0,s1,s2,s0, ...) where

OrderI(s0) = {o1} DeliveredI(s0) = /0
OrderI(s1) = {o1,o2} DeliveredI(s1) = {o1}
OrderI(s2) = {o1,o2} DeliveredI(s2) = {o1,o2}

i.e., there are two orders o1 and o2 which appear in state s0 and s1, respectively, and which will be
delivered in state s1 and s2, respectively. Then x 6|= G(Order v Delivered) because, for instance,
OrderI(s0) 6⊆ DeliveredI(s0). However, x |= GF(Order v Delivered) because in each state si of x
eventually s2 will be reached and OrderI(s2) ⊆ DeliveredI(s2).

4 Model Checking LTLDL

Definition 7 (LTLDL model checking)
Let M = (S,R,L,∆, I) be a finite relational state transition system, s ∈ S a state, and f a LTLDL

formula. Then the LTLDL model checking problem for M, s, and f is to decide if x |= f for all
infinite paths (s,s1,s2, ...) in (S,R) starting from s.

Theorem 1 (LTL reduction)
Let M = (S,R,L,∆, I) be a finite relational state transition system and f be a LTLDL formula.

Let D = {d1, ...,dn}, n ∈ N, be the set of DL formulae in f . Let A = {a1, ...,an} be a set of
atomic propositions not appearing in f such that there is a bijection d : A↔ D : d(ai) = di.
Let f ′ = f [d1/a1][d2/a2]...[dn/an] be the formula derived from f by substituting all description
logics formula in f with atomic propositions.

Let M′ = (S,R,L′) be such a transition system that L′(s) = L(s)∪{a ∈ A | I(s) |= d(a)}.
Then f ′ is a LTL formula and M′ a LTL transition system and it holds for each s ∈ S: M,x |= f

for all paths x in M′ starting from state s iff M′,x |= f ′ for all paths x in M starting from s.

Proof. This is a direct consequence of the syntax and semantics definition of LTL and LTLDL.

Remark 2 (LTL reduction)
By theorem 1, a model checking algorithm for LTLDL can be constructed by composing a

LTL model checker and DL model checker as follows: First, using the DL model checker to
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calculate the labeling function L′ in Theorem 1, and then check for M′,x |= f ′ using the LTL
model checker. This straight forward approach, however, is not efficient in the case of systems
with many states. Hence, we strive for a more tight interaction between the LTL and DL model
checker, using SMT-based bounded model checking.

4.1 Bounded LTLDL Model Checking

In bounded model checking [BCC+03], a transition system M, an initial state s and a LTL formula
f is transformed for a given bound k ∈ N into such a non-temporal formula of the form TM,s,k ∧
¬( fk) that the following holds: if TM,s,k ∧¬( fk) is satisfiable then there is a counterexample for
M,s |= f the length of which is less or equal to k and hence M,s 6|= f . We illustrate the approach
of bounded model checking and its application to LTLDL in the following example.

Example 4 (bounded LTLDL model checking)
Consider the following scenario in an order handling process. Initially, there is no order.

Next, a new order o1 is received and the reception of the order is notified to the customer. Next,
another order o2 is received and the previously received order o1 is delivered. The following state
transition system M models this scenario, adopting set type variables order,notified,delivered for
representing the set of orders, notified, and delivered orders, respectively:

state s0 order = notified = delivered = /0; no orders, no deliveries, no notifications.
state s1 order← order∪{o1}; new order o1,

notified← notified∪{o1}; reception of o1 is notified to the customer.
state s2 order← order∪{o2}; new order o2,

delivered← delivered∪{o1}; o1 is delivered.
state s3 = s0 return to state s0.

Let the DL concepts Order, Delivered, Notified represent the set of orders, deliveries, and notifi-
cations as used above. Consider the property “At any time, any order, which is not delivered, is
notified”:

f = G(Orderu¬Delivered v Notified)

We attempt to find a counterexample for f of a certain maximum length k in the state transition
system M starting at s0. As for the given scenario, a sensible bound is k = 2. First, we represent
paths in M with maximum length k by a formula TM,s0,k in which all variables are indexed by
state (static single assignment form). For k = 2 we get:

TM,s0,2 = (order0 = /0)∧ (notified0 = /0)∧ (delivered0 = /0)∧
(order1 = order0∪{o1})∧ (notified1 = notified0∪{o1})∧ (delivered1 = delivered0)∧
(order2 = order1∪{o2})∧ (notified2 = notified1)∧ (delivered2 = delivered1∪{o1})

Next, f is transformed into a non-temporal formula fk equivalent to f in the scope k. In the given
scenario, if f holds in M then Orderu¬Delivered v Notified holds in each state s0, s1, and s2.
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Adopting the semantics definition of the ALC connectives u, ¬, and v we get:

f2 = (order0\delivered0 ⊆ notified0)∧
(order1\delivered1 ⊆ notified1)∧
(order2\delivered2 ⊆ notified2)

Finally, we check if TM,s0,2∧¬ f2 is satisfiable. From TM,s0,2, we get:

order2 = order1∪{o2}= order0∪{o1}∪{o2} = {o1,o2}
delivered2 = delivered1∪{o1}= delivered0∪{o1} = {o1}

notified2 = notified1 = notified0∪{o1} = {o1}
order2\delivered2 = {o2,o1}\{o1} = {o2}

and thus order2\delivered2 6⊆ notified2 which violates f2. Hence TM,s0,2∧¬ f2 is satisfied and we
conclude M,s0 6|= f .

4.2 SMT(DL)

As illustrated by Example 4, we transform LTLDL models and formulae into formulae that con-
tain set-type variables and operations corresponding to the semantics of DL connectives. These
formulae can be interpreted as SMT formulae with sets and relations as background theory. We
define the language SMT(DL) for the representation for such formulae. The concrete (i.e., ma-
chine processible) syntax of SMT(DL) is defined by the following rules:

formula → NOT formula | formula AND formula | formula OR formula | term
term → TRUE | FALSE | boolvar | set = set | rel = rel | subset(set,set)

set → EMPTYSET | setvar | insert(set,int) | remove(set,int) |
union(set,set) | intersect(set,set) | minus(set,set) | some(rel,set) | all(rel,set)

rel → EMPTYREL | relvar | insertrel(rel,int,int) | removerel(rel,int,int)

Table 1: SMT(DL) syntax definition

The basic symbols are composed by the disjoint sets of Boolean variables boolvar, set vari-
ables setvar, variables for binary relations relvar, and integer numbers int serving as elements of
sets and relations. Formulae are built using Boolean connectives NOT, AND, OR. Basic formu-
lae are terms, which may be either Boolean atoms or set expressions corresponding to the DL
connectives .

= and v. Besides the constant “EMPTYSET”, set variables setvar may be used to
represent sets. Further, “insert(set,int)” represents a function inserting a single integer value into
a set and “remove(set,int)” removes an element from a set. Line 4 of Table 1 defines set operators
corresponding to the syntax of the DL expressions CtD, CuD, ¬C, ∃R.C, ∀R.C. Finally, binary
relations may be manipulated by “insertrel”, which inserts a pair of integer values into a relation,
and “removerel”, which removes a pair of integer values from a relation.

Example 5 (SMT(DL) concrete syntax)
Formula TM,s0,2 of Example 4 reads in SMT(DL) syntax as follows:
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(order0 = EMPTYSET) AND (notified0 = EMPTYSET) AND (delivered0 = EMPTYSET) AND
(order1 = insert(order0, 1)) AND (notified1 = insert(notified0, 1)) AND (delivered1 = delivered0) AND

(order2 = insert(order1, 2)) AND (notified2 = notified1) AND (delivered2 = insert(delivered1,1))

Note that orders o1 and o2 in formula TM,s0,2 are represented by integer values 1 and 2, respec-
tively. This is valid in general because we assume a finite interpretation domain (cf. Definition
6) which can be mapped onto integer numbers without loss of information.

Formula f2 of Example 4 reads in SMT(DL) syntax as follows:

subset(minus(order0,delivered0),notified0) AND
subset(minus(order1,delivered1),notified1) AND

subset(minus(order2,delivered2),notified2)

4.3 Prototypical Implementation and Experimental Results

We implemented a partial solver for SMT(DL) based on OpenSMT [Bru09] which is an open
source SMT solver implemented in C++. For the representation of SMT(DL) formulae, we use
the standard format SMT-LIB 1.2. The current implementation is limited to SMT(DL) formulae,
the set and relation expressions of which are bound to finite domains and do not contain cyclic
definitions such as “s = insert(s,1)”. The latter is not a restriction in our application because, in
bounded model checking, LTLDL models are transformed into static single assignment form (cf.
Example 4) which do not contain any cyclic definitions by construction.

The aim of the subsequent experiment is to determine the runtime of model checking LTLDL
as compared to existing bounded model checkers. The runtime of bounded model checking is
dominated by checking the satisfiability of the generated formula TM,s,k ∧¬ fk (cf. Example 4).
To determine the scaling of runtime w.r.t. the input size, we use a parameterized scenario similar
to that in Example 4, as follows:

state s0 order = notified = delivered = /0;
state s1 order← order∪{o1}; notified← notified∪{o1};
state s2 order← order∪{o2}; delivered← delivered∪{o1,o2};
state s3 order← order∪{o3}; notified← notified∪{o3};
state s4 order← order∪{o4}; delivered← delivered∪{o3,o4};
...
state s2n−1 order← order∪{o2n−1}; notified← notified∪{o2n−1};
state s2n order← order∪{o2n}; delivered← delivered∪{o2n−1,o2n};
state s2n+1 order← order∪{o2n+1};

As a property, we check, if each undelivered order is notified at any time (cf. Example 4):

f = G(Orderu¬Delivered v Notified)

The only state violating f is s2n+1. To detect the error by bounded model checking, the bound
k must be chosen greater or equal to 2n+1, making the case increasingly challenging for larger
n. Moreover, the maximum sizes of the sets for representing received, notified, and delivered
orders grow linearly in n.
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To compare the performance of our approach with existing ones, we chose the SAL tool
[MOR+04] since it integrates a variety of state-of-the-art model checking algorithms, including
SAT and SMT-based bounded model checking. SAL uses the SMT solver Yices 1.03 [DM06]
as a backend engine for bounded model checking. The scenario above can be described com-
pactly in terms of the SAL input language by representing the characteristic function 1S : S→
{false, true} : {x ∈ S | 1S(x) = true} = S of each set S as a Boolean array (cf. [KRW09]). The
bounded model checker of SAL translates an input file for a given bound k into a SAT or SMT
formula which is then solved by Yices. For our experiment, we chose the transformation into
SAT because this yielded higher performance.

An alternative SMT(DL)-based representation (cf. Example 5) for different problem sizes n
and bounds k has been generated. Generally, we distinguish two cases. 1) k = 2n+ 1: in this
case, the generated SAT and SMT(DL) formulae are satisfiable, i.e., the property violation is
detected; 2) k = 2n: the generated SAT and SMT(DL) formulae are not satisfiable.
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Figure 3: execution time of SMT(DL) solving as compared to SAT solving with Yices for differ-
ent input sizes n in Experiment 1 and 2.

Figure 3 (lhs: Experiment 1) shows the runtime of Yices and our SMT(DL) solver for the two
cases k = 2n+1 and k = 2n and increasing input sizes n, obtained on a desktop computer with
and 6 GB RAM and Intel Core i7 processor at 3.8 GHz. While the runtime of Yices for k = 2n
is slightly lower than in the case of n = 2n+ 1, the runtime of SMT(DL) is identical for both
cases. In the case of n = 100, Yices takes 17.5 seconds for k = 201 and 16.2 seconds for k = 200.
In about the same time, the SMT(DL) solver processes a formula 80 times as large (n = 8000,
k = 16000/16001).

Figure 3 (rhs: Experiment 2) shows the runtime of Yices and our SMT(DL) solver for check-
ing the formula

f ′ = G(¬(∃places.Order v⊥)→ XX(Orderu¬Delivered v Notified))

in a LTLDL model corresponding to the state transition diagram of Figure 2. f ′ reads: “Always
(G), if someone places an order (¬(∃places.Order v⊥)) then two states later (XX) each order
that has not been delivered is notified (Orderu¬Delivered v Notified)”.

In this scenario, Yices takes 17.6 seconds for n = 20 if a counterexample is found, and 16.2
seconds if no counterexample is found. We suppose that the Boolean encoding of the binary rela-
tion places in formula f ′ is the major source of additional complexity. In contrast, the runtime of
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the SMT(DL) solver is hardly affected by the presence of a binary relation in Experiment 2. This
indicates that supporting sets and relations in SMT solving can significantly speed up bounded
model checking of relational models as compared to SAT-based bounded model checking.

5 Related Work

Description logics are well-known to be appropriate for the formal representation of conceptual
data models such ER diagrams and UML class diagrams. For instance, [CLN98] proposes a
unifying description logics for the logical representation of class-based data models such as ER
and object-oriented data models. [BCG05] presents an encoding of UML class diagrams in the
description logic ALCQI to discover inconsistencies in models by means of description logic
reasoning. We extend these approaches by combining a description logic with a temporal logic
to support the representation of properties related to both state transition diagrams and class
diagrams.

In the past, several combinations of description logics and temporal logic have been sug-
gested [AF01, LWZ08]. A first temporal extension of the description logic ALC called ALCT
was suggested by Schild [Sch93]. In ALCT , the temporal connectives G, F, and U can be ap-
plied to concepts but not to axioms. A similar combination of LTL and ALC is called LTLALC

in [LWZ08]. In contrast, ALC−LTL, as introduced in [BGL08], supports the application of
temporal connectives to ALC axioms but not to ALC concepts.
LTLDL, as proposed in this paper, follows the latter approach because, this way, a higher

degree of modularity between the temporal and non-temporal part of the logic is achieved. This
simplifies the formalization of properties in close correspondence with UML class diagrams (DL
component) and state transition diagrams (LTL component), as well as the implementation of a
model checker. However, LTLDL is different from ALC−LTL in the following aspects:

• LTLDL is a family of logics, obtained by a modular combination of some DL with LTL,
rather than a single logic.

• While in ALC−LTL, atomic propositions are replaced by ALC axioms, LTLDL supports DL
formulae in addition to atomic propositions. This ensures compatibility with propositional
LTL widely adopted in model checking.

• In contrast to ALC−LTL, we do not consider ABox assertions in LTLDL since they seem
to be dispensable for formalizing general domain models represented by UML class dia-
grams.

• As opposed to ALC−LTL, we do not consider rigid symbols, i.e., concepts and roles the
interpretations of which do not depend on states. Incorporating rigid symbols to LTLDL

may be an interesting topic of future research.

[BGL08] focusses on the satisfiability problem of ALC−LTL and the impact of rigid symbols
on the complexity of solving the satisfiability problem. In this paper, we do not consider the
satisfiability problem but the model checking problem of LTLDL. A thorough investigation of
complexity properties will be an issue of future work.
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[BBL09] proposes runtime verification based on ALC−LTL. In runtime verification, a mon-
itor constantly observes the behavior of a system in execution and determines if the observed
prefix of an execution trace conforms to a temporal formula. Each state of the execution trace
is represented in a potentially incomplete way by a set of ALC ABox assertions (open world
assumption). In our work, we adopt a model checking approach, i.e., all possible behaviors of
a system described by a state transition system are considered. However, the information about
each single state is assumed to be complete (closed world assumption).

An algorithm for model checking the temporal description logics ALCCTL has been proposed
in [Wei08]. In this paper, we consider the bounded model checking problem of LTLDL and reduce
it to SMT solving which we believe is a new approach that simplifies the integration of LTLDL

model checking into an existing model checking environment such as SAL and helps to increase
the performance of model checking for bounded sets and relations.

State-of-the-art model checkers supporting linear temporal logic are Spin [Hol97], SAL
[MOR+04], and NuSMV [CCG+02]. However, the input languages of these model checkers
do not support set and relation data types and hence are inefficient for representing properties
w.r.t. relational models.

Alloy is a declarative object-oriented modeling notation, the semantics of which is based on
sets and relations [Jac02]. The notation supports the formulation of assertions. Dynamic aspects
may be addressed in terms of pre- and post-conditions or by explicitly representing time as a
linearly ordered set of states. However, temporal logic for the representation of behavioral prop-
erties is not supported. A tool based on SAT solving automatically analyzes whether assertions
hold in models where the sizes of all sets and relations are bounded by some user chosen con-
stants [JSS00]. In [GT11], an alternative approach is presented which is not limited to bounded
sets: Alloy relational specifications are translated into first order quantified SMT formulae which
are passed on to the SMT solver Z3 [MB08]. However, since the Alloy specification language is
undecidable, the SMT solver may fail to prove assertions.

Event B [Abr10] is a formal specification language for the required behavior of a system,
based on set theory and logic. A central concept is the refinement-based modeling for system
requirements. Consistency and refinement checking of specifications, based on theorem proving,
is supported by the Rodin tool [ABH+10] which generates and manages the necessary proofs.
However, user interaction may be required for certain types of proofs. ProB [LB08], an anima-
tion and model checking tool for (Event) B specifications, supports model checking of properties
expressed in LTL. Similar to Alloy, data types such as sets and relations must be restricted to
small sizes for exhaustive analysis. LTLDL is less expressive than the temporal logic supported
by ProB but the supported constructs are closely related to UML class and state transition dia-
grams. We believe that this simplifies the identification and formalization of relevant consistency
properties which is usually considered as a rather difficult task.

The syntax definition for SMT(DL) (Table 1) is inspired by [KRW09] which suggests a format
for representing finite lists, sets, and maps as part of the SMT-Lib 2.0 format. As for solving
formulae over finite sets, a mapping onto Boolean arrays is suggested. We have adopted this
approach in our experiments with SAL and Yices (see section 4.3). To the best of our knowledge,
none of the currently available SMT solvers implements dedicated decision procedures for sets
and relations.

Proc. AVoCS 2011 14 / 17



ECEASST

6 Conclusion

We have presented a new integrated approach on representing both static and dynamic aspects of
software models. We defined LTLDL as a modular composition of linear temporal logic LTL and
a description logic DL. LTLDL supports representing properties w.r.t. both UML class diagrams
and state transition diagrams. We believe that the close correspondence of LTLDL formulae to
these commonly used diagram notations facilitates the identification and formalization of impor-
tant consistency requirements at an early development stage. Further, we have demonstrated how
LTLDL formulae can be checked by SMT-based bounded model checking. We have implemented
a prototypical SMT solver for formulae containing set-type expressions corresponding to the se-
mantics of LTLDL connectives. As compared to reducing set-type expressions to Boolean arrays,
about two orders of magnitude as large problems could be solved in the same execution time.

In this paper, we discussed LTLDL from an application-oriented perspective and demonstrated
its usefulness and performance by a case study. Fundamental properties of LTLDL such as ex-
pressiveness and runtime complexity of model checking and deciding satisfiability are left to be
studied in future work.

In our current experiments, we use the input language of SAL for representing LTLDL models,
adopting a Boolean encoding for sets and relations. A more adequate representation language
for LTLDL models offering explicit support for sets and relations is a major issue of ongoing
work. Ongoing is also the improvement of the implemented SMT solver in terms of supported
types of formulae and performance. Issues are, for instance, the support of cyclic expressions
and negation in unbounded domains (cf. section 4.3). To this end, a mapping of SMT(DL)
formulae onto either first order quantified SMT formulae or description logic knowledge bases
seems to be promising and calls for further examination. Finally, further case studies to compare
our approach with existing approaches such as Event-B and Alloy are necessary. In addition,
the comparison with existing state-of-the-art model checkers such as CBMC [CKL04] and SMT
solvers, which support quantified formulae such as Z3 [MB08], is an important issue of future
work.
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Abstract: Altarica is a language used to describe critical systems. In this paper we
present a novel approach to the analysis of Altarica models, based on a translation
into an extended version of NuSMV. This approach opens up the possibility to carry
out functional verification and safety assessment with symbolic techniques. An ex-
perimental evaluation on a set of industrial case studies demonstrates the advantages
of the approach over currently available tools.
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1 Introduction

The dramatic increase in complexity of safety-critical systems in recent years has motivated
a growing interest in model-based techniques for system verification. Such techniques must be
able to verify functional correctness, but also to carry out safety assessment, that is, assess system
behavior in the presence of faults [Ba03, ÅBB06, BV10]. In particular, there has been a growing
interest in formal verification tools that can automate the generation of artefacts such as Fault
Trees and Failure Mode and Effects Analysis (FMEA) tables [FSA, BV07, BCK+10].

One of such tools is Cecilia OCAS [BBC+04] – a model-based safety assessment platform
developed by Dassault Aviation, based on the Altarica [Alt, AGPR00] language. Altarica has
been used in the past for safety assessment of industrial systems, see, e.g., [BCS02, BBC+04].
Moreover, OCAS is being used at an industrial level for architectural safety assessment of avion-
ics systems. For example, the Flight Control System of Falcon 7x aircraft has been certified on
the basis of the OCAS analysis. OCAS is equipped with different model analysis tools, the main
ones are a trace simulator, and a sequence generator to generate minimal cut sets. However,
these tools are neither able to perform an exhaustive space examination, nor they are able to
model check temporal properties; even reachability analysis is bounded in depth. Furthermore,
developed as an in-house tool, the OCAS sequence generator does not correctly implement lan-
guage features that are not used within Dassault Aviation. In particular it is unable to adequately
explore non-deterministic instantaneous transitions, potentially leading to incomplete analysis
results (although the tool can be configured to provide a warning). Finally, the OCAS sequence
generator is based on explicit state techniques, hence it suffers from the state-explosion problem.

In this paper we propose a fully symbolic approach that overcomes these limitations, and
allows for the industrial usage of advanced symbolic verification and safety assessment tech-
niques. Our approach is based on the translation to an extended version of NuSMV [NuS], and
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is tightly integrated with the OCAS environment. NuSMV is a state-of-the art symbolic model
checker providing cutting-edge model checking technologies such as BDD-based [Bry92] and
SAT-based Bounded Model Checking (BMC) [BCCZ99] techniques. It supports both temporal
model checking (CTL and LTL temporal logics) and safety assessment, e.g., Fault Tree Analysis
(FTA) and FMEA, through its add-on NuSMV-SA. NuSMV has been used in several industrial
contexts, for instance for verification and validation of aerospace systems [BCK+10].

More specifically, our contribution is as follows. First, we have isolated a fragment of Altar-
ica in the Dataflow formulation. This choice has been dictated by what is being made available
through the OCAS interface. As the semantics for this fragment is not fully documented, an addi-
tional effort has been required to provide a formal definition for its semantics, by adaptation from
the general definition of [AGPR00], and to validate its correctness with respect to the behavior
shown by OCAS and user expectations. In the course of our work, we have identified model fea-
tures that are not correctly managed in OCAS, clarified their intended semantics, and reflected
it in our tool. Based on the semantics, we have implemented a translator to convert Altarica
models into NuSMV. The translation uses HyDI [CMT11] as an intermediate language. The use
of HyDI proved to be convenient as it provides primitives to deal with networks of automata, and
different mechanisms for synchronizing them. The translator has been incorporated as a plugin,
named the NuSMV/OCAS plugin, into the OCAS environment, and it provides the following
functionalities: invariant checking, temporal model checking, and fault tree generation.

The NuSMV/OCAS plugin has been developed within the MISSA project [MIS] (More Inte-
grated Systems Safety Assessment), an EC-sponsored project involving various research centers
and industries from the avionics sector. We evaluated the plugin on a set of industrial-size case
studies developed in MISSA, and compared it with existing tools available in OCAS. The results
of the evaluation clearly show a significant advantage of symbolic techniques over explicit-state
techniques currently provided by OCAS, in terms of performance.

The paper is organized as follows. In Section 2 we give a short overview of the Altarica syntax
and semantics. In Section 3 we present the design of the translation. In Section 4 we describe the
integration into OCAS. In Section 5 we discuss the experimental evaluation. Finally, in Section
6 we present some related work, and in Section 7 we conclude and discuss future work.

2 Overview of Altarica

In this section we briefly describe the syntax of the Altarica language (Dataflow dialect imple-
mented in Cecilia OCAS) and its semantics - we refer the reader to [Alt, AGPR00] for additional
details. A simple example of Altarica model is presented in Figure 1. It consists of two counters
modulo 4 and an adder. The base component of an Altarica model is called node. Its structure
may comprise the following sections:

• sub: used to describe the hierarchy of the Altarica nodes; in this section, it is possible to
instantiate the subnodes which are the children of the current node;

• state: this section is used to declare the state variables of the (basic) node; the value of these
variables may change only upon firing of an event; this implies that their value does not
change in between two consecutive event firings (while other components are executing);
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1 node adder
2 flow
3 i npu t1 : [ 0 , 3 ] : i n ;
4 i npu t2 : [ 0 , 3 ] : i n ;
5 va lue ou t : [ 0 , 7 ] : out ;
6 state
7 value : [ 0 , 7 ] ;
8 event
9 add ,

10 f a u l t a d d ;
11 trans
12 value < 7 |− add −> value := inpu t1 + inpu t2 ;
13 t r ue |− f a u l t a d d −> value := 7 ;
14 i n i t
15 value := 0 ;
16 assert
17 va lue ou t = value ;
18 extern
19 law <event f au l t add> = Exponent ia l ( 0 . 1 ) ;
20 edon
21
22 node observer
23 flow
24 out ok : bool : out ;
25 i npu t1 : [ 0 , 3 ] : i n ;
26 i npu t2 : [ 0 , 3 ] : i n ;
27 inputS : [ −1 ,6 ] : i n ;
28 assert
29 out ok = ( inputS = ( inpu t1 + inpu t2 ) ) ;
30 edon

31 node counter
32 flow
33 va lue ou t : [ 0 , 3 ] : out ;
34 state
35 value : [ 0 , 3 ] ;
36 event
37 inc , rese t ;
38 trans
39 value < 3 |− i nc −> value := value + 1;
40 value = 3 |− rese t −> value := 0 ;
41 i n i t
42 value := 0 ;
43 assert
44 va lue ou t = value ;
45 edon
46
47 node main
48 event
49 t o t a l r e s e t ;
50 sub
51 c1 : counter ;
52 c2 : counter ;
53 add : adder ;
54 obs : observer ;
55 sync
56 <t o t a l r e s e t , c1 . reset , c2 . reset>;
57 assert
58 c1 . va lue ou t = add . input1 ,
59 c2 . va lue ou t = add . input2 ,
60 c1 . va lue ou t = obs . input1 ,
61 c2 . va lue ou t = obs . input2 ,
62 add . va lue ou t = obs . inputS ;
63 edon

Figure 1: An example Altarica model

• init: this section is used to specify the initial value of state variables;

• event: used for defining the events that can be fired and, thus, trigger a state transition;

• flow: this section declares flow variables, used to describe the connections with the other
components; flow variables are linked to state variables by means of assertions; there are
two types of flow variables, namely input and output flow variables;

• trans: this section is used to describe the transitions of the system; each transition consists
of a guard, the firing event, and a list of assignments; the assignments specify how the
system state changes when the corresponding event is fired; the guard is a precondition
that has to be satisfied for the transition to be taken;

• assert: used to establish links from a flow variable to a state variable or another flow
variable; more specifically, it declares a set of equalities either between an output flow
variable and an expression over input flow and state variables (internal assert), or between
an input flow of a subnode and the output flow of another subnode (in-out assert), or
between an input flow of the node and an input flow of a subnode (in-in assert), or between
an output flow of the node and an output flow of a subnode (out-out assert);

• sync: used to define the synchronizations; a synchronization associates an event of the
node to the events of the subnodes; there are three types of synchronizations, namely
strong sync, weak sync, and Common Cause Failure (CCF) (cf. end of this section);

• extern: used to associate events with priorities and optional laws; priorities and some of
the laws constrain permissible order of event firing.

An Altarica model is a hierarchical graph composed of nodes. At the same level of the hi-
erarchy, nodes communicate through flows and synchronizations. The hierarchy yields a tree
structure, where two types of nodes are possible:
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Figure 2: Altarica hierarchy

• component: a component represents a single process of the system, it cannot contain defi-
nition of subnodes or synchronizations;

• equipment: an equipment node represents a container for nodes; it may contain declara-
tions of subnodes and synchronizations, but it cannot have state variables.

As shown in Figure 2, this structure imposes that the component nodes represent the leafs,
whereas the equipment nodes are containers for the components. Moreover, there is a special
equipment node called main, which represents the root of the full Altarica model.

The semantics of the Altarica model is defined in terms of Interfaced Transition Systems
(ITSs) (cf. [AGPR00, Mat11]). Intuitively, the ITS associated with a component is given straight-
forwardly by the state variables (that define the states), the initial condition, the transitions, the
events and flow variables (which define the observations) of the node. The ITS associated to an
equipment node is given by the composition of the ITSs associated with the subnodes taking into
account synchronizations. The mechanisms for the different synchronizations are illustrated in
Figs. 3a, 3b and 3c, and explained in more detail in the following:

• strong sync (see example in Figure 3a): if we have a strong sync between the events e1
and e2, the corresponding processes (components) p1 and p2 must move synchronously on
such events. This means that the transitions of p1 fired by e1 and the transitions of p2 fired
by the event e2 happens at the same time, and that e1 is fired if and only if e2 is fired; as
an example, the system in Figure 1 declares a strong synchronization, called total reset,
synchronizing the reset on the two counters;

• weak sync (see Figure 3b): this type of synchronization represents a broadcast; partici-
pating events happen synchronously as in the strong sync, but only if the corresponding
transitions are enabled; this means that if the event e1 of p1 is fired and there exists a tran-
sition t2 of p2 on the event e2 whose guard is true, then e2 is fired at the same time as e1;
otherwise (if the guard is false) e1 is fired and p2 does not change state; similarly, if e2 is
fired and the guard on e1 is false, p1 does not change state;

• CCF sync (see Figure 3c): short for Common Cause Failure, this kind of synchronization
is similar to a weak synchronization, with the difference that individual processes are also
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Figure 3: Synchronization examples

allowed to move on the events independently; this means that either we have a CCF sync
involving e1 and e2 (with the same rules of the weak sync) or e1 is fired or e2 is fired.

The evolution of an Altarica system can be further constrained by associating events with spe-
cial laws and priorities. By default, events are considered stochastic. These events are typically
used to model component failures and can be optionally associated with a probability distribu-
tion law (e.g., Exponential(λ ) law). These laws are used to establish interoperability with com-
mercial RAMS (Reliability, Availability, Maintainability and Safety) analysis tools and do not
affect qualitative behaviour of the system. However, a special law – Dirac(x) – is used to mark
instantaneous and temporal events (with x = 0 and x > 0 respectively). These events fire deter-
ministically x time steps after the guard of the corresponding transition becomes true. Whenever
more than one transition is possible at the same time, instantaneous events take precedence. The
precedence of transitions can be further constrained by event priorities (events with higher prior-
ity are fired first). For the sake of brevity, we do not describe the semantics of priorities in detail
– we refer to Section 3 for their encoding.

3 Translation

In this section we describe the encoding of the Altarica language into NuSMV. The formal trans-
lation [Mat11] has been designed using HyDI [CMT11] as an intermediate language. In the
following, we first introduce the HyDI language and then we focus on the translation of the main
characteristics of Altarica into HyDI- we refer to [CMT11] for a discussion of the translation
from HyDI to NuSMV. In particular, we discuss the management of:

• hierarchy: unlike Altarica, HyDI does not support hierarchical process definitions;

• flow variables and assertions: these definitions cannot be directly mapped into HyDI;

• event priorities: HyDI does not support the definition of event priorities;

• synchronizations: Altarica supports three kinds of synchronizations: strong, weak and
CCF, whereas HyDI supports only the first two.

Finally, we briefly discuss how to model the leaf nodes.
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Figure 4: Hierarchy translation

3.1 The HyDI language

HyDI is an extension of SMV [McM93] that supports the definition of networks of hybrid au-
tomata with different kinds of synchronizations. We restrict our presentation to the finite state
case, thus ignoring continuous variables and their evolution – see [CMT11] for a complete de-
scription. A HyDI program is given by a set of modules, a set of processes and a set of synchro-
nization constraints. A HyDI module extends SMV modules allowing one to specify synchro-
nization constraints. A module contains a set of declarations which define: a set of variables
(VAR); a set of input variables (IVAR); a set of initial constraints (INIT) defining the initial states;
a set of invariant conditions (INVAR) which restricts the valid assignments to the variables; a set
of transition constraints (TRANS), defining the state transitions. A module can be instantiated in
the VAR section of another module. The main module is the top-level module of a program and
cannot be instantiated. The HyDI language allows one to define a network of processes which
run asynchronously on private events while they synchronize on shared events. The processes
are instantiated in the main module. The network is not hierarchical, since the synchronizations
are declared between processes. However, the definition of a single process may be hierarchical,
since it can contain the instantiation of sub-modules. The module used to instantiate a process
contains the definition of the set of discrete events (EVENT section) used to define its synchro-
nization with other processes. In the HyDI language a synchronization declares that two events
of two processes must be fired at the same time. A variant of this type of synchronization, called
“weak” synchronization, allows one to specify a guard which forces the synchronization only if
the guard evaluates to true. Finally, the order of occurrence of events can be further constrained
with a scheduler, modeled in HyDI by variables and constraints in the main module.

3.2 Hierarchy translation

The network of processes defined by Altarica is hierarchical in that the synchronizations may
be specified at the different levels of the Altarica tree structure. Thus, in order to encode the
Altarica specification into HyDI we perform a flattening of the Altarica hierarchy as depicted in
Figure 4b. Each Altarica equipment node is split into several new instances in order to create a
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hierarchy corresponding to the paths from the root to each leaf. This flattening is possible since
the instances of the equipment nodes cannot have definition of state variables.

For the flattening it is necessary to perform some additional transformations on the resulting
structure because of the constraints imposed by the HyDI language. In Altarica synchronization
definitions can be specified at all levels of the hierarchy (i.e., in the equipment nodes). In HyDI
they must be in the main module. Thus, we need to move all the synchronization definitions in
the top level HyDI main module. Another difference between HyDI and Altarica concerns the
definition of discrete events used in the synchronizations. In HyDI the declaration of discrete
events is done in the module definition of each instance and, thus, new events cannot be declared
in a submodule. Altarica, on the other hand, requires them to be specified within the leafs (i.e.,
in the component nodes). Our solution restructures the Altarica hierarchy in such a way all the
events present in the original Altarica structure are declared in the definition of an instance in
HyDI, and passed as parameters to the submodules. The drawback of this encoding consists in
the possible growth in terms of resulting model size. However, this solution does not increase
the complexity and also it permits to greatly simplify the translation from Altarica to HyDI.

3.3 Variables and assertions translation

Altarica allows one to define two types of variables: state variables (which represent the internal
state of the system) and flow variables (used to expose the internal state and to link the different
components). The translation of the state variables is straightforward, as they also become state
variables in HyDI. The translation of the flow variables is carried out as follows:

• Internal assert: the link between output flow and state variables is expressed by an asser-
tion. In this case the flow variable is represented as a NuSMV define on the state variable;

• In-Out (Figure 5a): in this case we have a link connecting an input flow of one component
with an output flow of another component. In this case the direction is explicitly expressed
by the flow labels. This is translated by passing the state variable referred to by the output
flow as a parameter to the module translating the component with the input flow;

• In-In (Figure 5b): this situation is represented by the direct forwarding of an input flow
to a subcomponent. In this case the solution is analogous to the previous case, with the
difference that the external component plays the writer role;

• Out-Out (Figure 5b): this case is similar to the previous one with the difference that the
subcomponent plays the role of writer.

3.4 Priority, synchronization and leaf node translation

Event priorities and Dirac(x) laws in Altarica impose a partial order on the firing of the events.
We distinguish between events with Dirac(0) law (which have higher priority) and events with
Dirac(x) with x > 01. Within each of these two classes, events are ordered by the explicit defini-
1 Temporal events, i.e. those with Dirac(x) law for x > 0, in OCAS are given an operational semantics based on
event queues and recursive evaluation; in this work, we have used a simplified semantics, that was sufficient for our
purposes, and reduces to the original semantics under suitable hypotheses.
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Figure 6: The NuSMV/OCAS plugin and its integration into OCAS

tion of the priority (an integer number). The induced partial order among the events is encoded
as a scheduler in the main module of the HyDI translation.

The Altarica language permits the definition of three possible kinds of synchronizations be-
tween events: strong, weak, and CCF (see Figure 3 and Section 2). HyDI has native support for
the weak and strong synchronizations, while there is no support for the CCF synchronization.
We encode the CCF synchronization taking into account its semantics: a CCF involving two
events e1 and e2 is either a weak synchronization among e1 and e2, or simply event e1 or event
e2 in isolation. Thus, we duplicate events e1 and e2 in e′1 and e′2, respectively, to enable for the
two events to occur in isolation, and we add a new weak synchronization between e1 and e2.

The translation of the leaf nodes is straightforward. Each leaf node maps to an SMV module.
Each state variable is encoded into an SMV state variable of the same type. The Altarica init and
trans sections directly translate into SMV INIT and TRANS formulas, respectively.

4 Tool Integration and Functionalities

In the following we describe the architecture of the NuSMV/OCAS plugin and its functionalities.
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4.1 The NuSMV/OCAS plugin

The NuSMV/OCAS plugin has been developed in Python. It is composed of four main compo-
nents, as illustrated in Figure 6:

• Property: this block provides a GUI to specify the (temporal) properties to be verified
and the analysis parameters, and to invoke the verification and safety assessment routines;
it extends the ‘Altarica property’ block, which allows only to compare a variable with a
value. In the example of Altarica model presented in Figure 1 OCAS needs an observer
that internally evaluates if the output of the adder is the sum of the two counters (see
out ok). With our plugin this check is possible directly from the GUI;

• Altarica2HyDI: this module is responsible for the translation of the Altarica model into
the equivalent HyDI specification to be given as input to the extended version of NuSMV
(the NuSMV model checker extended with the NuSMV-SA and HyDI plugins);

• HyDI/ NuSMV : the verification engine;

• HyDI2Altarica: this module is responsible for the back conversion of the results generated
by NuSMV to a format that can be visualized or executed within OCAS. In particular, it
is responsible for the conversion of the traces generated by NuSMV (corresponding to a
simulation or to a counterexample to a property) into the XML format accepted by OCAS.

The translation from Altarica to HyDI, provided by the Altarica2HyDI component, is per-
formed in three main steps (see Figure 7):

1. Parsing: this module generates an abstract syntax tree (AST) of the Altarica design. This
module relies on the ANTLR2 parser generator;

2. Preprocessing: this module analyzes the AST generated at parsing time to build a new AST
corresponding to the flattened Altarica model. Moreover, it collects common information
about the structure of the design, that is re-used in the following steps of the translation;

3. Translation: this module, based on the new AST and on the structural information pre-
viously gathered, generates an in-memory Python structure corresponding to the HyDI
model. This structure is then dumped into a textual file to be given as input to NuSMV.

The plugin calls NuSMV, waits for the results, and then converts them back into a format that can
be imported into OCAS (e.g., simulation traces to be given as input to the sequence generator).

4.2 Functionalities

The NuSMV/OCAS plugin relies on NuSMV, that provides standard BDD-based (CTL and LTL)
model checking techniques [McM93], and SAT-based LTL Bounded Model Checking (BMC)
techniques [BCCZ99]. It allows one to perform guided and random simulation, and to re-execute
partial traces. Moreover, it provides optimized model checking algorithms, developed in the

2 ANother Tool for Language Recognition (ANTLR), http://www.antlr.org.
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Figure 7: The Altarica2HyDI component

MISSA project, which aim at reducing the state explosion problem with techniques that combine
BDD and SAT for the verification of invariants. For formal safety assessment the NuSMV/O-
CAS plugin relies on an extended version of the NuSMV model checker, comprising NuSMV-
SA [BV07]. NuSMV-SA allows one to investigate the behavior of a system in degraded condi-
tions (that is, when some parts of the system are not working properly, due to malfunctioning).
Key techniques in this area are (dynamic) FTA (Fault Tree Analysis), (dynamic) FMEA (Failure
Modes and Effects Analysis), fault tolerance evaluation, and criticality analysis. NuSMV-SA
provides advanced and very optimized techniques for the generation of (dynamic) FT and of
(dynamic) FMEA tables. NuSMV-SA provides three main engines for safety assessment. The
first two are based on classical BDD-based or on SAT-based techniques. The BDD-based engine
is complete, but if the model is huge may not scale well. The SAT-based approach is incomplete
but allows one to handle very large domains. These two basic approaches are complemented
with a third complete approach, developed in the MISSA project, that combines BDD and SAT.
It first uses BMC techniques, up to a given depth, to prune the search space, and then it performs
an exhaustive analysis on the reduced model using BDD-based model checking algorithms.

5 Experimental Evaluation

5.1 Validation of the translation

As the formal semantics of the Altarica dialect used in OCAS is not fully documented, before
starting an experimental evaluation on realistic case studies, we were confronted with the issue
of validating the semantics we implemented with respect to the one implemented in OCAS. For
the validation we focused on trace simulation generation and trace execution functionalities that
are common to both tools. We used several small handcrafted models developed for checking
some specific conditions. Then, we used some realistic case studies developed within MISSA.

The validation of the tool was done using the possibility offered by OCAS to re-execute a sim-
ulation trace on the Altarica model, using the internal trace simulator. We generated a simulation
trace with the NuSMV/OCAS plugin, and then we re-executed it in the OCAS environment. The
validation flow we used can be summarized as follows (compare Figure 8):

1. we translate the Altarica model provided by OCAS into HyDI, and then into SMV;

2. we either verify properties known to be not satisfied, or we generate random simulation
traces in order to obtain an execution trace, that we save in the NuSMV XML format;

3. we translate the trace provided by NuSMV into the OCAS XML format;
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4. we load the trace generated in the previous step into the trace simulator of OCAS;

5. we verify that the state reached at the end of the trace execution is compatible with the
property, and with the state reported as final in the simulation trace.

Whenever a discrepancy was detected, a thorough analysis of the simulation execution in OCAS
was carried out to identify the cause of the discrepancy and - if needed - come up with a fix in
the translation to capture OCAS semantics. In a few cases, the behavior shown by OCAS was
found to be incorrect by the users, hence not reflected in the translator (cf. Section 1).

5.2 Verification and safety assessment on industrial case studies

In this section we discuss the comparison between the common functionalities provided by the
OCAS sequence generator and the NuSMV/OCAS plugin. The sequence generator of OCAS is
able to perform Fault Tree Analysis (generation of minimal sequences) up to a bounded depth.
For a fair comparison, we then compared this feature with the Fault Tree Analysis provided by
NuSMV-SA that relies on the SAT and the mixed BDD+SAT approaches3.

For the experimental evaluation we used four industrial models developed in MISSA. The
ELEC 1, ELEC 2, and ELEC 3 models describe a simplified electrical power distribution system
(that resembles that of the A320 aircraft), at different levels of detail. The BRSYS model is a
realistic model of the braking system of an aircraft. The properties to be analyzed formalize
different failure conditions (e.g., “Loss of deceleration capability during landing” for the BRSYS
model). The characteristics of the models are reported in Table 1. This table also shows the time
and memory requirements needed to translate the model into an equivalent HyDI specification.
Note that time and memory increase with the model complexity (however, the translation is
performed only once for each given model, whenever several properties have to be verified).

The experimental results are presented in Figure 9. We executed the tests on a laptop equipped
with an Intel 3GHz CPU, and with 4GB of RAM running Windows 7. We used a memory limit
of 1GB and a timeout of 1000 seconds. The plots report the time needed by OCAS and by the

3 We also used the NuSMV/OCAS plugin to verify temporal properties of the Altarica design; as this functionality is
not available in OCAS, we do not report the results here.
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Model # States # Nodes Translation time Translation memory
ELEC 1 1.49x105 41 1.127s 27MB
ELEC 2 2.64x105 44 2.782s 38MB
ELEC 3 2.0x107 51 2.811s 37MB
BRSYS 3.8x1025 135 9.820s 69MB

Table 1: Characteristics of the industrial case studies and translation requirements

SAT (BMC) and BDD+SAT algorithms provided by the extended version of NuSMV to perform
an exhaustive search at increasing depths.

The results on the smallest model (ELEC 1) are reported in Figure 9a. The plots clearly
show that the sequence generator is not able to perform the verification with a bound greater
than 9, while NuSMV has a behavior nearly independent of the bound. When the complexity
grows (models ELEC 2 and ELEC 3, Figures 9b and 9c) OCAS shows a very fast degradation
– the sequence generator timeouts with bounds bigger than 7 and 6, respectively – whereas the
performance of NuSMV degrades only marginally. The sequence generator performs better than
NuSMV for sufficiently low depths – this is due to some internal overhead NuSMV incurs while
reading and converting the HyDI model, and encoding the verification problem. The results on
the BRSYS model (Figure 9d) show a similar trend – OCAS timeouts at depth 3. Notice that the
‘step’ behavior which is visible in some BDD+SAT plots is due to the fact that for higher depths,
SAT may be able to find additional results, that are used to prune the search space before BDD is
run. Concerning memory, NuSMV uses up to 36 MB (with bound 30), whereas OCAS allocates
up to 100MB (with bound at most 9) on these models. A detailed comparison is difficult, as it is
not possible to trace precisely how OCAS uses the allocated memory.

We remark that, in all the examples, the SAT BMC approach outperforms the OCAS explicit
state approach by orders of magnitude. This enables analyses that were out of the scope of the
previous version of OCAS without the NuSMV/OCAS plugin. Moreover, in all the examples,
we were able to run NuSMV to convergence, using the complete BDD+SAT approach, with
a running time which is only slightly worse than the SAT BMC approach. Being complete,
BDD+SAT is guaranteed not to miss cut sets, as a difference with OCAS sequence generator. We
also remark that, although not shown in the experimental evaluation, the BDD+SAT approach
performed consistently better than the pure BDD approach on these case studies.

6 Related Work

The original language of Altarica, developed by LaBRI, is based on the notion of interfaced con-
straint automata. A restricted dialect - Altarica Dataflow - was later developed to restrict the com-
plexity of the models and, under certain constraints, permit synthesis of the fault trees [BDRS06,
Rau02]. Dialects of Altarica are supported by a number of tools ranging from the academic
toolset developed and maintained at the University of Bordeaux [Alt] to SIMFIA [SIM], a mod-
elling, simulation and RAMS analysis environment developed by EADS APSYS - that supports
a Dataflow dialect similar to that implemented by OCAS. Another workbench, COMBAVA,
has been previously developed by ARBoost Technologies but is now obsolete. To our knowl-
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(c) ELEC 3 (d) BRSYS

Figure 9: Performance comparison NuSMV vs OCAS

edge, OCAS is the most industrially mature of existing toolsets. OCAS is tightly integrated
with Cecilia ARBOR - a Fault Tree Analysis software. Quantitative and Qualitative analysis of
fault trees performed in both Cecilia ARBOR and SIMFIA Safety modules are based on Aralia
[Rau01]. Whilst there also exists a plugin for synthesis of fault trees (implementing the algorithm
of [Rau02]), such functionality is only available for a very restricted subset of Altarica Dataflow.

There are other model checkers that support altarica, in particular MEC 5 [MEC] and Arc
[Arc]. MEC 5 is a somewhat outdated model checker that is now superseded by Arc. Arc is a
more recent, BDD-based model checker based on the Altarica language, which supports CTL*
temporal logics and µ-calculus. Arc is not currently linked to OCAS and the interoperability
with a MEC 5 plugin has not been supported in newer versions of OCAS. Moreover, neither Arc
nor its predecessor MEC support safety assessment functionalities. Altarica studio [GPV11] is a
prototypical toolset, based on Arc, for model-based formal analyses. To our knowledge, safety
assessment functionalities are not available in Altarica studio, yet. A thorough comparison of the
model checking engines is hard because of differences in the dialects (and flavours thereof) of
Altarica supported by the different tools. This work has been focused on (a variant of) Altarica
Dataflow - a more extended comparison will be targeted for future work.
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7 Conclusions and Future Work

In this work we have presented a novel encoding of Altarica models into NuSMV, which enables
verification and safety assessment of Altarica models using state-of-art symbolic model checking
and formal safety assessment techniques. We have integrated the encoder as a plugin into the
OCAS environment, and we have experimentally demonstrated the feasibility of the approach
by evaluating the plugin on a set of industrial case studies. As part of our future work, we
plan to address the semantics of Altarica temporal events, which was simplified in the current
implementation. Finally, we plan to investigate a timed extension of Altarica, along the lines
of [CPR04]. This extension fits very naturally in our framework, given that the HyDI language
provides a native support for encoding networks of timed (more in general, hybrid) systems.
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no. ACP7-GA-2008-212088. We would like to thank Chris Papadopoulos (Airbus UK), Pierre
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Abstract: Tracing between informal requirements and formal models is challenging.
A method for such tracing should permit to deal efficiently with changes to both
the requirements and the model. A particular challenge is posed by the persisting
interplay of formal and informal elements.

In this paper, we describe an incremental approach to requirements validation and sys-
tems modelling. Formal modelling facilitates a high degree of automation: it serves
for validation and traceability. The foundation for our approach are requirements that
are structured according to the WRSPM reference model. We provide a system for
traceability with a state-based formal method that supports refinement. We do not
require all specification elements to be modelled formally and support incremental
incorporation of new specification elements into the formal model. Refinement is
used to deal with larger amounts of requirements in a structured way.

We provide a small example using Problem Frames and Event-B to demonstrate our
approach.

Keywords: Requirements, WRSPM, Event-B, Rodin, ProR

1 Introduction

We describe an approach for incrementally building a formal model from structured informal spec-
ifications providing a means of requirements validation. Our approach does not require all specifi-
cation elements to be modelled formally, and the resulting system description provides traceability
to both formal and informal model elements. The traceability allows us to detect which require-
ments are affected if the system implementation changes, and vice versa. Most elements of the
structured specification are still stated in natural language. Our aim is to increase the confidence
that the formal model represents what has been specified, and to ensure that specification elements
that do not have a formal representation are validated at a different stage of the development by
informal reasoning and tracing.

We identified the WRSPM reference model [GJGZ00] as the foundation for the informal struc-
tured specification. Many concrete approaches are consistent with this reference model, e.g.,
[Jac01, PM95]. A specification following the WRSPM approach can still be understood by stake-
holders, while providing a good foundation for formalisation. These approaches define phenomena
which describe the state space of the system and its environment, as well as artefacts that repre-
sent constraints on the state space and the state transitions. This structure makes a traceability to a
state-based formalism doable.

A distinguishing feature of our approach is the incremental modelling of the specification us-
ing refinement, which the chosen formalism must support. Once modelled formally, the potential
for automated verification is high. This is particularly useful for change management and re-
quirements evolution, which are both important aspects for real-world systems. Also, we allow
specification elements without formal representation. Those elements must be justified informally
using techniques suggested in [Jac01], for instance.
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1.1 Structure of this Paper

In the remainder of this section, we will provide a brief foundation of requirements and specifica-
tions, as well as state-based modelling. In Section 2 we present our main thesis, the traceability
between formal and informal specification and model. We deepen the aspect of formal refinement
in Section 3.

In Section 4, we provide a small example to demonstrate various aspects of our approach. The
example uses the Problem Frames approach and the Event-B formal method.

We are actively working on tool support and present our progress in Section 5.
After describing some of the related work in Section 6, we conclude in Section 7, which also

contains an outlook on future work.

1.2 Requirements and Specification

Our approach is based on WRSPM by Gunter et. al. [GJGZ00]. WRSPM is a reference model
for applying formal methods to the development of user requirements and their reduction to a
behavioural system specification.

WRSPM distinguishes between artefacts and phenomena. Phenomena describe the state space
(and state transitions) of the domain and system, while artefacts represent constraints on the state
space and the state transitions. The artefacts are broadly classified into groups that pertain mostly
to the system versus those that pertain mostly to the environment. These are:

Domain Knowledge (W ) describes how the world is expected to behave.

Requirements (R) describe how we would like the world to behave.

Specifications (S) bridge the world and the system.

Program (P) provides an implementation of S.

Programming Platform (M) provides an execution environment for P.

We distinguish phenomena by whether they are controlled by the system (belonging to set s)
or the environment (belonging to set e). They are disjoint (s∩ e = ∅), while taken together, they
represent all phenomena in the system (s∪ e = “all phenomena”). Furthermore, we distinguish
them by visibility. Environmental phenomena may be visible to the system (belonging to ev) or
hidden from it (belonging to eh). Correspondingly, system phenomena belonging to sv are visible
to the environment, while those belonging to sh are hidden from it. These classes of phenomena
are mutually disjoint.

The distinction between environment and system is an important one; omitting it can lead to
misunderstandings during the development. It is sometimes regarded as a matter of taste or conve-
nience where the boundary between environment and system lies, but it has a profound effect on
the problem analysis. It clarifies responsibilities and interfaces between the system and the world
and between subsystems. If we require ourselves to explicitly make that distinction, we can avoid
many problems at an early stage.

W and R may only be expressed using phenomena that are visible in the environment, which is
e∪ sv. Likewise, P and M may only be expressed using phenomena that are visible to the system,
which is s∪ ev. S has to be expressed using phenomena that are visible to both the system and the
environment, which is ev∪ sv.

Once a system is modelled following WRSPM, a number of properties can be verified with
regard to the model, one being adequacy with respect to S:

FOR ALL e s, W AND S IMPLY R (Adequacy)

This simply says that the specification constrains the world such that the requirements are real-
ized. Obviously we are not interested in the trivial solution to (Adequacy), meaning that no e and
s exist to satisfy (Adequacy).
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We demonstrate our ideas using Problem Frames [Jac01], which is a concrete approach to soft-
ware requirements analysis that is a manifestation of the WRSPM reference model. The central
element in problem frames is the problem diagram that consists of exactly one machine domain,
designed domains and given domains.

1.3 State-Based Modelling and Refinement

Our approach could be used with a wide range of formal methods for state-based modelling
that have an associated notion of refinement. We find state-based formalisms such as ASM
[BS03], VDM [Jon90], TLA+ [Lam02] or Event-B [Abr10] particularly suited because they permit
straightforward specification of state, state invariants and state transitions for modelling dynamic
behaviour. In this paper, we focus on state-based modelling and provide an example using Event-
B, which we introduce in Section 3.1. Event-B is suitable for discussing the example that we
introduce in Section 4. Using Event-B we can also discuss limitations of requirements tracing:
not all requirements can be formalised within the core Event-B formalism. Formal and informal
reasoning need to be combined in a sensible way. The boundary of formalisation in the example
is given by temporal and real time properties. We have intentionally chosen a boundary that could
be moved by using another formal method or extending Event-B because we think it is not fixed
and may change depending on project characteristics. It also serves to illustrate that the boundary
may be moved as a development progresses. We think of modelling and requirements validation
as an incremental process: we permit the boundary to be moved as need arises.

We take advantage of the concept of refinement which is supported by Event-B. Other notions
of refinement could be used without changing the approach fundamentally. Our approach allows
us to account for additional requirements at later refinement stages, thereby providing a structuring
mechanism for the introduction of requirements into the formal model.

2 From Formal to Informal and Back

The requirements engineering process can be broken down into requirements specification, system
modelling, requirements validation and requirements management [Wie03].

We will briefly describe these process steps (shown in Figure 1) and how they relate to the work
in this paper.

Requirements
Specification

Requirements
Management

System Modeling

Requirements Validation
Time

Development
Process

Figure 1: The Incremental Development Process

Requirements Specification – The requirements are structured according to the approach of
choice, resulting in a specification that follows the WRSPM reference model. In the ex-
ample that we introduce in Section 4, we use the Problem Frames approach.

System Modelling – The objective of this phase is the formal modelling of elements. Not all
elements need to be modelled formally, which is one distinguishing feature of our approach.
Also, this step can and should be performed incrementally. In general, any formalism can
be used. The nature of the problem to be solved may suggest one formalism over another.
In particular, it may be useful to select a formalism that makes it easy to model the safety
critical aspects of the specification. It is also possible to user more than one formalism. In
the example in Section 4, we use Event-B.
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Requirements Validation – The validation of the requirements is a central aspect of this paper
and is described in detail in Section 2.1.

Requirements Management – In practice, a specification is never “done”. The ongoing work
includes change management and requirement evolution. These tasks are supported by our
approach. The amount of formality determines how effective this is. At one end of the
spectrum, all elements are modelled formally, allowing us to prove (Adequacy). On the
other end of the spectrum is an informal description.

These tasks, including elicitation, analysis and negotiation, are performed in parallel. We do
not want to create the impression that this is a sequential process.

2.1 Requirements Validation

System modelling provides us with partly formalised elements as described by the requirements.
We think of system modelling as an incremental process where more and more is formalised.
However, we do not assume that necessarily everything is formalised. The methodology we pro-
pose allows for a mixture of formal and informal proof as a means of validation. As a consequence
of frequent incremental changes we need effective support for tracing requirements: formal mod-
els change as they incorporate increasing detail, requirements change as a consequence of the
validation itself. The transition to requirements management is considered fluent and the same
techniques of traceability are applied.

Demonstrating (Adequacy) now involves dealing with formal and informal elements. In the
following, we designate by Rf the formal requirements, by Wf the formal domain properties and
by Sf the formal specification elements. The difference R \Rf of all requirements and formal
requirements gives the informal requirements Ri, similarly for informal domain properties Wi and
informal specification elements Si.

For the formal elements we can formally verify that

∀e s ·Wf ∧Sf ⇒ Rf , (1)

assuming that sufficient of W and S have been formalised to cover Rf . For informal elements we
allow informal arguments, for instance, of the kind used in the problem frames approach [Jac01]
or not formalised mathematical proofs. Doing this, we show:

FOR ALL e s, W AND S IMPLY Ri . (2)

We permit also using formal elements in the antecedent of (2) but only formal elements in the
antecedent of (1). As many critical requirements as possible should be validated formally, giving
high assurance of their satisfaction. Relying on formally verified facts in informal justification
will also improve their quality.

2.1.1 Formal Tracing

To formalise artefacts A they need to be of a form that can be “translated” into a formula F so that
we can state

A EQUIVALES F . (3)

This makes tracing from F to A and vice versa trivial. Formal proofs of (1) can provide information
about which formal artefacts are used in order to validate specific requirements. Among others,
this has been implemented in the proof support of the Rodin tool [ABH+10]. If formal artefacts
F1, . . . , Fk have been used to prove formal requirement Rfn from Wf ∧ Sf , then we know that a
change of the informal requirement Rn that equivales Rfn affects the informal artefacts A1, . . . ,
Ak. The formal model provides a way to validate requirements rigorously and an efficient way to
trace dependencies between informal artefacts. The latter is crucial for the maintenance of large
numbers of requirements occurring in industrial practice. Support by proof tools means that this
tracing can be automated to a large degree.
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2.1.2 Informal Tracing

Artefacts that are not formalised can still be traced but the dependencies can only be checked
manually by inspecting informal arguments. Changes of involved artefacts require corresponding
human intervention. A known technique to limit the impact of changes is the identification of a
satisfaction base [KJ10] for each informal artefact of Ri. A satisfaction base for a requirement
Rn consist of those artefacts from S and W that are sufficient to justify it. Using the concept of a
satisfaction base, (2) can be rephrased as

FOR ALL e s, SB(Rn) IMPLY Rn . (4)

where SB(Rn) is a subset of W and S, representing a satisfaction base for the given requirement.
The satisfaction base is used in the informal justification and for tracing dependencies, similarly
to formal tracing. However, possibilities for automation are very limited. Also note that there may
be multiple satisfaction bases.

3 Formal Refinement

Formula (1) can grow very large for a complex model. This can make it very difficult to verify any
interesting property but also to compute a sufficiently small set of formal artefacts that are used to
verify specific formal requirements Rfn. Formal refinement alleviates this problem by introducing
parts of the overall model in small increments. The original WRSPM approach sketch a notion of
implementation based on the program P and the programming platform M:

FOR ALL e s, W AND P AND M IMPLY R . (5)

This can be achieved by relying on implication for implementation (see, e.g., [HJ98, Heh93,
GJGZ00]),

FOR ALL ev s, P AND M IMPLY S (6)

providing a simple notion of refinement in a predicative specification style. Instead of formalis-
ing the refinement notion (6) we prefer a notion based on discrete transition systems that permits
more direct specification of dynamic aspects of a model. For the purposes of this article we do not
consider details of M such as the targeted programming language. We consider S as a collection
of invariants and transitions of a discrete transition system which we specify by means of Event-B
[Abr10]. The choice of Event-B over similar methods [BS03, Jon90] is mostly motivated by the
built-in formal refinement support and the availability of a tool [ABH+10] for experimentation
with our approach.

3.1 Event-B Machines

Event-B is a state-based modelling method whose models are characterised by proof obligations.
Proof obligations serve to verify properties of the models. To a large degree, such properties orig-
inate in requirements that the model is intended to realise. Eventually, we expect that by verifying
the formal model we have also established that the corresponding requirements are satisfied.

We only provide a brief summary of simplified Event-B in terms of proof obligations. A com-
plete description can be found in [Abr10]. Variables v define the state of a machine. They are
constrained by invariants I(v). Possible state changes are described by means of events. Each
event

any t when G(t,v) then x := E(t,v) end

is composed of parameters t, a guard G(t,v) and an action x := E(t,v), where x are variables of
the machine. The guard states the necessary condition under which an event may occur, and the
action describes how the state variables evolve when the event occurs. Actions x := E(t,v) are
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characterised by before-after predicates x′ = E(v)∧ y′ = y, where y are the remaining variables
of the machine. In the presentation of the proof obligations we assume actions are of the form
v :=E(t,v). The before-after predicate of an event is the formula G(t,v)∧v′=E(t,v). A dedicated
event v := Einit without parameters or guards is used for initialisation. (The expression Einit also
does not refer to any variables.)

3.2 Event-B Proof Obligations

In Event-B two main properties are proved about formal models: consistency and refinement.

Consistency. Consistency means that the invariant I(v) is established by the initialisation

I(Einit)

and maintained

I(v)∧G(t,v)⇒ I(E(t,v))

by all other events of the machine. Usually, invariants are conjunctions, e.g., I(v) = I1(v)∧ . . .∧
In(v). Hence, it suffices to prove I(v)∧G(t,v)⇒ I j(E(t,v)) for all j ∈ 1 ..n. The smaller predicates
are easier to relate to informal artefacts and easier to trace in case artefacts correspond to theorems
derived from the invariants.

Refinement. Refinement links abstract events to concrete events aiming at the preservation of
properties of the abstract event when it is replaced by the concrete event. A concrete event with
guard H(u,w) and action w := F(u,w) refines an abstract event with guard G(t,v) and action
v := E(t,v) if, whenever the gluing invariant J(v,w) is true:

i. the guard of of the concrete event is at least as strong as the guard of the abstract event, and
ii. for every possible execution of the concrete event there is a corresponding execution of an

abstract event which simulates the concrete event such that the gluing invariant remains true
after execution of both events.

Formally,

I(v)∧ J(v,w)∧H(u,w)⇒∃t ·G(t,v)∧ J(E(t,v),F(u,w)) .

For initialisation we have to prove: J(Einit,Finit). To match the refinement notion of WRSPM
described in Section 3 we have to void data-refinement where a variable is replaced by another. We
think data-refinement could eventually serve to deal with abstractions of phenomena where in more
abstract problem frame descriptions phenomena are bundled. The Event-B method derives proof
obligations from these two properties that are easier to handle and can be efficiently generated
by a tool [Abr06]. In particular, the conclusion is decomposed into small parts. To achieve this
witnesses t = T (u,w) for t are introduced for instantiating the existentially bound identifiers:

I(v)∧ J(v,w)∧H(u,w)⇒ G(T (u,w),v)∧ J(E(T (u,w),v),F(u,w)) .

Usually, guards and (gluing) invariants are conjunctions and the proof obligation can be decom-
posed similarly to the consistency proof obligation above.

3.3 Tracing of Requirements with Event-B

The Event-B model contains formal artefacts as indicated by (3). The domain properties Wf and
specification elements Sf can be represented by means of events and invariants. By consistency
and refinement we get a collection of invariants IA that are preserved by all events EA. We can
now partition events and invariants according to the artefacts they represent: IA = IW ∪ IS and
EA = EW ∪ES. Making this distinction is standard in the Event-B method.1 To fit into the shape
1 Using model decomposition we could now decompose the two parts and focus on the refinement of the sub-model
consisting of IS and ES. The interface to the other sub-model would act as a contract guaranteeing overall consistency.
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of WRSPM adequacy we consider the before-after predicates of all events and identify Wf =
IW ∧ BA(EW) and Sf = IS∧ BA(ES), where BA(EE) yields the disjunction of the before-after
predicates of the events EE. In formal refinement Pf the formal program is usually considered a
subset of Sf that is being gradually constructed during refinement. After some refinement steps we
have Pf = IS∧ IP∧BA(EP) where the events EP are refinements of the events ES. Hence, Pf ⇒ Sf
by choosing suitable witnesses, obtaining the formal counterpart of (6). We have identified the
formal domain properties Wf , specification element Sf and program Pf .

We can now turn to the formal requirements Rf , formal adequacy (1) and the formalised (5) not
taking account of the programming platform M:

∀e s ·Wf ∧Pf ⇒ Rf . (7)

Assuming we already have verified (1), adequacy of the implementation (7) follows by the discus-
sion of the preceding paragraph, using

∀s ·Pf ⇒ Sf . (8)

Refinement allows this to be applied incrementally to deal with small more manageable sets of
artefacts at each refinement step. Gradually, the set of satisfied refinements is extended until all
requirements are covered,

∅= Rf 0 ⊆ Rf 1 ⊆ Rf 2 ⊆ . . .⊆ Rf n = Rf , (9)

where the Rf i correspond to the refinement steps of the model. Most of these refinement steps will
involve the domain properties and specification elements:

∀e s ·Wf i+1∧Sf i+1⇒Wf i∧Sf i . (10)

Refinement steps for implementing the program will usually be less related to requirements.
The refinement method, however, does not make a particular distinction between the two uses of
refinement. Each refinement step can be used to verify adequacy of the specification gradually:

Wf i∧Sf i⇒ Rf i \Rf i−1 . (11)

Refinement theory guarantees that adequacy validated in earlier refinement steps is preserved.
After n refinement steps (1) is verified.

Formula (11) suggests a method of stepwise tracing of requirements following the refinements.
Often requirements can be identified with invariants, event guards or actions. In this case (11)
holds trivially. Sometimes theorems can be stated [HL09] that are implied by the invariants. In this
article we limit tracing to this level. However, this is not a fundamental limitation of the approach.
For instance, one could also permit temporal formulas derived from Wf ∧ Sf as supported by
TLA+. Some of TLA+ is also implemented in the ProB tool [LB08] that has been integrated with
the Rodin tool that we use. But for this article we contend ourselves with a less expressive notation
relying only on invariants and possible transitions.

Problem frame diagrams do not use refinement, but techniques of decomposition like projection.
They serve for structuring large sets of requirements. They correspond to the last refined model
just before turning to implementation (by means of P). The problem frame diagram will always
contain the entire set of formal and informal requirements R. We do not intend to extend the idea
of refinement from Event-B to problem frames in this paper.

4 Example: A Traffic Light Controller

We are going to demonstrate the approach presented here by creating the model of a traffic light
system that allows pedestrians to cross a street. We already introduced this example in [JHLJ10].
The system consists of two traffic lights for pedestrians (one on each side of the street), two
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corresponding traffic lights for the cars, and push buttons for the pedestrians to request a green
light for crossing the street.

We consider this example useful, because it is simple enough to understand, but complex enough
to be interesting. Further, the example concerns state (which we model formally) as well as real-
time (which we specify informally), allowing us to demonstrate the mixing of formal and informal
modelling elements. In the following, we only present the interesting aspects of the example.

4.1 Requirements Specification

Following our approach, we would apply a specification approach of choice, in this case Problem
Frames. This may lead to a the problem diagram shown in Figure 2. The Problem Frames diagram
is incomplete. For instance, information regarding the temporal properties of the system are miss-
ing. This is by design, as the problem diagram only depicts the contextual aspects of the model
and their relationships in the form of shared phenomena. The textual representation is still the
central repository for all information regarding the system. This leads to a new natural language
specification, shown in Table 1. In the table, the phenomena are highlighted. The vocabulary is
managed in a separate glossary (Table 2).

Pedestrians

Cars

moving,
stopping,
waiting

moving,
stopping,
waiting

Street

Pedestrians observe
traffic lights

Trafficlight
(Pedestrians)

Trafficlight
(Cars)

red, green,
yellow

control
signals

control
signals

Pedestrians can
cross safely

S

W R

Cars observe
traffic lights

Trafficlight
Controller

red, green,
yellow

Figure 2: A simplified Problem Frames diagram for the traffic light problem

Note that it can be useful to introduce an informal notion of refinement already in the textual
description of the system to structure it. We see that in the description of the traffic light states,
that are sometimes referred to abstract as the abstract stop and go, and sometimes as the concrete
colours red, yellow and green. We can take advantage of this in the modelling phase by establish-
ing abstract properties that are simple and easy to trace. The refinement concept of Event-B allows
us to introduce the concrete colours later on, while preserving the original properties (assuming
correct data refinement), as demonstrated in Section 4.3.

The specification in Table 1 is already more precise than the original requirements, while still
comprehensible by the stakeholders. We already identified items as R, W and S. This makes it
easier to reason about the model. It also allows us to identify the proper role for validating or
justifying each artefact: Stakeholders are concerned with R, domain experts with W and designers
with S.

R-2.1 Pedestrians can cross safely. They are crossing when they are not waiting.
W-2.1 Pedestrians observe the traffic lights (tlpeds). This means that they may move (mov-

ing) when the traffic lights allows them to go. Upon indicating stop, they finish
moving (stopping) and then wait (waiting).
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W-2.2 Cars observe the traffic lights (tlcars). This means that they may move (moving)
when the traffic lights allows them to go. Upon indicating stop, they finish moving
(stopping) and then wait (waiting).

W-2.3 stopping of Pedestrians takes time.
W-2.4 stopping of Cars takes time.
S-2.1 The traffic lights for pedestrians (tlpeds) and cars (tlcars) never indicate go at the same

time.
S-2.2 tlcars must wait for a certain time (delaycars) before switching to go after tlpeds turned

to stop.
S-2.3 delaypeds is 3 seconds (± 100ms).
S-2.4 tlpeds must wait for a certain time (delaypeds) before switching to go after tlcars turned

to stop.
S-2.5 delaycars is 3 seconds (± 100ms).

Table 1: Requirement, Domain Assumptions and Specification of a Traffic Light System (partial)

Pedestrians (eh) are modelled as moving, stopping or waiting.
Cars (eh) are modelled as moving, stopping or waiting.
tlpeds (sv) Traffic lights for pedestrians, modelled as go and stop.
tlcars (sv) Traffic lights for cars, modelled as go and stop.
delaypeds (ev) is modelled as an event that delays for 3 seconds after tlpeds turns

from go to stop.
delaycars (ev) is modelled as an event that delays for 3 seconds after tlcars turns

from go to stop.
go (sv) is the state of a traffic light where only the green lamp is on.
stop (sv) are all states of a traffic light that are not go.

Table 2: The Glossary (partial)

4.2 System Modelling

We decided to use the Event-B formalism (Section 3.1), making it easier to model some aspects
of the model and more tricky to model others. In particular, it is easy to express safety properties
like R-2.1, more difficult to express state transition properties like S-2.2, and almost impossible to
express real-time properties like S-2.3.

Following the incremental approach described in Section 2, we start with the safety requirement
R-2.1, for which a state-based formalism like Event-B is well-suited.

Pedestrians 6= waiting⇒Cars = waiting (12)

Not all properties can be modelled as easily as R-2.1. For instance, the behaviour of pedestrians
(W-2.1) cannot be represented by an invariant. Instead, we can model it according to the approach
described in Section 3.3 by representing it as a before-after predicate of an event. The property W-
2.1 doesn’t have the proper granularity for this approach, so we rewrite it to specify each transition
separately. This rewrite is part of the incremental specification process, and the result must be
validated with the domain experts.

W-2.1 (a) Pedestrians that are moving can only change their state to stopping.

W-2.1 (b) Pedestrians that are stopping can only change their state to waiting.

W-2.1 (c) Pedestrians that are waiting can only change their state to moving.

W-2.1 (d) Pedestrians may only change to moving if tlpeds indicates go.
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W-2.1 (e) If tlpeds indicates stop, then Pedestrians must change to stopping if they are moving and
change to waiting if they are stopping.

Rewritten like this, it can be modelled in Event-B as follows:

Event peds moving to stopping =̂

when
W−2.1a : Pedestrians = moving

then
W−2.1a : Pedestrians := stopping

Event peds stopping to waiting =̂

when
W−2.1b : Pedestrians = stopping

then
W−2.1b : Pedestrians := waiting

Event peds waiting to moving =̂

when
W−2.1c : Pedestrians = waiting
W−2.1d : tl peds = go

then
W−2.1c : Pedestrians := moving

Note how we could establish a clear traceability according to (3). The exception is W-2.1e,
which is difficult to model in Event-B. Event-B allows us to enforce that something does not
happen (via a guard), but difficult to guarantee that something does happen (implying that all
events except one are disabled). The missing traceability to W-2.1e reminds us that this property
must be justified outside this formal model. This could be done by reasoning, testing, or with a
different formalism like temporal logic.

This justification may be invalidated if the source or target of the traceability relationship
changes. Thus, it has to be verified after each such change. A tool may support this by invali-
dating that relationship if either of the elements involved changes.

The reader may have noticed that the above represents a state machine. It could be useful to
develop an approach specific to state machines.

4.3 Data Refinement

In Section 3.2, we described how consistency is maintained across refinement levels. We will
demonstrate this concept by showing how the traffic light states stop and go are transformed via
data refinement into red, yellow and green.

red

yellow

green

Stop Go
Abstract
Events

Concrete
Events

Figure 3: Data Refinement of the Traffic Light States
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Data refinement allows us to state abstract properties in a concise way, while the implementation
details are addressed later. This allows us to reason about some fundamental properties. Consider
S-2.1 as an example of such a property. By arguing simply about stop and go, the safety property
can be stated in a very concise way. The detail on how stop and go are realised (through colours),
can be provided later. Carrying the notion of refinement to the requirements allows us to write
more concise requirements: In this case, we can separate the safety requirement from the actual
representation of traffic light states, which is also a requirement, but a different one.

There are other situations where this approach can be exploited: For product lines, some abstract
properties could be realised in different concrete implementations. In this example, stop and go
could be signalled with a barrier, as found in railroad crossings. A carefully crafted abstraction
would therefore support the automated verification of different concrete implementations.

We can model S-2.1 formally as follows:

¬(tlpeds = go∧ tlcars = go) (13)

The definition of stop and go in terms of colours was already given in Table 2, leading to the
following gluing invariant that can be introduced in a new refinement:

tlpeds = go⇔ colorspeds = {green} (14)

Introducing (14) into the model results in non-discharged proof obligations, as the newly intro-
duced gluing invariant will be violated without any further modifications. The abstract events that
control the traffic light’s stop and go states must also be refined into concrete events that cycle
through the corresponding colour states, as shown in Figure 3.

The refinement will take on a similar form as the Event-B shown in Section 4.2, where each state
transition corresponds to one event. The proof obligations will ensure that the safety requirement
(13) is not violated once they are all discharged, assuming that the gluing invariant (14) is modelled
correctly. Discharging all proof obligations will require additional guards.

4.4 Adding Requirements with Refinement

Another application of refinement is the gradual inclusion of formal requirements into subsequent
refinements, as hinted at in (9). In the traffic light example, this can be demonstrated by adding a
push button for the pedestrians, allowing them to request crossing the street.

Table 3 shows the structured requirements and their formal representations:

R-2.2 Pedestrians can request to cross any time.
S-2.6 Upon switching of tl peds from go to stop, the request is reset.
S-2.7 Pedestrians must not wait longer than 60 seconds for permission to cross after issuing

the request.

Table 3: Requirement and Specification for allowing Pedestrians to Request Crossing the Street

These two properties can be incorporated into the model in a separate refinement with a new
event and the extension of an existing event with a straightforward traceability, as shown in the
following:

Event request crossing =̂

when
R−2.2 : request := TRUE

end
Event set tl peds go =̂

extends set tl peds go
when

S−2.6 : request := FALSE
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The requirement S-2.7 cannot be modelled formally as stated. This informal artefact simply has
to be verified outside the formal model. We could break down S-2.7 further to model some aspects
formally (e.g. by introducing a “tick” interval). Our approach could handle this, but we omitted
this for brevity.

, but there are techniques that In this case we decided to not model S-2.7 formally, something
that our approach can handle without difficulty.

5 Tool Support

A tool supporting this approach would have to provide a mechanism to mark informal artefacts to
be marked as “justified”, and a place to write this justification down. Further, all Ri would have to
be marked for re-justification, as soon as any W or S changes.

We developed a platform for requirements engineering called ProR2 [JG11]. While the tool
can be used stand-alone, we designed it with the goal to ease the integration of natural language
requirements and formal models.

Figure 4: Integration of WRSPM-structured artefacts and formal Event-B elements.

ProR is based on the Requirements Interchange Format RIF/ReqIF [OMG11]. RIF was created
in 2004 by the “Herstellerinitiative Software”, a body of the German automotive industry that
oversees vendor-independent collaboration. In 2010, the Object Management Group (OMG) took
over the standardisation process and released a new version of the standard under the name ReqIF.
Our tool environment is currently based on RIF 1.2, support for ReqIF 1.0 is planned.

ProR is part of the Requirements Modeling Framework, which is an official Eclipse Project.
ProR can be installed directly into Rodin. A tight integration can be achieved with plugins that

access both the Rodin and ProR data structures.
We created a plugin that allows us to manage the vocabulary of the natural language require-

ments as Event-B models. Via this plugin, ProR supports highlighting of formal model elements
directly in the requirements text. Annotated traces can be used to record information regarding re-
lationships. For instance, this mechanism can be used to record the justification argument between
a textual requirement and a formal model element.

Formal Event-B elements have a corresponding proxy object in the RIF model that is automati-
cally synchronised with the Event-B model. The integration is currently manual via drag and drop.
The proxy object can be extended with additional attributes to store arbitrary information.

2 http://www.pror.org
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The plugin is built using the Eclipse EMF technology 3. This allows us to “hook” code into the
models to perform various tasks. Depending on the specification approach used, we could provide
validators to ensure consistency according to the approach taken.

The application of the tool is shown in Figure 4, where the elements from the formal model are
highlighted in the requirement text. We also see how a classification of elements can be performed,
in this example following WRSPM. The desired artefact type is selected from a drop-down directly
in the editor.

The Properties View in the lower pane shows additional information regarding the selected
element.

The right column shows the number of incoming and outgoing links, providing a quick summary
of each element’s traceability. These links can be unveiled, as shown in Figure 5. Rows with a
triangle represent an annotated trace. In this example, an informal justification has been provided.

For links, the rightmost column contains the link target. Selecting it shows the target’s properties
in the Property View. In the screenshot we see that the link target is the event stopping peds. As it
is selected, the Property View shows its attributes, including the event itself. This is a reference to
the model, not a copy of the event.

The tool is currently in a prototypical state and is actively developed. Specifically, it currently
support the manual creation of links and colour highlighting. We envision a tool that identifies
unaccounted requirements and model elements, and that invalidates traces when related model
elements change, as well as change impact analysis.

Figure 5: The unveiled traces of an element. As the link target is selected, the link target’s proper-
ties are shown in the Property View (the lower pane)

6 Related Work

The issue of traceability has been analysed in depth by Gotel et. al. [GF94]. Our research falls
into the area of post-requirements specification traceability.

Abrial [Abr06] recognises the problem of the transition from informal user requirements to
a formal specification. He suggests to construct a formal model for the user requirements, but
acknowledges that such a model would still require informal requirements to get started. He
covers this approach in [Abr10].

The WRSPM reference model [GJGZ00] was attractive because it allowed us to discuss the
specification in general terms, while still being meaningful in the context of a specific approach

3 Eclipse Modelling Framework, http://www.eclipse.org/emf/
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like Problem Frames [Jac01] or the functional-documentation model [PM95].
There have been successful attempts in applying Problem Frames and Event-B together. In

[LGG+10], the authors show how these are being applied to an industrial case study. In contrast
to our approach, only requirements that were actually modelled formally were included in the
specification in the first place.

There are approaches spanning from requirements to formal model, a well-known one being
KAOS [DDML97]. But rather than allowing informal elements that are omitted from the formal
model, it provides so-called “soft-goals” that are broken down into requirements that can still be
modelled formally.

Reveal [Pra03] is an engineering method based on Michael Jackson’s “World and the Machine”
model. There are a lot of similarities to our approach, including the acknowledgement of require-
ments that are not part of the formal model. However, Reveal is more of a process description of
the overall requirements engineering process. Therefore it could be quite attractive to apply the
Reveal process with the approach described here.

Last, [WAC10] describes a much more comprehensive case study where a number of the con-
cepts described in this paper can be found.

7 Conclusion

In this paper, we presented an approach for incrementally building a formal model from structured
informal requirements. Our approach supports partial formal modelling and provides traceability
for both formal and informal specification elements. This approach allows us to take advantage of
the formal model regarding automated verification, while providing a systematic (albeit manual)
approach to validation of the remaining specification elements.

We demonstrate our ideas on a specification and model of a traffic light system. While this is
arguably a teaching example, it contains examples of specification elements that are challenging
in formal modelling and demonstrates how these can be addressed.

We believe that tool support is a crucial element for such an approach to work and presented an
integration of the ProR platform for requirements engineering and the Rodin platform for Event-B
modelling to support our approach.

Future Work. We will continue investigating different specification methods. While we find
WRSPM useful, it is a reference framework that is not intended to be applied as is. We have
experimented with Problem Frames, which are useful but does not match well with our approach
to refinement (based on Event-B).

We will explore the suitability of Event-B for modelling bigger specifications with our approach,
if possible real-world examples.

Last, we will continue our work on tool support.

Acknowledgements. The work in this paper is partly funded by Deploy4. Deploy is a European
Commission Information and Communication Technologies FP7 project.
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Abstract: Event-B is a formal language for systems modeling, based on set theory
and predicate logic. It has the advantage of mechanized proof, and it is possible to
model a system in several levels of abstraction by using refinement. Discrete tim-
ing properties are important in many critical systems. However, modeling of timing
properties is not directly supported in Event-B. In this paper we identify three main
categories of discrete timing properties for trigger-response pattern, deadline, delay
and expiry. We introduce language constructs for each of these timing properties that
augment the Event-B language. We describe how these constructs can be mapped
to standard Event-B constructs. To ease the process of using the timing constructs
in a refinement-based development, we introduce patterns for refining the timing
constructs that allow timing properties on abstract models to be replaced by tim-
ing properties on refined models. The language constructs and refinement patterns
are illustrated through some generic examples. Event-B refinement allows atomic
events at the abstract level to be broken down into sub-steps at the refined level.
The goal of our refinement patterns is to provide an easy way to represent and cor-
rectly refine timing constraints on abstract atomic events with more elaborate timing
constraints on the refined events. This paper presents an initial set of patterns.

Keywords: Real-time System, Event-B, Event, Deadline, Delay, Expiry, Refine-
ment Patterns

1 Introduction

In Event-B [Abr10], systems are modeled formally by a collection of events (i.e. guarded actions)
that act on abstract variables. The aim in this work is to introduce an approach to formally model
the timing properties for the trigger-response pattern in control systems. This pattern is common
and useful in specification of control systems. It is natural to talk about these kinds of systems
in term of possible events of the system. For example in the trigger-response pattern, trigger and
response are both events of the control system.

One of the main advantages of Event-B method is its support for stepwise modeling by re-
finement. The other strength of this method is the mechanized proof obligation generator and
the prover which make the verification process, efficient and productive. These advantages of
Event-B, make it a suitable approach for formal modeling of critical systems.

An Event-B model has two main parts, context and machine. The context specifies the static
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part of the system and the machine models the dynamic part. In the machine, system behavior
and its properties can be modeled by using states variables, invariants and events. Variables
represent the current state of the system. Invariants specify the global specifications of the state
variables and system behaviors. Finally, events represent the transition of the system from a state
to another. Events are guarded atomic actions where guards specify the state of the machine
where the event can occur in, and actions indicate how the that event modifies the state variables.
By refining a machine it is possible to introduce new state variables and events, strengthen the
guards of the abstract events or introduce new actions on new state variables. Standard refinement
techniques are used to verify the refinement between models at different abstraction levels.

Event-B lacks explicit support for expressing and verifying timing properties. Modeling time-
critical systems, using Event-B has been investigated in several studies. What distinguish our
work, is categorizing timing constraints in three groups, introducing a systematic way of en-
coding each of them in an Event-B model, introducing patterns for refining timing constraints
and proving satisfaction of abstract timing constraint by their concrete ones. In this way, the
consistency of the system timing properties in the system specification can be proved by using
refinement feature of the language.

2 Timing Properties Categories

In order to formalize the process of adding time properties to an Event-B model, it has been
decided to categorize the mostly used time related specifications in time-critical system descrip-
tions. Hence, several time-critical system specifications like a car gear-controlling system, a
message passing algorithm in a network, a water tank level controller, etc., had been studied to
extract their timing properties. The next step was to categorize them in several groups according
to the nature of their restriction. The result was three groups of timing properties; Deadline,
Delay and Expiry. These three will be explained in more details in the following. As mentioned
before, these timing properties are essentially trigger-response patterns, and trigger and response
are naturally modeled as events. As a result, all the definitions in this work are event based,
where A is the trigger event and B is the response event.

Figure 1: Time Boundary Diagrams

Imagine a system with two events, A and B where first event A has to happen to make event B
possible to occur. The three types of timing boundaries which may be declared between event A
and event B are as follow:

• Deadline: Event B must occur within time D of event A occurring,
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• Delay: Event B cannot occur within time W of event A occurring,

• Expiry: Event B cannot occur after time E of event A occurring.

Based on the definition of these three restrictions, the deadline forces an event to happen before a
specific time, delay prevents an event from happening before a specific time and expiry prevents
an event from happening after a specific time. Accordingly, by having a deadline between two
events, it is guaranteed that by the deadline the deadline event has already occurred, by having
delay it is guaranteed that there will be a minimum gap between occurrence of two events, and
by having expiry it is guaranteed that if the restricted event has happened it was before a specific
time. In order to have a better understanding of these constraints, Figure 1 illustrates how these
boundaries restrict events.

In this section delay, deadline and expiry have been introduced informally. In the following
we explain how they are formalized.

3 Modeling Timing Properties In Event-B

In order to explicitly represent timing properties we extend the Event-B syntax with constructs
for deadlines, delays and expiries. These timing properties place a discrete timing constraint
between trigger events and response events. A typical pattern is a trigger followed by one of a
choice of responses thus our timing constructs specify a constraint between a trigger event A and
a set of response events Bx. The syntax for each of these constructs is as follows:

• Deadline(A, {B1,..,Bn}, t),

• Delay(A, {B1,..,Bn}, t),

• Expiry(A, {B1,..,Bn}, t).

The property Deadline(A, {B1,..,Bn}, t) means that one of the response events Bx must occur
within the time t of trigger event A occurring. In the case of delay, if any of the events in the
response set happens it has to happen after its declared delay. Finally in the case of expiry, if any
of the events in the expiry set happens it has to happen before the specified expiry time.

Now a specification consists of an Event-B machine consisting of variables, invariants and
events, together with a list of timing properties using the above syntax. Having the annotations
standardizes the process of specifying discrete timing properties in Event-B models and allows
us to define patterns for refining timing properties as we show in Section 4.

We give a semantic to our timing constructs by translating them into Event-B variables, invari-
ants, guards and actions that are added to the machine to which the timing properties belong. The
effect of additions to the Event-B machine will be to add clock increment event and constrain
further the order between events. In particular they constrain the order between trigger, response
and clock increment events. For example, the additional Event-B elements that a deadline prop-
erty give rise to will prevent more than t clock increments occurring in between a trigger event
and a corresponding response event.

We define rules for encoding each of the three timing constructs in Event-B in turn. In each
case we assume there is already a partial order between the trigger event and the corresponding
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response events, that is, we assume that the response events are only enabled after the corre-
sponding trigger event has occurred. This ordering assumption is encoded using boolean flags
as shown in Figure 2(a). As shown in Figure 2(a), event A sets the boolean variable A as one of
its actions, so when variable A has the value of T RUE, it shows event A has happened. Also, in
event Bx the flag of event A will be checked to see if event A has already happened. Other than
checking the flag and setting the flag, in their guard, Xgrds represents the other possible guards
of the event and in the action section Xacts represent the other possible actions of the event.

Note we do not assume that the trigger and response events will occur only once. Typically the
trigger and response events will be part of an iterative loop and the ordering flags will be reset at
the end of each iteration of the loop by an appropriate event.

3.1 Modeling Delay

In this section we explain how delay is encoded in an Event-B model. As mentioned before,
in order to have discrete time in Event-B a natural number variable is declared to represent the
current time in the machine and an event is added to model the progress of time.

In order to explain how delay is encoded in Event-B, we will go through the process, for a
generic trigger event A and some generic alternative response events B1 . . .Bn.

EVENT A =̂
WHERE

A = FALSE
Agrds

THEN
A := T RUE
Aacts

END
EVENT Bx =̂

WHERE
A = T RUE
Bx = FALSE
Bxgrds

THEN
Bx := T RUE
Bxacts

END
(a) Event A and Bx without delay

EVENT A =̂
WHERE

A = FALSE
Agrds

THEN
A := T RUE
tA := time
Aacts

END

EVENT Bx =̂
WHERE

A = T RUE
Bx = FALSE
time≥ tA+ t
Bxgrds

THEN
Bx := T RUE
Bxacts

END
EVENT Tick Tock =̂

THEN
time := time+1

END
(b) Event A and Bx with delay

Figure 2: Events A and Bx in 2(a) along with the Delay property will implicitly define the model
in 2(b)

There are two steps in order to add a delay constraint which is defined as follow to an Event-B
model:

Delay(A,{B1, ..,Bn}, t). (1)

First the occurrence time of the trigger event is recorded in a variable (tA). Then in the event
which should be delayed (event A), a guard is needed which forces the event to be eligible to
occur after the stated delay period has been passed from the occurrence of the trigger event. In
Figure 2 a general pattern of delayed trigger-response and the event which progress the time
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(Tick Tock), in an Event-B model, has been shown. As explained in this section, it is possible to
add a delay to a standard Event-B model.

3.2 Modeling Expiry

Modeling expiry is similar to the delay. Again the first step is to record the occurrence time of the
trigger event and the next step is to guard the restricted event according to the recorded time and
the specified expiry period. Suppose, we want to force timing property 2 to the trigger-response
pattern which is shown in Figure 3(a), how the model should be changed to contain the timing
property is shown in Figure 3(a).

Expiry(A,{B1, ..,Bn}, t) (2)

EVENT A =̂
WHERE

A = FALSE
Agrds

THEN
A := T RUE
Aacts

END
EVENT Bx =̂

WHERE
A = T RUE
Bx = FALSE
Bxgrds

THEN
Bx := T RUE
Bxacts

END
(a) Event A and Bx without ex-
piry

EVENT A =̂
WHERE

A = FALSE
Agrds

THEN
A := T RUE
tA := time
Aacts

END

EVENT Bx =̂
WHERE

A = T RUE
Bx = FALSE
time≤ tA+ t
Bxgrds

THEN
Bx := T RUE
Bxacts

END
EVENT Tick Tock =̂

THEN
time := time+1

END
(b) Event A and Bx with expiry

Figure 3: Events A and Bx in 3(a) along with the expiry property will implicitly define the model
in 3(b)

As shown in Figure 3, in order to have expiry for an event, an action is needed to record the
occurrence time in the trigger event (event A), and a guard in the restricted event to prevent it
from happening if the expiry period has been passed.

3.3 Modeling Deadline

In order to encode expiry and delay, just the trigger and the response events are involved. But,
this is not the case for modeling deadline. In order to model a deadline the Tick Tock event is
involved as well, because if the trigger event has happened, we want to force the response event to
occur, before passing the deadline. Guardin the Tick Tock event is a possible way to enforce one
of the events B1 to Bn to occur before the deadline passes. As it will be explained in Section 6
guarding the clock in order to model deadline has been used in several timed specifications
theories and tools.
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Suppose, a deadline has been declared by our timing annotation as follow:

Deadline(A,{B1, ..,Bn}, t). (3)

In order to model this restriction in an Event-B model, first the occurrence time of event A should
be recorded by adding a new action. Then a guard on the Tick Tock event is needed, to enforce
the deadline. In Figure 4 how deadline 3 can be added to a standard Event-B model is shown in
detail.

EVENT A =̂
WHERE

A = FALSE
Agrds

THEN
A := T RUE
Aacts

END
EVENT Bx =̂

WHERE
A = T RUE
Bx = FALSE
Bxgrds

THEN
Bx := T RUE
Bxacts

END
(a) Event A and Bx without
deadline

EVENT A =̂
WHERE

A = FALSE
Agrds

THEN
A := T RUE
tA := time
Aacts

END
EVENT Bx =̂

WHERE
A = T RUE
Bx = FALSE
Bxgrds

THEN
Bx := T RUE
Bxacts

END

EVENT Tick Tock =̂
WHERE

A = T RUE∧
(B1 = FALSE ∧ ..∧
Bn = FALSE)⇒
time+1≤ tA+ t

THEN
time := time+1

END

(b) Event A and Bx with deadline

Figure 4: Events A and Bx in 4(a) along with the deadline property will implicitly define the
model in 4(b)

Multiple deadline constraints may be added to a model. In this case, a deadline guard similar
to what has been shown in Figure 4(b) should be added to the Tick Tock event for each deadline
constraint.

It is possible to cause a deadlock by declaring a longer delay between two events than an
existing deadline between them. There are two approaches to detect this kind of deadlock, either
by running a model checker (e.g. ProB) and then check the uncovered events or by declaring an
invariant which implies if a deadline guard is not true (current time is equal to the deadline and
none of the restricted event has yet occurred) then one of the restricted events should be eligible
to occur. As a result, if there is a deadlock, the invariant will not be proved for the Tick Tock
event.

4 Some Patterns to Refine Deadline, Delay and Expiry and Their
Uses

In this section, some patterns of refining the introduced types of timing boundaries will be ex-
plained and their uses in order to synchronize different events will be shown by explaining some
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general examples. In this section Event Refinement Diagrams [But09] are used to present the
order between events of a refinement and also their relations with their abstract events. As a
result the Event Refinement Diagram notation will be explained briefly in the next section.

4.1 Refinement and Event Refinement Diagram

Usually, a real world system has a complex specification with a lot of details. If we want to
model all the details of a system specification in a single stage, the complexity and the size of
the model can cause a lot of difficulties. One solution is to model systems, step by step by using
refinement. The system specification should be broken to different levels of abstraction. Then,
the first step will be the modeling of the most abstract specification of the system. Then by each
refinement more details of the system specification will be added to the model. By this approach,
the model will be a more explicit representation of the target system by each refinement.

In Event-B refinement process, it is possible to introduce new events which do not exist in the
abstract machine. Other events extend abstract events or refine them. Those events which do
not exist in the abstraction, refine skip. They model the pre-steps or post-steps of abstract events
which are not visible in the abstraction in order to reduce the complexity. Although they do not
refine any abstract event, they are related to abstract events.

In order to simplify tracking the relations between abstract and concrete events, refinement
diagrams have been introduced by Butler in [But09]. In a refinement diagram there is a tree
structure in which the abstract event is positioned as the root of the tree, and its concrete events or
events which are new but model the pre/post-steps of the abstract events are represented as leaves.
The other characteristic of this notation is that the concrete events which exist in the abstract
machine and refine abstract events, are connected to their corresponding abstract event by solid
lines and the new events which model the pre/post-steps of abstract events are connected by to
their related abstract events by dash lines. Figure 5 is an event refinement diagram, illustrating

Figure 5: Refinement Diagram Example

that abstract event P is refined by a combination of concrete event A followed by concrete event B.
Event A is a pre-step of event B that refines skip, while event B refines event P.

By this introduction to the Refinement Diagram, how the elicited timing properties can be
refined, will be explained in the following.

4.2 Refining a Deadline to Sequential Sub-Deadlines

Consider an abstract model of a system where there is a deadline between event A and event B.
As shown in Figure 7, event B can only occur if event A has already happened. The deadline
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properties for this level of abstraction, is shown in Figure 7(a). In the next refinement event B
will be broken to two steps, as shown in Figure 6. By breaking event B to B1 followed by B2, its
related deadline needs to be broken too. Also the other important issue is that, the abstract event
has been refined by the second step, because the accomplishment of the second step is equivalent
to accomplishment of abstract event(B). So the first step should refine skip.

Figure 6: Refining an abstract deadline to two sub-deadlines

Deadline(A,{B}, t).

EVENT A =̂
WHERE

A = FALSE
Agrds

THEN
A := T RUE
Aacts

END

EVENT B =̂
WHERE

A = T RUE
B = FALSE
Bgrds

THEN
B := T RUE
Bacts

END

(a) Event A and B

Deadline(A,{B1}, t1)
Deadline(B1,{B2}, t2)
Where

t1+ t2≤ t

EVENT B1 =̂
WHERE

A = T RUE
B1 = FALSE
B1grds

THEN
B1 := T RUE
B1acts

END

EVENT B2 re f ines B =̂
WHERE

B1 = T RUE
B2 = FALSE
B2grds

THEN
B2 := T RUE
B2acts

END

(b) Event B1 and B2

Figure 7: Events A and B in abstract Machine in 7(a) and events B1 and B2 in the concrete
machine in 7(b)

Now, in order to respond to the trigger, two steps have to be accomplished where each of them
has its own deadline. In the concrete level, the trigger event of deadline constraint for event B1
is event A and the trigger event for the deadline of event B2 is event B1. Hence, the abstract
deadline should be broken as shown in Figure 7(b) where the sum of new deadlines does not
violate the abstract deadline.

The relation between the concrete states and the abstract ones is expressed by a gluing invari-
ant [ABH+10] in Event-B, in order to verify the refinement. Two kinds of gluing invariants are
needed in order to prove that the concrete deadlines satisfy their abstraction. The first type is
required to clarify the relation between the order of the abstract and concrete events which are
involved in the deadline. The other type is needed to specify the relation between the new dead-
lines in the concrete machine and the abstract deadline. In the explained pattern these invariants
should be as follow:

• The relation between abstract events and its refining events (B2 and B are the boolean
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variables which act as the occurrence flag of events B2 and B):

B2 = B, (4)

• The order between concrete events:

B1 = T RUE⇒A = T RUE, (5)

• The relation between the abstract deadline trigger time and its concrete one (tA is an integer
variable which records the occurrence time of event A and tB1 does the same thing for
event B1):

B1 = T RUE⇒ tB1≤ tA+ t1, (6)

A = T RUE ∧ time > tA+ t1⇒B1 = T RUE. (7)

Invariant (4) specifies that the occurrence of event B2 is equivalent to the occurrence of event
B. Invariant (5) specifies that event B1 must occur after event A. Invariant (6) shows the relation
between occurrence time of even B1 and the trigger time of abstract deadline and Invariant (7)
specifies the deadline for occurrence of event B1 which is the trigger for occurrence of event B2.
Invariant (7) is required in order to prove Invariant (6) for event B1, because it specifies that B1
must occur before tA+ t1.

It should be mentioned that the abstract deadline can be broken into more than two sub-
deadlines either by successive refinement steps or by refining the abstract event with more than
two sub sequential events in one refinement step.

4.3 Refining An Abstract Deadline to Alternative Sub-deadlines

Often, when a process has to finish by a specific time there is a recovery scenario which will
guarantee that by the deadline either the desired response or some recovery response will be
achieved. So by the deadline either the normal or the recovery scenario has been accomplished.
For example, consider, instead of refining event B in the example of Section 4.2, by two sequen-
tial sub steps, it has been refined by breaking it into two alternative events, B1 and B2. So, after
occurrence of event A either event B1 or event B2 should happen. How event B and the abstract
timing property are refined is shown Figure 8.

Figure 8: Refining an event to two possible events

As shown in Figure 9, in the refinement event B has been broken to event B1 (normal response)
and event B2 (recovery response) and both of them refine the abstract event. As a result the
deadline will be refined as shown in Figure 9(b). As explained in Section 3.3 by declaring a
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deadline which has more than one member in its deadline set, we specify the behavior where,
after occurrence of event A, before passing the deadline time, either process will be accomplished
by occurrence of event B1 or event B2.

Deadline(A,{B}, t)

EVENT A =̂
WHERE

A = FALSE
Agrds

THEN
A := T RUE
Aacts

END

EVENT B =̂
WHERE

A = T RUE
B = FALSE
Bgrds

THEN
B := T RUE
Bacts

END

(a) Event A and B

Deadline(A,{B1,B2}, t)

EVENT A =̂ . . .
EVENT B1 re f ines B =̂

WHERE
A = T RUE
B1 = FALSE
B1grds

THEN
B1 := T RUE
B1acts

END

EVENT B2 re f ines B =̂
WHERE

A = T RUE
B2 = FALSE
B2grds

THEN
B2 := T RUE
B2acts

END

(b) Event B1 and B2

Figure 9: Events A and B in abstract Machine in 9(a) and events B1 and B2 in the concrete
machine in 9(b)

In this case the only kind of invariant which is required is the one which connected the concrete
events occurrences to their abstract one. In the above example the required invariants will be as
follow:

B2 = T RUE ∨B1 = T RUE⇔B = T RUE. (8)

Based on invariant 8 occurrence of event B is equivalet to the occurrence of event B1 or event B2.

4.4 Refining Alternative Sub-Deadlines by Sequential Sub-Deadlines and Expiries

We now present a pattern for refining an abstract deadline by some alternative deadlines and then
refine these by sequential deadlines.

In order to explain this pattern, the example of Section 4.3 will be continued. So, in the current
state, we have a trigger event A and two alternative responses, event B1 and B2. The deadlines
of each level of abstraction, are shown in Figure 9.

In the next refinement, each of the events B1 and B2 will be refined to two sequential steps
and their deadline will be refined to two sequential deadlines, same as the pattern shown in
Section 4.2 (event B1 will be broken to events B1 1 and B1 2 and event B2 will be broken to
events B2 1 and B2 2). In this system, the first response case is desirable (modeled by event
B1), but if its first step (modeled by event B1 1) has not been accomplished by t4, the second
response case (modeled by event B2) will be activated and its first step (modeled by event B2 1)
has to happen before the specified deadline (t1). As a result by the first deadline in the concrete
machine, either the first response case has been activated or the second one (by occurrence of
their first steps). For the next step, event B1 1 triggers event B1 2, and event B2 1 triggers event
B2 2 as shown in Figures 10 and 11. The other specification of this system is that the deadline
between the first (B1 1) and the second (B1 2) steps of the first response case (B1) is greater than
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Figure 10: Refining each of the possible scenarios to two steps

Deadline(A,{B1 1,B2 1}, t1),
Expiry(A,B1 1, t4)
Deadline(B1 1,{B1 2}, t2),
Deadline(B2 1,{B2 2}, t3)
where

t1+ t2 > t ∧ t4+ t2≤ t
t1+ t3≤ t

EVENT B1 1 =̂
WHERE

A = T RUE
B1 1 = FALSE
B1 1grds

THEN
B1 1 := T RUE
B1 1acts

END

EVENT B1 2 re f ines B1
=̂

WHERE
A = T RUE
B1 1 = T RUE
B1 2 = FALSE
B1 2grds

THEN
B1 2 := T RUE
B1 2acts

END

(a) Events B1 1 and B1 2

EVENT B2 1 =̂
WHERE

A = T RUE
B2 1 = FALSE
B2 1grds

THEN
B2 1 := T RUE
B2 1acts

END
EVENT B2 2 re f ines B2 =̂

WHERE
A = T RUE
B2 1 = T RUE
B2 2 = FALSE
B2 2grds

THEN
B2 2 := T RUE
B2 2acts

END
(b) Events B2 1 and B2 2

Figure 11: Events B1 1 and B1 2 in 11(a) and events B2 1 and B2 2 in 11(b)

the equivalent deadline for the second alternative response case (B2). So according to the system
specification the concrete deadlines should be as shown in Figure 11.

By the concrete deadlines, the abstract deadline will not be satisfied for the first response case
(t1+ t2 > t). This problem is caused by the nature of deadline constraint. In the deadline we
just guarantee that by passing the deadline time, at least one of the events of the deadline set has
already happened.

As mentioned above, event B1 1 has an expiry constraint too. So after a specific time, it can-
not happen anymore and the only possible response will be the second response case. According
to the system specification, event B1 1 can just happen before t4 time units since event A occur-
rence. Hence, by enforcing this constraint by declaring an expiry as shown in Figure 11(a), the
concrete timing properties will satisfy their abstract ones. It has been guaranteed in the model
that if event B1 1 happens, at most t4 time units have been passed from event A occurrence.
From that time, event B1 2 has t2 time units to happen. As a result, the abstract deadline is

11 / 15 Volume 36 (2011)



satisfied. This pattern shows how combination of deadline and expiry can be useful in modeling
and refining the timing properties of a time-critical system.

One question that can be raised here is why we do not use two disjunctive deadlines instead
of a deadline and an expiry for this case. To explain it, we will apply this approach on a similar
pattern. Suppose we want to encode these timing properties by two disjunctive deadlines, and
we were to allow those to be declared as follow:

Deadline(A,{B1}, t1)∨Deadline(A,{B2}, t2) Where t2 > t1. (9)

To encode this in an Event-B model, the guard on Tick Tock event could be as follow:

A = T RUE ∧B1 = FALSE⇒ time+1≤ tA+ t1 ∨ (10)

A = T RUE ∧B2 = FALSE⇒ time+1≤ tA+ t2,

Since t2 > t1 is easy to show that Guard (11) is equivalent to the guard we would use for the
following deadline specification:

Deadline( A, { B1, B2 }, t2).

Intuitively, this is because guard (11) can be satisfied if the B1 event occurs after t1 time unit
since occurrence of event A. As a result by having two disjunctive deadlines, the expiry constraint
on event B1 will not be enforced.

In this section some approaches have been introduced in order to refine our three groups of
timing properties. These patterns do not contain all the possible cases of refining timing proper-
ties and we are still working on other possible refinement patterns. In the following section how
this research can be improved will be discussed briefly.

5 Future Work

We would like to develop a Plug-in for the Rodin tool-set in order to add time to a standard
Event-B model automatically, based on the timing constraints declared in the form of deadline,
delay and expiry which are expressed by the introduced annotations.

One of the features which has been added to Rodin [SPHB10], is decomposition. By using
this feature, it is possible to break a machine in an Event-B model, to several independent ma-
chines where each machine represents one of the sub-components of the system. In this way
it is possible to refine each sub-component independently. As a result, the complexity of the
model will be decreased. Based on that, the other possible area to improve our pattern to add
timing properties to an Event-B model, is to investigate the effect of decomposition on timing
specification. It will strengthen the approach by eliciting the possible issues and challenges in
decomposing a timed Event-B machine. What can be studied more about the decomposition
are how the universal clock should be handled after the decomposition, how the time passing
event should be decomposed, or how time related guards and actions will be separated between
different machines in a decomposition.

Also, we would like to investigate the possibility of generalizing the introduced timing con-
straints in order to decrease the redundancy during the timing properties specification process in
future.
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6 Related Work

Many studies have been dedicated to formalizing and verifying timing properties of real-time
systems. Delay, deadline and expiry can be seen in many of those works, sometimes with dif-
ferent names. In real-time calculus TCCS of Wang [Yi90] there is a delay construct ε(d) ·P,
which enforce the model to wait for d time units and then behave as process P and time cannot
proceed if d time-units passed and process P has not started yet. Same mechanism has been used
in Timed Modal Specification of Cerans et al [CGL97] to model maximal progress assumption
where there is a must modality which enforces the maximum delay to the model. Delay in TCCS
and maximal progress in Timed Modal Specification present the same constraint as deadline in
our work. Also, what is called a loose delay in Timed Modal Specification forces the same be-
havior as a delay does in our work. Besides, Urgent Event in Evans and Schneider work [ES00]
has been encoded by preventing the time proceeding, if an urgent event is eligible to occur. This
behavior of urgent event is the same as deadline events when current time is equal to the deadline
and none of the deadline events have occurred yet. In Timed CSP [Sch99] time-out presents the
same constraint as expiry does in our work and a delay in Timed CSP causes a similar behavior
to what can be enforced by combining introduced delay and deadline in our work.

Modeling time-critical systems by using Event-B has been investigated in several studies.
Butler et al. in [BF02] explained how it is possible to model discrete time in B (which is the
root of Event-B), by having a natural number variable which represents the current time and
an operation which increases it. In that study a deadline has been modeled by preventing the
progress of time if the current time is equal to the deadline. This work does not investigate
different kinds of timing constraint and timing constraint refinement have not been investigated.
Cansell and Rehm in [CMR07] have modeled a message passing algorithm in Event-B by using
similar principle, having a natural number variable, represents the current time, and an event
which forwards the time, guarded by a set of activation times. Again in here, other kinds of
timing constraints have not been mentioned, but more importantly, it is not possible to refine a
timing constraint to several sub-timing constraints by this approach. Because, in order to do that,
some new values should be added to the activation set in the refinement which is not possible
without declaring a new activation set. The problem will be specifying the relation between the
new activation set and its abstract one. Bryans et al. in [BFRR10] has introduced an approach
to keep track of timing boundaries between different events in a model by adding them to a
set and guarding events by them. In their study, deadline cannot be modeled. Similar to the
previous approach, refining the timing constraint will be an issue because of tracking the timing
constraints by a set for this approach too.

7 Conclusion

According to the gear controller case study[LPY01] which has been done in Even-B, and some
other experiences, it seems that these three kinds of timing constraints can be used to model
most of the timing properties of a time-critical system. In our case study we managed to first
model the system without time, then declare the required timing constraints by using introduced
annotations. In the end, according to the declared timing constraints, we added time to the

13 / 15 Volume 36 (2011)



model. All the refinements’ proof obligations which have been generated for relation between
the concrete timing constraints and their abstractions have been discharged. If we manage to
develop a plug-in which can add the required guards, actions, invariants and Tick Tock event
in order to add time to an Event-B model, based on declared timing properties, the process of
modeling time-critical systems will be the same as modeling a non-time-critical system by using
Event-B.

There are some similarities between our approach and the existing approaches to model time-
critical systems. How we encoded deadline, delay and expiry is similar to the approach that
timed automata [Alu99] verifiers use, like guarding state transitions (system events) or forcing
timing properties to the global clock of the model. In timed automata, it is possible to check
the temporal properties [Eme95] of a system. In this approach, the temporal properties can be
checked by using refinements where a temporal property is modeled by an abstract invariant and
by refinement how it will be gained by detailed behavior of the system will be modeled and
verified. For example, in the abstraction we say, a gear-change request should be responded by
an error message or a successful change, then by several refinements how system will manage to
satisfy it will be modeled and verified.

Our approach is based on modeling discrete timing properties of reactive systems according
to their events and through several levels of refinement. But it was not an isolated work, and
we tried to develop an approach to add time to an Event-B model by learning from the existing
works.

Acknowledgements: This work is partly supported by the EU research project ICT 214158
DEPLOY (Industrial deployment of system engineering methods providing high dependability
and productivity) www.deploy-project.eu.
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Abstract:
We present an approach to facilitate the design of provably correct concurrent sys-
tems by recasting recent work that uses discrete-event supervisor synthesis to auto-
matically generate concurrency control code in Promela and combine it with model
checking in Spin. This approach consists of the possibly repeated execution of three
steps: manual preparation, automatic synthesis, and semi-automatic analysis. Given
a concurrent Promela program C devoid of any concurrency control and an infor-
mal specification Ein, the preparation step is assumed to yield a formal specifica-
tion E of the allowed system behaviours and two versions of C: Ce to identify the
specification-relevant events in C and enable supervisor synthesis, and Ce,a to intro-
duce “checkable redundancy” and used during the analysis step to locate bugs in:
the specification formalization E, the event markup in Ce, or the implementation of
the synthesis. The result is supervised Promela code Csup that is more likely to be
correct with respect to E and Ein. The approach is illustrated with an example. A
prototype tool implementing the approach is described.

Keywords: Concurrency control, formal verification, control theory, discrete-event
systems, controller and supervisor synthesis.

1 Introduction

The poor integration between computer science and electrical engineering in academia has been
observed before. In [HS07], Henzinger and Sifakis blame the “wall” between these two disci-
plines for keeping the “potential of embedded systems” at bay. Indeed, the potential for fruitful
interaction between them seems large. Consider, for instance, Discrete-Event Systems (DES)
control theory, a branch of control theory which is concerned with the Supervisory Control Prob-
lem (SCP), i.e., the automatic synthesis of a supervisor (controller) S that restricts the execution
of an unrestricted discrete-event system G (called “plant”) to enforce some specification E. DES
theory originated in the 1980s [RW87, RW89] and offers a large body of research on the SCP
which, for instance, considers different formalisms to represent S, G and E including finite state
automata (FSA), Petri nets, and the mu-calculus [CL08, ZS05]. Recent work has shown how
results and tools from DES theory can be used to alleviate the challenges of concurrent pro-
gramming. In [WLK+09, WCL+10], automatically generated supervisors are used to guarantee
deadlock-free execution of multi-threaded code, based on a structural analysis of a Petri-net rep-
resentation of the plant. In [DDR08], standard DES based on FSAs is employed to generate
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supervisors that enforce deadlock-freedom and safety properties (also expressed as FSAs) on
Java programs with static concurrency. In [ADR09], this work is extended to dynamic concur-
rency which then requires the use of Petri nets.

We extend this line of work and suggest the integration of DES theory with model checking by
combining the constructive and generative aspects of DES theory with the analysis and bug de-
tection capabilities of Spin. We aim to facilitate the development of provably correct concurrent
systems by increasing the degree of automation. This paper makes the following contributions:
(1) The work in [DDR08] is recast in Promela. Given an unrestricted system C expressed in
Promela and a specification E expressed as a FSA, a supervised system Csup is automatically
generated and is guaranteed to satisfy E and deadlock-freedom. Moreover, the supervisor com-
ponent in Csup is provably minimally restrictive (maximally permissive), i.e., any behaviour in C
but not in Csup will violate E or deadlock-freedom. (2) Despite the theoretical guarantees, bugs
can still creep in not only in the various synthesis steps’ implementation, but also in the inputs
to the synthesis steps, all of which are, at least partially, manually created. We show how model
checking can be used to debug them. (3) We describe a prototype tool using Spin and show
how Spin’s support for shared-memory and message-passing concurrency can be leveraged to
generate supervisors supporting the two concurrency paradigms and to optimize the analysis of
the combined system. A detailed example illustrates the approach and the tool’s utilization.

This paper is structured as follows: Related work is reviewed in Section 2 and relevant back-
ground on DES theory is given in Section 3. Section 4 describes our approach and Section 5
illustrates it with an example. Section 6 describes our prototype tools and Section 7 concludes.

2 Related Work

Automatically generating parts of concurrent systems from specifications has been an active re-
search topic. We focus here on approaches that combine synthesis and formal analysis via model
checking. While the use of DES in software development and execution has been suggested be-
fore [RW90, RW92a, Laf88, TMH97, WKL07], generating control code for concurrent software
has received particular interest recently. The work of two authors of this paper on using DES
for generating concurrency control code has already been mentioned [DDR08] where the JPF
model checker was used to validate the generated supervisor code, but not the manually created
inputs. Moreover, despite recent advances in software model checking, model-level analyses
are still more likely to be tractable rather than at code-level. Independently, Wang et al. have
used DES to obtain supervisors that guarantee deadlock-freedom [WLK+09, WCL+10] where
concurrent programs are represented as Petri nets and deadlock freedom is characterized by the
absence of reachable empty siphons. Our work in this paper (and [DDR08]) is based on FSAs
and supports general safety properties rather than just deadlock-freedom. Also, no support for
analysis of the generated artifacts is mentioned in [WLK+09, WCL+10]. Timed DES is based on
timed automata; recently, UPPAAL-TIGA has been used for an industrial case study involving
climate control systems [BCD+07] where the synthesis and analysis capabilities of UPPAAL-
TIGA have been combined with Simulink and Real-TimeWorkshop to provide a complete tool
chain for synthesis, simulation, analysis and automatic generation of production code. The work
in [GPT06] uses symbolic model checking for supervisor synthesis from specifications given
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in CTL specifications and a plant description given in NuSMV. The work in [ZS05] introduces
DES theory based on the mu-calculus and thus generalizes Ramadge and Wonham’s standard
DES theory. However, no tool supporting the generalization appears to be available.

There exists additional work that does not make explicit use of DES theory. For instance,
some work is aimed at facilitating software architecture component composition (e.g., [TI08,
BBC05]). In [TI08], Tivoli and Inverardi generate coordinators which enforce a given global
coordination policy [TI08] where components are assumed to adhere to a coordinator-based ar-
chitectural style and message sequence charts are used for behavioural interface specification.
Correctness and maximal permissiveness (called completeness) are proved and the work has
been integrated with CHARMY, a tool for architectural analysis. Despite many differences in
technical details and terminology, the approach is similar to supervisor synthesis1. In the context
of concurrent programming, the approach presented by Deng et al. explicitly shares our interest
in supporting the combined use of synthesis and verification [DDHM02]. It generates synchro-
nization statements for concurrent Java code from invariant specifications and the new code can
be fed into the Bandera model checker for analysis. Some related work appears in the literature
as environment (assumption) generation. For instance, in [GPB05], the LTSA tool is used to
determine the weakest assumptions that the concurrent environment E of a component C has to
satisfy such that the composition of C and E satisfies some specification B where E, C, and B are
given as FSAs. LSTA also supports model checking. Synthesis has also been used to achieve
fault-tolerance. In [AAE04], a method is presented for the synthesis of fault-tolerant concurrent
programs from specifications expressed in the temporal logic CTL. However, no implementa-
tion allowing the integration with CTL model checkers such as nuSMV is mentioned. Finally,
in [IST07] and [IS08], CSP‖B is used to control machines or processes via control “annotations”
which may represent states, next operations or control flow. A synthesis process is used to: verify
the annotations against the machine, manually produce a “Controller” and verify it against the
annotations, and finally refine if needed.

We conclude that while the integrated use of synthesis and formal verification has been sug-
gested before, our work differs from each of the existing approaches in at least one of the follow-
ing two aspects: it uses Spin, one of the most popular and powerful model checkers available;
it explicitly uses DES theory and thus allows the large body of existing results and tools to be
leveraged. Interestingly, the recent interest in autonomic and adaptive software has produced
proposals to design software directly informed by control theory [MPS08, Dah10]. However, so
far, controller synthesis does not appear to be part of this research agenda. In [Dah10], valida-
tion and verification of autonomic and adaptive systems are singled out as particularly important
research topics.

1 In [TI08, p. 206], it is claimed that supervisor synthesis based on DES requires explicit specification of the dead-
locking behaviours; this, however, is not the case.
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3 Background

3.1 DES Theory

In DES theory, systems are modelled by FSAs called plants. Transitions represent events that are
either controllable (can be enabled or disabled at will) or uncontrollable (may happen arbitrar-
ily). In a non-blocking model, all states are reachable (from the initial state) and co-reachable
(lead to a final state) which implies the absence of deadlocks and livelocks. A specification de-
scribing a plant’s desired behaviour can be modelled using specification FSAs and is called the
specification, or legal language. A specification E is controllable with respect to plant G if for
any series s of events in G and legal in E (s is in E’s prefix closure), there is no uncontrollable
event σ that can then happen in G and that is illegal in E (sσ is not in E’s prefix closure).

Given a specification E and plant G, where E is not necessarily controllable with respect to
G, we want to get the least restrictive sub-specification (or largest sub-language) K ⊆ E such
that K is controllable with respect to G. If there is no such nonempty subset of E then K = /0.
If E is controllable with respect to G, then K = E. We call a recognizer S for K the supervisor
or the supremal controllable sub-language of E with respect to G, denoted supC(G,E) [CL08].
The supervisor is also modelled with an FSA and will control G by enabling and disabling G’s
controllable events. When a plant G is controlled by a supervisor S, the resulting behaviour is
given by the intersection of the language accepted by G and the language accepted by S and is
captured by a FSA denoted as S/G.
Composing Specifications and Processes: The plant G and the specification E may consist of
several parallel processes Gi and sub-specifications E j, respectively. We assume that the sub-
specifications share all events (i.e., use the same set of events), which means that each node
in a sub-specification has a self-loop labelled with all the events that do not directly belong to
any sub-specification but belong to the processes. Processes, however, may not share all events.
We will combine processes and sub-specifications using an operation that forces the FSAs to
synchronize on shared (common) events, while allowing independent interleavings of the non-
shared events. We will call this operation synchronous product2.
Complexity and Tool Support: The supervisor supC(G,E) can be computed in time O(n2m2e)
where n and m are, respectively, the number of states in G and E and e is the total number of
events in G and E (Section 3.5.3 of [CL08]). The time complexity of the synchronous product
operation is O(mn) where n is the number of sub-FSAs provided and m the maximum number
of states in all these sub-FSAs. Several DES tools supporting supervisor synthesis are available
including IDES [IDE], TCT [TCT], and DESUMA [DES].

3.2 DES Theory for Generation of Concurrency Control Code

As described in Section 2, previous work has already observed that DES theory can be used
directly to control the execution of software with respect to certain specifications [DDR08,
WLK+09]. The area of application here has been concurrent programming where the supervisor
manages concurrent processes such that deadlock-freedom and the safety properties expressed
as FSAs are enforced — the generated supervisor inheriting the strong theoretical guarantees

2 Note that if two FSAs share all events, the synchronous product reduces to language intersection.
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offered by DES theory. The key idea is to view the concurrent system as the plant G and to
interpret concurrency- or specification-relevant operations in the code as controllable events. To
obtain the closed loop system S/G, the event markup in G is replaced by an interaction with
the supervisor in which a request by a process in G to execute an operation is only granted by
the supervisor if its execution cannot possibly lead to a deadlock or specification violation. The
approach requires the (manual or automated) identification of relevant events in the code and
then the transformation of the code and the specification into a format supported by current DES
tools. For instance, in [WCL+10] concurrent C code is automatically converted into a Petri net
by extracting and combining the control flow graph of each of the threads and modelling execu-
tion via token flow. In [DDR08], a similar technique is used to convert Java threads into FSAs
which are then combined using the synchronous product operation.

4 Combining Supervisor Synthesis and Spin Analysis

A graphical overview of our approach to integrate supervisor synthesis and analysis is given
in Figure 1, which shows the flow of artifacts (solid arrows) between possibly nested activities
(boxes). Stick figures indicate activities requiring user interaction and the dashed arrow shows
control flow.

Informal 
spec Ein
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vised
code C

(Promela)
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Formal 
specs {Ei}

(FSA)

Ce,a
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Ce
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tion T2
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Figure 1: Overview of Approach to Integrate Synthesis and Spin Analysis

This approach recasts the preparation and synthesis steps for concurrency control code gen-
eration proposed in [DDR08] using Promela (instead of Java) as the implementation language.
Moreover, an additional artifact (Ce,a) is introduced and the synthesis is followed by an analysis
step in which manual inspection, user-guided simulation, and model checking are used to iden-
tify bugs in any of the artifacts created during the manual preparation step. If bugs are found, the
preparation and the synthesis are redone. We describe each step in more detail.
1) Preparation: The informal specification Ein is assumed to express a safety property identify-
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ing permissible sequences of events such as precedence constraints, mutual exclusion constraints
or capacity constraints. The unsupervised code C is a concurrent Promela program devoid of any
concurrency control. The user then (1) translates Ein into a collection {Ei} of FSAs, (2) marks
up specification-relevant events in C to create Ce, and (3) adds assertions and possibly auxiliary
variables to Ce to obtain Ce,a. The transitions in E should distinguish between controllable and
uncontrollable events. The assertions in Ce,a capture (aspects of) the informal specification Ein

and offer “checkable redundancy”, which will be used in the analysis step to validate E against
Ein. For instance, a capacity constraint in Ein may be checked by an assertion containing a
counter variable.
2) Synthesis: Consists of the supC operation, sandwiched between three transformations: T1 and
T2 to prepare the inputs and T3 to process the output:

a) The formal specifications Ei are combined into a single one by computing their syn-
chronous product E (transformation T1 in Figure 1).

b) The unsupervised code with event markup Ce is translated into plant FSA G (transfor-
mation T2). Similar to [DDR08, WCL+10], G is obtained using compiler technology to
extract the control-flow graph of every process in Ce and to build FSA-representations.
These FSAs are combined by computing their synchronous product.

c) An off-the-shelf DES tool is used to perform the supC-operation on E and G.
d) If supC(G,E) = /0, the operation fails. Otherwise, the generated supervisor S is automat-

ically implemented in Promela and integrated in Ce,a to obtain the supervised code Csup

(transformation T3). Transformation T3 allows the generation of code that implements the
supervision using shared-memory (input “shm” in Figure 1) or message-passing (“msg”).

3) Analysis: The analysis process is described in Figure 2. If the supC-operation fails (line 3),

1 input : ( ‘ f a i l ’ , E ,Ce ) o r Csup
2 output : ‘ f a i l ’ , ‘ redo ’ , o r Csup
3 i f input == ‘ f a i l ’ then % SupCon operation failed
4 check t h a t Ce and E a r e c o r r e c t wr t C and Ein ; % Manual inspection
5 i f bug found then % E and/or event markup in Ce wrong
6 output ‘ redo ’ and s top ; % Fix bug and redo synthesis
7 e l s e output ‘ f a i l ’ and s top % Ein may be unenforceable on C;done
8 e l s e
9 s i m u l a t e Csup i n Spin ; % Does Csup behave as expected? (semi-automatic step)

10 i f Csup has u n e x p e c t e d b e h a v i o u r then
11 output ‘ redo ’ and s top ; % Fix bug and redo synthesis
12 e l s e
13 modelcheck Csup i n Spin ; % Do assertions hold?
14 i f v i o l a t i o n found then % E or assertions in Ce,a must be wrong wrt Ein
15 output ‘ redo ’ and s top ; % Fix bug and redo synthesis
16 e l s e
17 use Spin t o d e t e r m i n e minimal c h a n n e l c a p a c i t i e s {capi } ;
18 output (Csup,{capi}) and s top . % Done

Figure 2: Pseudocode for Analysis Step in Figure 1 (indentation indicates nesting)

it may be because Ce or E are incorrect. For instance, event markup in Ce may be misplaced
or missing; E may have incorrect transitions or may erroneously mark a controllable event as
uncontrollable. If manual inspection uncovers such an issue (line 4), the preparation and the
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synthesis are redone. Otherwise, Ce and E are assumed to be correct (w.r.t. Ein and C) and
the process ends in a fail (because E is unenforceable on C) (line 7). If the supC-operation is
successful (i.e., supC(G,E) 6= /0), the supervised code Csup is simulated by the user (line 9); if
unexpected behaviour is encountered, the preparation and the synthesis are redone; otherwise,
Csup is model checked (line 13). Assertion violations indicate that either E or the assertions
are incorrect and a new iteration is initiated (line 15). If no violations are found, Spin is used to
determine the smallest channel capacities {capi} necessary to implement Csup and the supervised
code Csup is output with {capi}.

4.1 Theoretical Guarantees

Strong guarantees can be given for the result of the supC operation at the heart of our approach.
The combination of G and S satisfies E and is deadlock-free. Moreover, S is guaranteed to be
maximally permissive. Unfortunately, these strong guarantees do not carry over to the artifacts
produced from supC(G,E) using our approach. For instance, if our approach stops with output
“fail”, it is possible that a supervisor for C and Ein exists, because the manual inspection over-
looked that, e.g., E does not correctly capture Ein. In addition, if the approach stops with output
Csup, it is still possible that Csup violates Ein, because, e.g., the added assertions are not suitable
to detect that E actually does not capture Ein correctly. The manual steps involved make this
situation unavoidable. Moreover, since Ein is given only informally, it is difficult to establish the-
oretical guarantees with respect to Ein. Nonetheless, our experience suggests that the approach
is still useful. During our case studies it repeatedly helped us identify inputs with unexpected,
non-seeded bugs to the synthesis step. A few of these cases will be illustrated in the next section.

Also, in our experiments, we routinely found that the shared-variable implementation of the
supervised code had substantially fewer states than the message-passing implementation. This
suggested that the generation of the message-passing version, if necessary at all, be postponed
until the very end of the prepare-synthesize-analyse cycle.

5 Working Example: Transfer-Line

We have applied our approach on several examples and used the IDES DES tool [IDE] to com-
pute the synchronous product and supC operations. Our working example was taken from [Won11].
A widget processing transfer-line (shown in Figure 3) consists of two production machines M1
and M2 and one test unit TU . The three machines form a production line and are connected
via two widget buffers B1 and B2. M1 may be requested to start production of one widget at a
time and deliver it to B1 in an unpreventable way after a arbitrary time. Similarly, M2 may be
requested to pick-up one widget from B1 and then deliver it to B2. Finally, TU can pick up one
widget from B2, test it and then either uncontrollably return it to B1 on failure or deliver it away.

Figure 4 lists the corresponding unsupervised Promela code. Code doing actual work is ab-
stracted out with comments and the widget test in TU is replaced by a non-deterministic choice.
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Figure 3: Transfer-Line Example

a c t i v e proctype M1( ) {
do : : t rue −>

/ / I d l e
/ / C r e a t e new wi dg e t
/ / D e l i v e r w i dg e t t o B1

od ; }
a c t i v e proctype M2( ) {

do : : t rue −>
/ / I d l e
/ / P i ck up wi dg e t from B1
/ / P r o c e s s wi dg e t
/ / D e l i v e r w i dg e t t o B2

od ; }

a c t i v e proctype TU ( ) {
do : : t ru e −>

/ / I d l e
/ / P i ck up w i d g e t from B2
/ / T e s t w i d g e t
i f
: : t ru e −> / / P a s s e d : d e l i v e r away
: : t rue −> / / F a i l e d : r e t u r n t o B1
f i ;

od ; }

Figure 4: Unsupervised Promela Code C

5.1 Step 1: Preparation

Addition of Event Markup and Assertions: Since the event names chosen for the event markup
in Ce will also be used for the construction of {Ei}, we start by identifying the relevant events in C
and assertions suitable for checking aspects of Ein. The resulting code Ce,a is shown in Figure 5.
Ce is like Ce,a except that the assertions are removed. Three controllable events (M1MakeWidget,
M2PickUpWidget, and TUPickUpWidget) and six uncontrollable events (M1WidgetDelivered,
M2WidgetPickedUp, M2WidgetDelivered, TUWidgetPickedUp, TUWidgetPassed, and TUWid-
getFailed) have been identified. Event M1MakeWidget indicates that M1 is ready to produce a
new widget, similarly for M2PickUpWidget with M2 from B1 as well as for TUPickUpWidget
with TU from B2. Completed widget deliveries are signalled using M1WidgetDelivered and
M2WidgetDelivered and TU signals a failed widget returned to B1 with TUWidgetFailed.

Assertions warrant the capacity constraints via auxiliary variables (B1 and B2) that store the
number of widgets in each buffer and model widget deliveries and pick-ups. Although not essen-
tial, the action of picking up widgets was made non-instantaneous to admit more concurrency.
Formal Specifications EB1 and EB2: Two specifications are produced capturing how the number
of elements in each of the buffer changes in response to certain events (Figure 6). Plain arrows
represent uncontrollable events.

5.2 Step 2: Synthesis

Build E (Transformation T1): The synchronous product of EB1 and EB2 was generated and
contains 8 states and 58 transitions. It is not shown here due to space limitations.
Generate Plant G (Transformation T2): Plant FSAs (Figure 7) were automatically generated
from the control flow graphs of the processes in Ce,a using standard parsing technology. Dashed
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s h o r t B1 = 0 , B2 = 0 ;
a c t i v e proctype M1( ) {

do : : t rue −>
/ / I d l e
/ / r e l e v a n t c o n t r o l l a b l e e v e n t : M1MakeWidget
/ / C r e a t e new wi dg e t
atomic{a s s e r t ( B1 < 3 ) ; B1++;} / / D e l i v e r w i dg e t t o B1
/ / r e l e v a n t u n c o n t r o l l a b l e e v e n t : M1WidgetDel ivered

od ; }
a c t i v e proctype M2( ) {

do : : t rue −>
/ / I d l e
/ / r e l e v a n t c o n t r o l l a b l e e v e n t : M2PickUpWidget
atomic{a s s e r t ( B1 > 0 ) ; B1−−; / / P i ck up w idg e t from B1
/ / r e l e v a n t u n c o n t r o l l a b l e e v e n t : M2WidgetPickedUp
/ / P r o c e s s wi dg e t
atomic{a s s e r t ( B2 < 1 ) ; B2++;} / / D e l i v e r w i dg e t t o B2
/ / r e l e v a n t u n c o n t r o l l a b l e e v e n t : M2WidgetDel ivered

od ; }
a c t i v e proctype TU ( ) {

do : : t rue −>
/ / I d l e
/ / r e l e v a n t c o n t r o l l a b l e e v e n t : TUPickUpWidget
atomic{a s s e r t ( B2 > 0 ) ; B2−−;} / / P i ck up wi dg e t from B2
/ / r e l e v a n t u n c o n t r o l l a b l e e v e n t : TUWidgetPickedUp
/ / T e s t w i dg e t
i f : : t rue −> / / Pa s s ed : d e l i v e r away

/ / r e l e v a n t u n c o n t r o l l a b l e e v e n t : TUWidgetPassed
: : t rue −> / / F a i l e d : r e t u r n w i dg e t t o B1

atomic{a s s e r t ( B1 < 3 ) ; B1++;}
/ / r e l e v a n t u n c o n t r o l l a b l e e v e n t : TUWidgetFai led

f i ; od ; }

Figure 5: Unsupervised Code Ce,a with Event Markup and Assertions

(a) EB1 (b) EB2

Figure 6: Formal Specifications EB1 and EB2 (self-loops with events M1MakeWidget,
M2PickU pWidget, TUPickU pWidget and TUWidgetPassed at each node omitted)

arrows represent controllable events. The synchronous product of M1, M2 and TU was then
generated and contains 18 states and 60 transitions. It is not shown here due to space limitations.
Generate Supervisor S: The supervisor for plant G and specification E was generated with
supC. It contains 41 states and 94 transitions. Due to space limitations it is not shown here.
Generate Supervised Code Csup (Transformation T3): We created a conversion script that im-
plements FSAs generated by the DES tool used, and inserts concurrency control code in the
original Promela code for each relevant event markup. Our script generates two distinct solu-
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(a) FSA for M1 (b) FSA for M2 (c) FSA for TU

Figure 7: FSAs for M1, M2 and TU

tions: one that implements the communication between the processes and the supervisor using
shared variables and another one that uses message passing.

Shared Variable Solution: For each controllable event e, a global boolean variable e indicates
whether e is currently enabled. Communicating the occurrence of an event to the supervisor is
achieved using global variable Event. When Event = -1, all the events currently enabled are
allowed to occur. One such event en (with n ∈ N) is selected non-deterministically (in Spin) and
its corresponding process signals its triggering by setting Event to n. The supervisor indicates
that it has noted and processed the occurrence of event en by resetting Event back to -1.

During transformation T3, for both controllable and uncontrollable events, every occurrence
in the Promela source code of

/ / r e l e v a n t ( un ) c o n t r o l l a b l e e v e n t : Eventn

is replaced by

/ / r e l e v a n t ( un ) c o n t r o l l a b l e e v e n t : Eventn
atomic { ( ( E v e n t < 0) && E v e n tn ) −> E v e n t = n ;}

Figure 8 shows the abridged generated supervisor. The first if statement enables and disables
all events according to the current state of the supervisor FSA. Once an event is triggered by
one of the processes via global variable Event, the second if statement realizes the corre-
sponding transition. Note that processes can possibly block at uncontrollable events. This may
be counter-intuitive, but it is required to ensure that the supervisor can process all event occur-
rences. However, the process will never block for long as DES guarantees that the supervisor will
enable all uncontrollable events that can possibly occur after a controllable one, and therefore
that it will (eventually) process any uncontrollable event to occur after a controllable one.

Message Passing Solution: Two channels are used to connect the processes with the supervisor.
Channel EventReady is used by processes to signal the readiness of controllable events and to
indicate the occurrence of uncontrollable events. Channel EventGo is used by the supervisor
to trigger a controllable event (selected non-deterministically in Spin if more than one is ready).

During transformation T3, every occurrence in the Promela source code of

/ / r e l e v a n t ( un ) c o n t r o l l a b l e e v e n t : Eventn
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s h o r t E v e n t = 0 ; / / G l o b a l mutexes
bool E v e n t 1 = f a l s e , E v e n t 2 = f a l s e , E v e n t 3 = f a l s e , . . . ;
a c t i v e proctype S u p e r v i s o r ( ) { / / S u p e r v i s o r p r o c e s s

atomic { s h o r t s t a t e = 0 ; / / C u r r e n t ( and f i r s t l y i n i t i a l ) s t a t e
do / / Main lo op

: : i f / / Enab le and d i s a b l e a l l e v e n t s
: : (0 == s t a t e ) −> E v e n t 1 = t rue ; E v e n t 2 = f a l s e ; . . . ;
: : ( 1 == s t a t e ) −> E v e n t 1 = f a l s e ; E v e n t 2 = t rue ; . . . ;
: : ( 2 == s t a t e ) −> E v e n t 1 = t rue ; E v e n t 2 = t rue ; . . . ;
. . . / / More c a s e s h e r e

f i ;
−> E v e n t = −1; E v e n t > −1; / / Wait f o r an e v e n t from one of t h e p r o c e s s e s

i f / / T r a n s i t i o n t o n e x t s t a t e
: : ( ( 0 == s t a t e ) && (1 == E v e n t ) ) −> s t a t e = 1 ;
: : ( ( 0 == s t a t e ) && (2 == E v e n t ) ) −> s t a t e = 2 ;
: : ( ( 1 == s t a t e ) && (1 == E v e n t ) ) −> s t a t e = 3 ;
. . . / / More c a s e s h e r e

f i ; od ; } }

Figure 8: Generated Supervisor Using Shared Variables

is replaced for controllable events by
/ / r e l e v a n t c o n t r o l l a b l e e v e n t : Eventn
atomic{ a s s e r t ( n f u l l ( EventReady ) ) ; EventReady ! n ; EventGo ?? n ;}

and for uncontrollable events by
/ / r e l e v a n t u n c o n t r o l l a b l e e v e n t : Eventn
atomic{ a s s e r t ( n f u l l ( EventReady ) ) ; EventReady ! n ;}

Figure 9 shows the abridged generated supervisor. Both channels are initially set to maximum
capacity as deadlock-freedom may be lost if either channel overflows. To detect this, every
send to either channel is prefixed with an “assert(nfull())”. Both minimal capacities
are determined through repeated analyses with decreasing capacities. Each event e received on
EventReady causes array position eventReady[e] to be incremented so to in effect wait

on all events concurrently for a relevant event r. If event r is controllable, then r is sent back
on EventGo to allow the corresponding process blocked on “ EventGo ?? r” to proceed.
The second if statement realizes the FSA transitions. Contrary to the shared variable solution,
no process ever blocks on any uncontrollable event.

5.3 Step 3: Analysis

The analysis is used to find bugs in the formal specifications ({Ei}), the event markup (Ce), or
the implementation of the transformations T2 or T3

3. Simulation allowed us to locate a bug in the
creation of the FSAs for the Promela processes in transformation T2. The FSAs for M2 and TU
did not have M2WidgetPickedUp and TUWidgetPickedUp transitions, respectively. This omis-
sion allowed M1 to put a fourth widget into B1 causing it to overflow. Verification allowed us to
locate an event markup that was incorrectly placed. More precisely, event M1WidgetDelivered
was accidentally put before B1++ which allowed M2 to attempt to pick up a widget from an
empty B1 causing the assertion B1 > 0 in M2 to be violated.
3 Since transformation T1 just takes the synchronous product of the specifications and is assumed to be implemented
using a DES tool, it is substantially simpler and is unlikely to contain bugs.
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chan EventReady = [ 2 5 5 ] of { byte } ; / / G l o b a l c h a n n e l s
chan EventGo = [ 2 5 5 ] of { byte } ;
a c t i v e proctype S u p e r v i s o r ( ) { / / S u p e r v i s o r p r o c e s s

atomic { byte even tReady [ 1 0 ] , e v e n t ; / / Event b u f f e r and v a r i a b l e
do / / Main lo op

: : i f / / F ind an e v e n t r e l e v a n t t o c u r r e n t s t a t e e l s e b u f f e r n e x t e v e n t
: : (0 == s t a t e ) −> do

: : ( even tReady [ 1 ] > 0) −> a s s e r t ( n f u l l ( EventGo ) ) ; EventGo ! 1 ;
e v e n t = 1 ; break ; / / C o n t r o l l a b l e

: : ( even tReady [ 2 ] > 0) −> e v e n t = 2 ; break ; / / U n c o n t r o l l a b l e
: : e l s e −> EventReady ? e v e n t ; even tReady [ e v e n t ] + + ; od ;

: : ( 1 == s t a t e ) −> do
: : ( even tReady [ 3 ] > 0) −> e v e n t = 3 ; break ; / / U n c o n t r o l l a b l e
: : e l s e −> EventReady ? e v e n t ; even tReady [ e v e n t ] + + ; od ;

. . . / / More c a s e s h e r e
f i ;

−> even tReady [ e v e n t ]−−;
i f / / T r a n s i t i o n t o n e x t s t a t e

: : ( ( 0 == s t a t e ) && (1 == e v e n t ) ) −> s t a t e = 1 ;
: : ( ( 0 == s t a t e ) && (2 == e v e n t ) ) −> s t a t e = 2 ;
. . . / / More c a s e s h e r e

f i ; od ; } }

Figure 9: Supervisor Using Message Passing

5.4 Performance Results

We also applied our method to the Dining Philosophers problem and the Cigarette Smokers Prob-
lem [Pat71]. We obtained the verification results listed in Table 1, with ispin.tcl and Spin
Version 6.0.14. We verified our three examples both with shared variables and message passing.
In all cases, the following options were selected: invalid endstates and assertion violations safety
checks, depth-first search, exhaustive storage mode, no compression or reduction. We also de-
termined the minimum channel capacities. Note that for our examples, message passing requires
at least 12 times more states and transitions than shared variables.

Minimum Time to
Channel Number Compute

Depth Stored Trans- Atomic Capacity of supC
Program Reached States itions Steps Ready, Go Processes in IDES
Transfer-line 4 sec.
Shared Variables 718 1240 3207 2552 N/A 4
Message Passing 3887 18868 47209 327715 7, 2 4
Philosophers 1 sec.
Shared Variables 6022 10464 46033 21632 N/A 6
Message Passing 9999 157827 580416 1326625 7, 2 6
Smokers 1 sec.
Shared Variables 194 608 1849 904 N/A 5
Message Passing 1996 10461 27543 82703 5, 1 5

Table 1: Verification Results for the Three Examples

4 A 64 bit AMD Dual Core 2.4GHz CPU with 1.5GB of DDR2 RAM was used.
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6 Implementation

All our FSAs were drawn and created using a DES tool called IDES [IDE] developed by the
Discrete-Event Control Systems Lab at Queen’s University. Synchronous products and supC
were computed with IDES which saves its FSA files in a text XML format. Our prototype script
for implementing transformation T2 was written in Ruby and can parse most of Promela except
for the goto statement and the newly introduced for statement. It takes as input a Promela
text source file (Ce) and generates plant FSAs readable by IDES. Our script for doing transfor-
mation T3 was also written in Ruby and uses the REXML XML processor. It takes as input a
Promela source file (containing Ce,a), an FSA XML text file generated by IDES (containing E)
and generates the supervised code (Csup).

7 Conclusion

We have presented an approach which integrates DES supervisor synthesis and model checking
to help facilitate the development of provably correct concurrent code. The approach recasts the
process described in [DDR08] using Promela and it uses Spin for validation of the synthesis itself
and the inputs to this process. We have described a prototype implementing the approach which
supports shared memory and message passing concurrency and have shown how this choice
can be used to optimize the verification of the generated Promela code. We have illustrated the
approach with an example and provided some performance results.
Future work: There are many interesting avenues for future research. An immediate one is
investigating the use of modular [WR88] and decentralized DES theory [RW92b]. Modular
DES theory leverages the structure of the system and the specification to combat the explosion
of the state space during the synthesis, while decentralized DES allows decentralized control by
synthesizing a collection of supervisors. Ultimately, DES theory is concerned with the prevention
of undesirable sequences of events. As such, it should also be applicable to other problems in
software engineering. Adaptor synthesis (as in, e.g., [BBC05]) and protocol synthesis for web
services (as in, e.g., [BIPT09]) are just two examples.

Finally, the development of a tool that seamlessly integrates DES theory as described here and
model checking would be interesting not only for research but also for educational purposes and
it would, in our opinion, represent a useful first step towards combining concepts from computer
science and electrical engineering curricula as advocated in [HS07].
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The Belgian Electronic Identity Card: a Verification Case Study
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Abstract: In the field of annotation-based source code level program verification
for Java-like languages, separation-logic based verifiers offer a promising alterna-
tive to classic JML based verifiers such as ESC/Java2, the Mobius tool or Spec#.
Researchers have demonstrated the advantages of separation logic based verifica-
tion by showing that it is feasible to verify very challenging (though very small)
sample code, such as design patterns, or highly concurrent code. However, there
is little experience in using this new breed of verifiers on real code. In this paper
we report on our experience of verifying several thousands of lines of Java Card
code using VeriFast, one of the state-of-the-art separation logic based verifiers. We
quantify annotation overhead, verification performance, and impact on code quality
(number of bugs found). Finally, our experiments suggest a number of potential
improvements to the VeriFast tool.

Keywords: verification, VeriFast, separation logic, Java Card

1 Introduction

Software verification is finally reaching a point where it is possible to verify relatively complex
applications written in popular programming languages. Even though it is still often a signifi-
cant effort to annotate applications in order to help them get verified automatically, the benefits
outweigh the cost for a number of software markets. In particular, software with a very high cost
of failure (for example, airplane controllers) or software for systems that are difficult to update
after deployment (for example, smart cards) are perfect candidates for software verification.

VeriFast [JSP10] is a verifier for single-threaded and multithreaded C and Java programs an-
notated with separation logic specifications. The approach enables programmers to ascertain the
absence of invalid memory accesses, including null pointer dereferences and out-of-bounds array
accesses, as well as compliance with programmer-specified method preconditions and postcon-
ditions.

This paper will assess the applicability of verification of Java Card applets using the VeriFast
approach. Two non-trivial applets are annotated and an analysis of the verification effort and
results is made. Section 2 introduces the VeriFast tool and gives a short introduction to Java Card
technology. Section 3 describes the applets that were used in this case study and gives a short
overview of some of the solutions we used to annotate certain features. Section 4 evaluates the
results of the case study and Section 5 summarizes the future work. Finally, Section 6 concludes
the paper.
† Jan Smans is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO)
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2 Background

The results in this paper build on two technologies that will be presented in this section. Sec-
tion 2.1 presents a short overview of the verification technology used in this case study, whereas
Section 2.2 introduces the features of the Java Card platform relevant to the applets being veri-
fied.

2.1 VeriFast

VeriFast [JSP10] is a verifier for Java and C programs annotated with separation logic [ORY01]
specifications. The tool modularly checks via symbolic execution [BCO05] that each method in
the program satisfies its specification. If VeriFast deems a Java program to be correct, then that
program does contain neither null dereferences, array indexing errors, API usage violations nor
data races. Moreover, all user-specified assertions are guaranteed to hold.

At the heart of the separation logic lies the concept of permissions. In particular, a method
can only access a field if it has permission to do so. For example, consider the class Interval
shown below. o.low |-> v denotes (1) the permission to access (read and write) the field
low of the Interval object o and (2) that the current value of that field is v.

Listing 1: VeriFast annotations in Java code
1 /*@ predicate interval(Interval i, int l, int h) =
2 i.low |-> l &*& i.high |-> h &*& l <= h;
3 @*/
4
5 public class Interval {
6 int low, high;
7
8 void shift(int amount)
9 //@ requires interval(this, ?low, ?high);

10 //@ ensures interval(this, low + amount, high + amount);
11 {
12 //@ open interval(this, low, high);
13 this.low += amount;
14 this.high += amount;
15 //@ close interval(this, low + amount, high + amount);
16 }
17 }

To distinguish full (read and write) from read-only access, permissions are qualified with
fractions [Boy03] between 0 (exclusive) and 1 (inclusive), where 1 corresponds to full access and
any other fraction represents read-only access. For example, [f]o.low |-> v denotes read-
only access if f is less than 1 and full access if f equals 1. We typically omit explicitly writing
[1] for full permissions. Permissions can be split and merged as required during the proof. For
example, two read-only permissions [1/2]o.low |-> v and [1/2]o.low |-> v can
be combined into a single full permission [1]o.low |-> v and vice versa. In the context of
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Java Card, we rely on fractional permissions to check that fields are not assigned to outside of
transactions.

To abstract over the set of permissions required by a method, permissions can be grouped and
hidden via predicates. For example, consider the predicate interval shown above. This predicate
groups the permissions to access low and high, and additionally states that the value of low
must be less or equal to the value of high. Just like basic permissions, predicates can be split
and merged as required during the proof.

Each method in the program has a corresponding method contract consisting of a pre- and
postcondition that respectively describe the permissions required and returned by the method.
More specifically, the permissions described by the precondition conceptually transfer from the
caller to the callee on entry to the method, and vice versa for the postcondition when the method
returns. For example, consider the method shift in the class Interval. shift’s precon-
dition states that the method may only be called if this points to a valid interval (where the
meaning of “valid interval” is determined by the predicate interval). The precondition im-
poses no restriction on the interval’s bounds, but binds the lower bound to the variable low
(indicated by the question mark) and the upper bound to high. The postcondition ensures that
this is still a valid interval, and its bounds have been shifted by amount with respect to the
method pre-state. Note that our verification tool requires all annotations to be written inside spe-
cial comments (/*@ ... @*/) which are ignored by the Java compiler but recognized by our
verifier.

VeriFast does not automatically fold and unfold predicate definitions. Instead, folding and
unfolding must be done explicitly by developers via ghost commands (unless the predicate is
marked precise). For example, the open statement in the body of shift unfolds the definition of
the predicate interval, and similarly the close statement folds the definition. Verification of
the code snippet shown above fails if any of the ghost statements is removed.

In addition to static predicates (placed outside of a class), VeriFast also supports instance pred-
icates (placed inside of a class). Just like instance methods, instance predicates are dynamically
bound. That is, the variable this is an implicit argument to each instance predicate, and its dy-
namic type determines the exact meaning of the predicate. For example, the interface Vehicle
shown below defines the instance predicate valid. The meaning of valid depends on the sub-
class at hand. For example, o.valid() denotes the permission to read the field maxspeed if
the dynamic type of o is Car. In the context of Java Card, we use instance predicates to describe
consistency conditions for applets (i.e. the invariant that must be preserved by each transaction).

Listing 2: Instance predicates.
1 interface Vehicle {
2 //@ predicate valid();
3 }
4 class Car implements Vehicle {
5 int maxspeed;
6
7 //@ predicate valid() = [1/2]this.maxspeed |-> _;
8 }
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The extended static checker for Java (Esc/Java) [FRL+02] is another program verifier that has
been used to verify Java Card programs [MP10, CH]. However, Esc/Java is unsound [LNS00,
Appendix C.0]. This means that Esc/Java can fail to detect certain bugs. For example, the
extended static checker reasons incorrectly about object invariants in the presence of reentrant
calls. Unlike Esc/Java, the VeriFast methodology has been proven to be sound [JP11].

Gomes et al. [GMD05] have investigated using the B method to generate correct Java Card
implementations from abstract models via refinement. Contrary to the B method, VeriFast does
not start from an abstract model, but instead reasons directly about the applet’s source code. The
advantage of our approach is that we can retroactively prove correctness of existing implemen-
tations.

VeriFast performs modular verification. This means that the verifier analyzes each method in
isolation using only method contracts (not the callees’ implementations) to reason about method
calls. An advantage of modular reasoning is that verification scales (verification times remain
low) and that deep properties can be specified and checked. A disadvantage however is that the
developer must write annotations at method boundaries. To avoid having to write annotations,
Huisman et al. [HGSC04] have used model checking to find bugs in Java Card applications.
Unlike VeriFast, Huisman et al. do not aim to prove the absence of all errors, but only of certain
undesired applet interactions.

Mostowski [Mos07] has written a specification for the Java Card API in dynamic logic. In
addition, he has used this specification to verify a number of applets using the Key verifier.
A recurring problem encountered during these case studies was bad prover performance. For
example, Mostowski states that “it is not uncommon for the prover to run over an hour to finish
the proof of one method”. Contrary to [Mos07], we use separation logic to specify the Java Card
API. While separation logic has proven to be a powerful specification formalism for reasoning
about complex (but small) examples such as design patterns and highly concurrent code, there
is only limited experience in applying separation logic to larger, realistic programs. This paper
reports on our experience in applying separation logic to verify realistic Java Card code. An
explicit goal of VeriFast is to keep verification times low. For example, the time needed to verify
full functional correctness of a single method is typically under one second.

2.2 Java Card

The Java Card platform [Ora11] was initially launched by Sun in 1996 and aimed to simplify
the development of smart card applications. Until then, smart card code was largely written in
C, which is difficult to write in the first place, and also has distinct disadvantages in terms of
security and reliability.

The Java Card platform allowed developers to write smart card applets in a subset of the
Java language that targets a specifically optimized Java framework for smart cards. The older
(and most popular) platform, now called Java Card Classic Edition, does not support floating
point operations, strings, multi-threading, garbage collection, stack inspection, multidimensional
arrays, reflection, etc. The newest Java Card 3.0 Connected Edition supports more features but
is still lacking compared to the full Java language and framework.

Java Card is now the dominant platform for smart cards, with applications for GSM, 3G,
finance, PKI, e-commerce and e-government. Due to the absence of (potential) competitors and
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the improvements of the latest incarnation of the Java Card platform, it can be expected that this
will remain the case for the near future.

2.2.1 Applets

The entry point of each Java Card applet is a class that extends the built-in, abstract class
javacard.framework.Applet. This class defines a number of methods that are called
by the Java Card runtime to interact with the applet. In particular, the class Applet defines
an abstract method process that must be overridden by the subclass. The implementation
of process forms the core of the applet. More specifically, process takes an apdu (i.e. a
wrapper around a byte array) as input, processes it, and possibly returns an updated apdu to the
runtime. Typically, the apdu contains both information on the action that should be performed
by the applet and data associated with that action.

A subclass of javacard.framework.Applet is a valid applet only if it declares a static
method called install. The goal of this method is to create a new applet instance and to
register this instance with the runtime. The class MyApplet shows the prototypical structure of
a Java Card applet.

Listing 3: The prototypical structure of an applet.
1 class MyApplet extends Applet {
2 public static void install(byte[] arr, short offset, byte length) {
3 MyApplet applet = new MyApplet();
4 // initialize the applet
5 applet.register();
6 }
7
8 public void process(APDU apdu) {
9 // process the apdu

10 }
11 }

2.2.2 Transactions

Java Card applets use two types of memory to store data and intermediate results. Fields and
objects are stored in persistent EEPROM memory, whereas the stack (and hence local variables)
are stored in volatile RAM memory. In addition, the applet can also choose to allocate arrays in
RAM memory, because this type of memory is faster and is harder for attackers to read. This
complicates things because the smart card may lose power at any time during the computation,
which results in the RAM memory being wiped, whereas the EEPROM memory retains the
intermediate results.

To preserve consistency of the data stored in persistent memory, Java Card supports transac-
tions. More specifically, the platform defines three methods to interact with the transaction mech-
anism: beginTransaction, commitTransaction, and abortTransaction. When
beginTransaction is called, all changes to persistent memory are made conditionally. Only
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when a call to commitTransaction is executed, the changes to the persistent memory are
committed atomically. If abortTransaction is called instead, or if the card suddenly loses
power before calling commitTransaction, the persistent memory is restored to its origi-
nal state (before the call to beginTransaction). Note that the transaction mechanism does
not impact values stored in RAM. Incorrect use of the transaction API, for example calling
beginTransaction while a transaction is already in progress, results in an exception.

2.2.3 Java Card and VeriFast

VeriFast was originally developed for C and Java programs, but has been modified to also support
Java Card applications. The Java language used for Java Card applications is a precise subset of
the full Java language, thus adding Java Card support to VeriFast was easy.

Java Card does, however, use a very different class library optimized for smart cards. VeriFast
needs to know for every function in the library the pre- and postconditions in order to reason
about code. These specifications are placed in a separate file that defines all the classes and
methods in the Java Card framework. The specifications are based on the descriptions of these
methods in the official Java Card documentation. The actual implementation of these library
functions is not checked.

Building the specification file is an incremental process. VeriFast only needs pre- and post-
conditions for the methods that are actually used by the applications you want to verify. Hence,
only a subset of the full Java Card class library has been annotated in the specification file. It
is critical that the specifications of library functions is correct; errors in their annotations could
lead to errors in the verification process. Therefore, extreme diligence is used when adding new
function definitions to the specification.

3 Case Study

Software verification is still a very time-consuming process. Existing or new source code must
be annotated in order to express assumptions and invariants, and to let the verifier reason about
the code. Minimizing these required annotations is an active field of research where a lot of work
remains to be done. For current verification technologies the overhead of annotating code is far
from negligible, so it is not (yet) economically profitable to try to annotate and verify every piece
of code. Large, non-critical code bases are examples where the effort probably is not worth the
hassle.

However, smart card applications have a number of properties that do make them ideal can-
didates for software verification. First of all, they are typically small, in the order of a few
thousand lines of code. Secondly, they are critical, in the sense that they usually offer some kind
of security service. And last but not least, it is extremely difficult to update the code once it has
been deployed. If a serious bug is discovered in the code, it might be necessary to recall all the
deployed smart cards and issue new ones, which would be a commercial disaster.

This paper reports on the verification of two Java Card applets: one large open source applet
that implements a clone of the Belgian Electronic Identity Card, and another smaller commercial
applet.
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The remainder of this section focusses on the larger, open source applet. Unfortunately, due
to contractual constraints we are not allowed to discuss the details of the commercial applet.

3.1 The Belgian Electronic Identity Card

The Belgian Electronic Identity Card (eID) was introduced in 2003 as a replacement for the
existing non-electronic identity card. Its purpose is to enable e-government and e-business sce-
narios where strong authentication is necessary. The card has the size of a standard credit card
and features an embedded chip. In addition to containing a machine readable version of the in-
formation printed on the card, the chip also contains the address of the owner and two RSA key
pairs with the corresponding X509 certificates. One key pair is used for authentication, whereas
the other key pair can be used to generate legally binding electronic signatures.

The card is implemented on top of the Java Card platform (Classic Edition) and implements
the smart card commands as defined in the ISO7816 standard. Unfortunately, the actual code
that runs on the eID cards is not publicly available. For our case study, we used an open source,
cloned version of the eID applet that implements the same functionality as the real eID card1. It
is aimed at developers who wish to interact with eID cards as an easy to use and customizable
testing platform.

The eID implementation consists of one large class called EidCard and a few other small
helper classes. The EidCard class inherits from the Applet class and encapsulates about 80%
of the entire code base. It is a complex class with over 1,300 lines of code and no less than 38
fields.

3.2 Specification of Transaction

Java Card offers transactions to preserve consistency of the data stored in persistent memory.
However, what does it mean for an applet to be consistent? In VeriFast, developers can explicitly
write down what fields are part of the persistent state together with the desired consistency con-
ditions. More specifically, the class Applet defines an instance predicate called valid. Each
subclass must override this predicate. The implementation of the predicate given in the subclass
defines the consistency conditions for the applet at hand. For example, consider the applet class
ExampleApplet shown below. The predicate valid indicates that both the fields arr and i,
and the array pointed to by arr are part of the persistent state (line 6). Moreover, the predicate
imposes the consistency condition that i is a valid index in arr (line 7).

While reading fields is possible at any time, updates to persistent memory should be made
inside of a transaction. The permission system used by VeriFast is the key to enforcing this
property. More specifically, at the start of the process method, no transaction is in progress.
As shown in Listing 5, the precondition of process contains 1/2 of the valid predicate. This
means that the method can read but not update fields included in valid (as the method only has
one half of the permissions included in valid). The predicate current_applet is simply a
token describing the currently active applet.

To update the fields of the applet, the method should somehow gain additional permissions
(namely the other half of the valid predicate). These additional permissions can be acquired

1 The code can be downloaded from http://code.google.com/p/eid-quick-key-toolset/
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Listing 4: The contract of the process method, using fractional permissions.
1 class ExampleApplet extends Applet {
2 int i;
3 int[] arr;
4 /*@
5 predicate valid() =
6 this.arr |-> ?arr &*& this.i |-> ?i &*&
7 array_slice(arr, 0, ?len, _) &*&
8 0 <= i &*& i < len;
9 @*/

10 }

Listing 5: The contract of the process method, using fractional permissions.
1 public void process(...)
2 //@ requires current_applet(this) &*& [1/2]valid() &*& ...;
3 //@ ensures current_applet(this) &*& [1/2]valid() &*& ...;
4 {
5 ...
6 }

by calling beginTransaction. In particular, the postcondition of beginTransaction
shown in Figure 6 gives 1/2 of the valid predicate. The process method can then merge
[1/2]valid() (gained from the precondition of process) and [1/2]valid() (gained
from the postcondition of beginTransaction) into [1]valid(). The full permission to
valid gives the applet the right to modify the applet’s fields for the duration of the transac-
tion. When calling commitTransaction, half of the permissions included in the valid()
predicate return to the system again. Note that it is impossible to call endTransaction if the
applet is in an invalid state (according to the conditions described by valid), as the precondition
of commitTransaction requires the consistency conditions to hold.

Listing 6: The declaration of the beginTransaction and commitTransaction methods
1 public static void beginTransaction();
2 //@ requires current_applet(?a) &*& ...;
3 //@ ensures current_applet(a) &*& [1/2]a.valid() &*& ...;
4
5 public static void commitTransaction();
6 //@ requires current_applet(?a) &*& a.valid() &*& ...;
7 //@ ensures current_applet(a) &*& [1/2]a.valid() &*& ...;
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3.3 Inheritance

The ISO7816 standard specifies a mechanism to access files that are stored on a smart card.
Three types of files are defined:

1. Master files represent the root of the file system. Each smart card contains at most one
master file.

2. Elementary files contain actual data.

3. Dedicated files behave like directories. They can contain other dedicated or elementary
files.

To represent this structure, the eID implementation uses helper classes that form a class hi-
erarchy. The root of the hierarchy is the abstract File class. This class has two subclasses:
DedicatedFile and ElementaryFile. And finally, the MasterFile class inherits from
DedicatedFile.

When a class is defined in the source code, it can be annotated with a predicate that repre-
sents an instance of that class. These predicates can then be used elsewhere to represent a fully
initialized instance of that class. Listing 7 shows how a File predicate can be defined for the
corresponding File class. The class consists of two fields, which are also represented in the
predicate. The predicate can also contain other information about the class such as invariants.

Listing 7: A first definition of the File class and predicate.
1 public abstract class File {
2 /*@ predicate File(short theFileID, boolean activeState) =
3 this.fileID |-> theFileID &*&
4 this.active |-> activeState; @*/
5
6 private short fileID;
7 protected boolean active;
8
9 ...

10 }

The ElementaryFile class redefines the File predicate as shown in lines 2-4 of List-
ing 8. A File predicate that is associated with an ElementaryFile class is defined as an
ElementaryFile predicate where three of the five parameters are undefined.

The definition of the ElementaryFile predicate (lines 5-13) consists of a link to the File
predicate defined in Listing 7 and some extra fields and information that are specific to elemen-
tary files.

When an object is cast from the File to the ElementaryFile class (or vice versa), the
corresponding predicate on the symbolic heap must be changed as well. We ‘annotated’ this by
adding the methods that are defined in Listing 9 to the ElementaryFile class and calling
these methods when required. Obviously, this solution is far from elegant because it requires
adding calls to stub functions in the code of the applet. The most recent version of VeriFast
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Listing 8: A first definition of the ElementaryFile class and predicate.
1 public final class ElementaryFile extends File {
2 /*@ predicate File(short theFileID, boolean activeState) =
3 ElementaryFile(theFileID, ?dedFile, ?dta,
4 activeState, ?sz); @*/
5 /*@ predicate ElementaryFile(short fileID,
6 DedicatedFile parentFile, byte[] data,
7 boolean activeState, short size) =
8 this.File(File.class)(fileID, activeState) &*&
9 this.parentFile |-> parentFile &*&

10 this.data |-> data &*& data != null &*&
11 this.size |-> size &*&
12 array_slice(data, 0, data.length, _) &*&
13 size >= 0 &*& size <= data.length; @*/
14
15 private DedicatedFile parentFile;
16 private byte[] data;
17 private short size;
18
19 ...
20 }

supports annotating this behavior as lemma functions, removing the requirement of modifying
the applet’s code.

One problem that occurs with the methods presented in Listing 9 is that information is lost
when an ElementaryFile is cast to a File and then back again to an ElementaryFile.
This loss of information happens in the castFileToElementary method where three pa-
rameters are left undefined.

There are some instances in the eID applet where this loss of information was problematic.
The solution was to extend the File and ElementaryFile predicates to contain an extra
parameter that can store any information. The result can be seen in Listing 10. Line 3 shows the
definition of this extra parameter. In the case of the File class, no extra information is kept and
the parameter is defined to be empty (denoted as ‘unit’ on line 5). Similarly, line 22 defines the
parameter to be empty for the ElementaryFile predicate, because all state information that
can be stored in the predicate is fully defined by the other parameters.

Line 14 shows the case where the predicate needs the extra parameter to store additional infor-
mation about the object. In this case, the info parameter stores a quad of extra information that
can be used to correctly initialize the embedded ElementaryFile predicate without losing
information.

4 Evaluation

The main goal of this case study was to see how practical it is to use VeriFast to annotate a
Java Card applet that is more than a toy project. It gives us an idea of how much the annotation
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Listing 9: Functions to cast predicates.
1 public void castFileToElementary()
2 //@ requires [?f]File(?fid, ?state);
3 //@ ensures [f]ElementaryFile(fid, _, _, state, _);
4 {
5 //@ open [f]File(fid, state);
6 }
7
8 public void castElementaryToFile()
9 //@ requires [?f]ElementaryFile(?fid, ?dedFile, ?dta, ?state, ?sz);

10 //@ ensures [f]File(fid, state);
11 {
12 //@ close [f]File(fid, state);
13 }

overhead is, where we can improve the tool, and whether we can actually find bugs in existing
code using this approach.

4.1 Annotation Overhead

The more information the developer gives in the annotations about how the applet should behave,
the more VeriFast can prove about it. It is up to the developer to choose whether he wants to use
VeriFast as a tool to only detect certain kinds of errors (unexpected exceptions and incorrect
use of the API), or whether he wants to prove full functional correctness of the applet. Both
modi operandi are supported by the tool. For the open source applet, we used the annotations to
prove that the applet does not contain transaction errors, performs no out of bounds operations
on buffers, does not perform invalid casts, and never dereferences null pointers. The annotations
in the commercial applet supported the same guarantees as for the open source applet, as well as
full functional correctness of the applet.

The eID applet and helper classes consist of 1,573 lines of Java Card code. In order to verify
the project, we added 602 lines of VeriFast annotations (or about one line of annotations for
every three lines of code). The majority of these annotations were requires/ensures pairs
(88 pairs, one for each method) and open and close statements (99 and 112 instances respec-
tively). Remarkably, only 8 predicates are defined throughout the entire code base, reflecting the
design decision of the authors of the applet to write most of it as one huge class file.

The commercial applet consists of 348 lines of Java Card code, which we annotated with 218
lines of VeriFast annotations. There were 13 requires/ensures pairs, 25 open statements
and 29 close statements. The applet required a higher density of annotations (about one line
of annotations for every one and a half lines of code) because of the full functional correctness
verification.

Another type of annotation overhead is the time it took to actually write the annotations.
The verification of the eID applet was performed by a senior software engineer without prior
experience with the VeriFast tool, but with regular opportunities to consult VeriFast expert users
during the verification effort. We did not keep detailed effort logs, but a rough estimate of the
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Listing 10: A more complete definition of the File and ElementaryFile predicates that supports
downcasting.

1 public abstract class File {
2 /*@ predicate File(short theFileID, boolean activeState,
3 any info) =
4 this.fileID |-> theFileID &*&
5 this.active |-> activeState &*& info == unit; @*/
6
7 ...
8 }
9

10 public final class ElementaryFile extends File {
11 /*@ predicate File(short theFileID, boolean activeState,
12 quad<DedicatedFile, byte[], short, any> info) =
13 ElementaryFile(theFileID, ?dedFile, ?dta, activeState,
14 ?sz, ?ifo) &*& info == quad(dedFile, dta, sz, ifo); @*/
15 /*@ predicate ElementaryFile(short fileID,
16 DedicatedFile parentFile, byte[] data, boolean activeState,
17 short size, any info) =
18 this.File(File.class)(fileID, activeState, _) &*&
19 this.parentFile |-> parentFile &*&
20 this.data |-> data &*& data != null &*& this.size |-> size
21 &*& array_slice(data, 0, data.length, _) &*&
22 size >= 0 &*& size <= data.length &*& info == unit; @*/
23
24 ...
25 }

effort that was required is 20 man-days. This includes time spent learning the VeriFast tool and
the Java Card API specifications. The commercial applet was annotated by a VeriFast specialist
and took about 5 man-days, excluding the time it took to add some new required features to the
tool.

4.2 Bugs and Other Problems

Because the eID applet in our case study is aimed at developers, the authors did not spend a lot of
time worrying about card tearing. This is demonstrated by the fact that they did not use the Java
Card transaction system at all. Using VeriFast, we found 25 locations where a card tear could
cause the persistent memory to enter an inconsistent state.

Three locations were found where a null pointer dereference could occur. An additional three
variable casting problems were found, where a variable holding a reference to the selected file
(of type File) was cast to an ElementaryFile instance. These bugs could be triggered by
sending messages with invalid file identifiers to the smart card. Seven potential out of bounds op-
erations were also found in the code. These bugs could be triggered by sending illegal messages
to the smart card.
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The commercial applet had already been verified using another verification technology, so it
was not very surprising that no functional problems were found in the code. However, VeriFast
did identify four locations in the code where transactions were not used properly. Transactional
safety is a property that the other tool did not verify.

4.3 VeriFast Strengths

Compared to other program verifiers that target Java Card [Mos07, FRL+02], VeriFast has two
advantages: speed and soundness. That is, VeriFast usually reports in only a couple of seconds
(usually less) whether the applet is correct or whether it contains a potential bug. Secondly,
if VeriFast deems a program to be correct, then that program is guaranteed to be free from
unexpected exceptions, API usage and assertion violations.

A feature that proved to be crucial in understanding failed verification attempts is VeriFast’s
symbolic debugger. As shown in Figure 1, the symbolic debugger can be used to diagnose
verification errors by inspecting the symbolic states encountered on the path to the error. For
example, if the tool reports an array indexing error, one can look at the symbolic states to find out
why the index is incorrect. This stands in stark contrast to most verification condition generation-
based tools that simply report an error, but do not provide any help to understand the cause of
the error.

Figure 1: The symbolic debugger of VeriFast
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5 Future Work

This case study has led to a number of useful insights and showed us some of the rougher edges
of the tool that need to be polished some more. Most of the issues were small and were either
bugs in the tool (for instance, Java parsing errors) or functionality that was easy to implement
but hadn’t been done yet due to time constraints.

An important, missing feature that would greatly reduce the annotation overhead (and hence
reduce the cost of verification) is automatic inference of open and close statements and of lemma
applications. For example, the eID applet contains 99 open and close statements. While VeriFast
already infers some ghost statements, we believe one of the most important steps to improve the
verification experience is extending this inference mechanism.

Currently, only a subset of the Java Card API is supported by VeriFast. For example, we do not
support multi-applet applications that communicate via the shareable interface mechanism yet.
We intend to support these additional features and write specifications for all library functions in
the Java Card API.

6 Conclusion

This paper reported on a case study for the VeriFast program verifier. Two non-trivial Java Card
applets were annotated and verified for correctness with respect to certain common programming
errors. In particular, the verification proved that the applet does not contain transaction errors,
performs no out of bounds operations on buffers, does not perform invalid casts, and never deref-
erences null pointers. In addition, one of the applets was verified for full functional correctness
as well.

The results of the case study are encouraging: with an annotation overhead of about one line of
annotations per three lines of code we found a total of 13 bugs in the eID applet, and 25 locations
where transactions were not properly used.

This case study has been invaluable for us to improve the tool. A number of bugs were fixed
and small additions were made in order to support the verification of the applets. A longer term
plan has also been established to further add improvements and optimizations to the tool. In
particular, the automatic generation of open and close statements will become an important
part of the future work, as well as language and technology-specific extensions to the tool.
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with B. In Brazilian Symposium on Formal Methods (SBMF). 2005.

[HGSC04] M. Huisman, D. Gurov, C. Sprenger, G. Chugunov. Checking Absence of Illicit Ap-
plet Interactions: A Case Study. In Formal Aspects of Software Engineering. 2004.

[JP11] B. Jacobs, F. Piessens. Expressive modular fine-grained concurrency specification.
Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (POPL 2011) 46(1):271–282, 2011.

[JSP10] B. Jacobs, J. Smans, F. Piessens. A Quick Tour of the VeriFast Program Verifier. In
Asian Symposium on Programming Languages and Systems (APLAS). 2010.

[LNS00] K. R. M. Leino, G. Nelson, J. B. Saxe. ESC/Java User’s Manual. Technical report,
Compaq Systems Research Center, 2000.

[Mos07] W. Mostowski. Fully Verified Java Card API Reference Implementation. In Interna-
tional Verification Workshop (VERIFY). 2007.

[MP10] W. Mostowski, E. Poll. Midlet Navigation Graphs in JML. In Brazilian Symposium
on Formal Methods (SBMF). 2010.

[Ora11] Oracle. Java Card Technology. 2011.
http://www.oracle.com/technetwork/java/javacard/overview/

[ORY01] P. O’Hearn, J. Reynolds, H. Yang. Local Reasoning About Programs that Alter Data
Structures. In International Workshop on Computer Science Logic (CSL). 2001.

15 / 15 Volume 35 (2010)



ECEASST

A Visualization Framework for
the Modeling and Formal Analysis of

a Computer Based Interlocking System

Qiuzi Lu, Tianhua Xu, Tao Tang, Haifeng Wang, Yan Cao and Gengqin Chen∗

10120302,thxu,ttang,hfwang,09120343,07274032@bjtu.edu.cn
State Key Laboratory of Rail Traffic Control and Safety

Beijing Jiaotong University
Beijing 100044, P.R.China

Abstract: A functional specification for a Computer Based Interlocking System
(CBI) plays a vital role in signalling design and installation processes. Many at-
tempts have been made to verify interlocking tables by model checkers in the area
of train signaling systems. Unfortunately, the complexity and volume of the verifi-
cation results tends to make them hard for users to understand. In order to tackle this
problem, this paper introduces a generic visualization framework that provides de-
velopers with visual interpretation of the analysis results based on Domain Specific
Language for Computer Based Interlocking Systems (DSL-CBI). Within this frame-
work, a playback mechanism modifies the railway station that depicts the problem
scenario. It displays the execution path that has led to a model checking violation.
We also discuss the advantages of the framework and the significant contribution in
developing CBI based on the proposed toolset.

Keywords: Computer Based Interlocking System (CBI); interlocking table; railway
station; counterexample visualization

1 Introduction

Due to its important role in providing safe conditions for train movements, the Computer Based
Interlocking System (CBI) is considered to be a safety critical system. The interlocking table of a
given station defines all the train routes and the concrete safety rules associated with these. So the
interlocking table is considered to be the foundation during the development of an interlocking
system. Mechanization of the verification of interlocking tables from the railway station model
can be an efficient approach to guarantee the reliability of overall interlocking systems [1].

Recently, there have been several efforts to translate interlocking tables from the railway sta-
tion model to formal specification languages to be analyzed for adherence to behavioral proper-
ties by model checkers, such as Spin and NuSMV. They are intended to support the verification
of interlocking tables. That is, does the CBI satisfy the Fail-safety criterion in railway signaling
systems. A notable feature of model checkers is that if a system model does violate a property, a

∗ The authors wish to acknowledge the support of NSFC No.60736047, the State Key Laboratory of Rail Traffic
Control and Safety of Beijing Jiaotong University within the frame of the project (No. RCS2008ZZ005) and Scientific
Research Foundation for Scholars (Beijing Jiaotong University, Grant No. 2011JBM160).
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counterexample depicting the violation is returned [2]. However, when we want to make use of
the results of the counterexample, we are faced with two challenges. First, the counterexample
file is usually verbose and non-intuitive we have to spend a lot of time deciphering it. Second, it
is difficult to manually link the cause of the error with the original interlocking table, so we can’t
quickly locate the path in the original diagram. This paper describes a counterexample visualiza-
tion framework that interprets the analysis output from model checkers in terms of the original
railway station. It consists of two parts: the trace interpreter and the visualization tool. Based on
numerous trace output files generated from each model checker, firstly, we constructed a parser,
and then developed a translator for each model checker to be supported by this framework; the
parser extracts useful information for a given trace file, then the translator for each formal analy-
sis tool that traverses the information to generate a generic XML representation containing only
the railway station model elements, such as conflicting segment numbers. Secondly, we devel-
oped a visualization tool that processes the XML representation of the counterexamples to mark
on the railway station model. In summary, if we input a railway station model and the trace file
for a counterexample generated from a model checker for an error detected in the interlocking
table which corresponds to the given railway station, the visualization framework can illustrate
the violation trace in terms of the railway station.

The visualization framework has been developed to provide a critical piece of a larger project
supporting a roundtrip-engineering approach to the construction of a railway station for model-
ing and analyzing the CBI requirements. Specifically, we have previously developed a toolset
based on Domain Specific Language for Computer Based Interlocking Systems (DSL-CBI) [3],
in which both a route information search algorithm and a symbolic model checker are integrated.
The route information search algorithm can be used to generate interlocking tables by inputting
the XML file of the railway station designed by DSL-CBI, whereas the symbolic model checker
is used to guarantee the correctness of the generated interlocking tables. Finally, a counterex-
ample visualization framework is tailored to understand the analysis result easily. DSL-CBI is
developed by the formal verification research group of Rail Traffic Control and Safety State Key
Laboratory in Beijing Jiaotong University. The model designed by DSL-CBI is stored in XML
format.

The structure of this paper is as follows: Section 2 briefly describes the background of the
supporting elements of the roundtrip-engineering process. Section 3 gives the architecture for
the visualization framework and describes the visualization capabilities. Section 4 presents a
case study involving the NuSMV model checker results. Finally, Section 5 concludes the paper
and presents some discussion of future work.

2 Background

Fig. 1 shows the activity diagram depicting the analysis process for CBI. The counterexample
visualization framework is illustrated in the shaded area. Moreover, we describe the process of
creating a railway station model designed by DSL-CBI, automatic generation of the interlock-
ing table of the railway station, and verification of the generated interlocking table via model
checking.
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Figure 1: Activity diagram depicting the whole process

2.1 Step 1: Creating a railway station model

In the first step, the developer creates a railway station model designed by DSL-CBI.This process
comprises three steps: 1. DSL-CBI description; 2. Define a modeling language; 3. Create a
DSL-CBI editor.

Figure 2: Example of railway station

Fig. 2 shows a simplified model of a railway station, which contains segment, signal, switch,
etc. Interlocking systems specify the necessary conditions between physical objects of the rail-
way station. All entities have two states (e.g., segment: occupied or clear; signal: proceed or
stop; switch: normal or reverse). In other words, the function of interlocking systems is prepar-
ing a route for a train. When a train is entering the station, some actions must be taken. For
example, the segment must be cleared and the switch must be set in the right position. After
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these, the entry signal of the route can be lit. In these conditions, the route is ready so the train
can proceed along the route. Simultaneously, these key safety requirements are recorded in the
interlocking table.

2.2 Step 2: Automatic generation of the interlocking table

For the railway station created in step 1, we provide an algorithm for automatic generation of
the interlocking table from the station model. For a given station, all the train routes and the
concrete safety rules associated with these are defined in the interlocking table of the station.
Table 1 depicts a sample of an interlocking table. If a train is moving according to the Route1,
starting with entry signal X (yellow(U) indicates proceed), ending with exit signal SI and passing
Segments IAG, 1DG, 5DG, IG, it will collide with the other train which started moving from
signal D5 or SI. Therefore, Route1 and Route2 are conflicting routes. Notice that Route1 and
Route3 are not conflicting routes. They can’t be used at the same time because the switch 1/3
(1/3 means switch 1/3 is required to be in the normal position; (1/3) means it is required to be in
reverse) is not required in the same state.

Table 1: Sample of Interlocking Table

R-
Number

R-Type Entry
Signal

color Exit
Signal

Switch Conflict
Signal

Segment

1 TrainRoute X U SI 1/3 5 SI IAG,1DG,5DG,IG
2 TrainRoute SI U X 1/3 5 X IAG,1DG,5DG,IG
3 TrainRoute X UU SII (1/3) 7 SII IAG,1DG,3DG,7DG,IIG

2.3 Step 3: Verification of the generated interlocking table via model checking

In order to check whether the interlocking table which generated automatically satisfies the safety
properties, the developer translates the interlocking table into a FSM model that defines the be-
havior of the physical objects of the railway station, based on generic interlocking table seman-
tics, which define the meaning of the interlocking table. Suppose that all entities can be clearly
moved to the required position. A FSM model is given as a sequence of states Si; it translates
from a given initial state S0 by executing transition σ1 . Each transition is specified by a group
of transition rules. Specifically, the train will move from one segment to another (Si represents
Segment i) if one transition is satisfied[3].

S0
σ1 −→ S1

σ2 −→ ... σn −→ Sn ...

It then puts this model together with a model that captures assumptions on how trains can
move through a layout. This final model is exhaustively checked against the safety properties,
using a model checking algorithm. In this paper, the model-checking tool of choice is NuSMV.
If the model checker finds a violation of the safety property, it reports an output file to the
developer. An output of most model checkers is a counterexample: an execution trace illustrates
exactly how a specification was violated. In most analysis environments, this output is a list of
the model variables and their values at each step in the execution trace [4].
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3 Counterexample visualization framework

Verification of the generated interlocking table via model checkers has been done in the previous
development. Once we obtain a NuSMV code we can try to model-check it and report the result
to the developer. If there is no violation, then the specification has been formally proven to be
valid for the model. Otherwise, a counterexample is produced. This counterexample contains the
sequence of steps performed by the system that led to the violation. Comparing the conflicting
routes the model checker detects the conflicting routes described in the interlocking table, there
may be the wrong generated interlocking table to lead to the non-correspondence between them.

Figure 3: The corresponding violation trace generated by NuSMV

Fig. 3 is an excerpt of the corresponding violation trace generated by NuSMV. The violation
trace has been used to repeat the verification process, through comparing results by changing
some steps of the process. Hence the essential information should be offered : the safety property
that has been verified, the moving traces of the trains based on the interlocking table, the NuSMV
program codes and the internal NuSMV information. This case of two trains collision violation
trace is just an example for analysis. Of course, more general properties and safety properties
can be verified in this way.

However, many users need to comprehend the structure and behavior of interlocking tables
that they may not be acquainted with. How to understand and use the error descriptions from
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the analysis results to revise the original interlocking table is a tough challenge. The counterex-
ample visualization framework, shown in the shaded region of the activity diagram in Fig. 2, is
explicitly designed to help analysts interpret counterexamples. It supports visual interpretation
of the analysis results generated by model checkers in terms of the original railway station.

In this subsection, we develop a playback mechanism to display the execution path that has led
to a model checking violation. It consists of two components to depict this scenario: the trace
interpreter and the visualization tool. From the trace files, the counterexample visualization
framework extracts useful information such as the train’s id, the train’s position, etc. According
to the information, the interpreter specifies the analysis results in an intermediate XML repre-
sentation. In this way, a flexible, useful and uniform data interchange format is built for CASE
tools, which is a key issue to make it much easier to develop visualization tools.

The visualization tool takes the XML intermediate representation and the original railway
station model as inputs and produces the modified railway station. Here we describe the trace
interpreter and visualization tool in more detail.

3.1 Violation trace interpreter

The main safety property of a railway interlocking system is that two trains will never collide.
Now we take this safety requirement for an example. Firstly, we analyse the contents of an in-
terlocking table which includes the safe train movement conditions, and we manually check for
any conflicting settings in the table. Then we translate the interlocking table into formal spec-
ification languages and use NuSMV to analyze the formalized interlocking table for adherence
to the safety requirement. If there is a violation, an execution trace is produced. It includes the
detailed information of a trains moving trace. Our goal is to identify the collision with the pass
path within the trace file and to specify this behavior in an intermediate XML format. Fig. 4
shows that the trace file is translated into an intermediate XML format.

To achieve these ends, we constructed a parser which must be constructed for each syntacti-
cally unique trace file format and developed a translator to generate a generic XML representa-
tion.

 

Violation trace 

file AST
XML

Figure 4: Violation trace interpreter overview

3.1.1 The trace parser

At this stage, we have gotten the trace file in the previous development. An excerpt of the corre-
sponding violation trace generated by NuSMV is shown in Fig. 3. The first phase of the violation
trace interpreter is trace parsing. Note that different formats of trace files will be generated by
different input options. However, each parser is reusable. In this section, we construct a parser
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for violation trace files created by NuSMV. The goal of the parser is to identify the collision
with the pass path and detect that the code in the trace file is either syntactically ill formed or
semantically unsound.

As Fig. 5 shows, there are three components in the trace parser: 1. The extractor extracts
information which describes conflict specified by the trace file then outputs the simplified code.
2. The lexical analyzer reads the stream of characters making up the simplified code and produces
tokens. 3. The syntax analyzer uses the tokens to constructs an AST (abstract syntax tree)
representation of the dynamic behavior. The syntax analyzer interacts with the lexical analyzer.
It invokes the lexical analyzer when it needs a token during execution.

 

The extractor
The lexical 

analyzer

The syntax 

analyzer

Symbol table

Source 

code

Extracted  

code
Token 

Get next 

token

AST

Figure 5: The structure of a parser

A. The extractor We present a search algorithm for extracting information about the move-
ment of the trains. Violation traces generated by NuSMV provide four different sources of
information: the safety properties that have been verified, the trains moving trace according to
the interlocking table, the NuSMV program code and internal NuSMV information.

The extractor extracts the information corresponding to dynamic behaviors of interest. Some
examples are given as follows: The safety properties that have been verified.

/* description */ "(AG (˜(t1.position=t2.position))) "

This safety property can be described as two trains (t1 and t2) can not occupy the same segment
at the station. It means no conflict is allowed.

The violable trace works step by step.

/* state 1 */

It shows the trace at the first step.
A segment has been visited:

\t1 .\before_Train = \S17

This statement specifies that the train t1 occupied s17 earlier.
A segment is visited:

\t1 .\position = \S15
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This statement specifies that the train t1 occupies s15 now.
So does the train t2.
The extractor preserves the train movement information. If t1 and t2 occupy the same segment,

it means that two conflicting routes are set at the same time. Documenting the analysis results
according to the NuSMV, the parser can figure out the conflicting segment easily.

Algorithm 

1:  Read the first state 

2:  if the TrainID ==t1 then  

3:   CurrentRoute: =RouteStack.firstTrain 

4:  else  

5:   CurrentRoute: =RouteStack.secondTrain 

6:   SaveTrainID (TrainID) 

7:  endif 

8:  <RouteSet ID>: =SearchTrainPosi"on(CurrentRoute) 

9:  if RouteSet is not empty then 

10:   RouteStack.push(CurrentRoute) 

11:    for(Route i:∈RouteSet)  

12:      if Route i in RouteStack then  

13:        con"nue 

14:      end if 

15:    end for  

16:  end if                  

17:  if <RouteSet 1>(i)==< RouteSet 2>(j) 

18:   Save Conflic"ngRoute=<RouteSet 1>(i) 

19:  end if 

20:  Read the next state 

 

Figure 6: Algorithm of route information search

The specific search algorithm for extracting information which describes conflict specified by
the trace file is illustrated in Fig. 6.

It is obvious that the extracted code should be broken up into constituent pieces and impose a
grammatical structure on them. So we also need a lexical analyzer and a syntax analyzer.

B. The lexical analyzer At first, the lexical analyzer reads the characters of the source code
and then the characters will be grouped into meaningful sequences. That is called lexeme. At
the same time, a token for each lexeme will be produced by the parser. The token consists of two
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parts: token-name and attribute-value.
For example, suppose a source program contains the assignment statement

\t1 .\position = \s15

The representation of the assignment statement after lexical analysis as the sequence of tokens

< trainid, 1> <.> <positon, 2> <=> <segid, 3>

Blanks and meaningless symbols separating the lexemes would be discarded by the lexical
analyzer.

C. The syntax analyzer Here by the syntax analyzer, the token-name produced by the above
lexicer is used to create a tree-like intermediate representation. The tree depicts the grammatical
structure of the token stream and can then be translated to an AST.

The grammar used in NuSMV is probably not comprehensive, since the violation trace file not
only contains the information from the NuSMV program code. Thus, defining the best grammar
is not quite effortless. By analyzing a good deal of violation trace files, we define the code syntax
rule by using Extended Backus Naur Form (EBNF).

In EBNF the grammar can be written as:

assignment statement : : = trainid "." affair * : : = var ;
trainid : : = letter {letterOnum}* num ;
affair : : = trainstateOexternalstate;
var : : = segidOboolen;
trainstate : : = positionObeforeposition
...

3.1.2 The translator

The translator traverses the AST and creates an intermediate XML representation of the dynamic
behavior. We have defined a set of XML tags and attributes. A well-defined intermediate XML
representation is used to store this scenario.

The intermediate XML representation provides programmers with a way to easily obtain in-
formation about violation traces in a self-descriptive manner, which is useful to develop a visu-
alization tool. Furthermore, the intermediate XML representation can also be viewed as a DSL,
because they can be good languages to describe the trains moving. It contains information of the
abstract syntax tree and the static semantics.

Fig. 7(a) shows a sample XML element, which specifies that in the first state t1 occupies
segment6. Fig. 7(b) specifies the segment where the two trains collide. The intermediate XML
is automatically generated from the translator, and then used as input for visualization tools.

3.2 Visualization tool

Because the railway station established by DSL-CBI is externalized into XML, it is possible
to mark the conflicting segment by manipulating the XML file. We need to read an existing
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Figure 7: Sample of XML elements

XML file which includes all information about the railway station, modify it and write it back.
Modifying can be pretty complex depending on trains actions performed on the counterexample.

The visualization tool we have developed has the following features: 1. By analyzing the
counterexample, we obtain the XML file and the property which needs to be verified. 2. Putting
all the properties into the corresponding places in the options screen, we can chose running step
by step, so it is possible to observe the whole driving process of the trains one by one. 3. Another
option is that you can press the run-all button and it will execute the whole driving process by all
trains.

Reading the scenario from the XML file and presenting the counterexample through the rail-
way station, this processing program helps users to understand the cause of a property violation
clearly. Any special ways to highlight the conflicting routes can be used to reveal the fault of
the interlocking table. Specifically, the modified railway station depicts that a track is visited
(increased the display font size of the segments, colored it in blue or green and make it italic)
and that a conflicting segment exists (increased the display font size of the segments and colored
them in red). In this way, the user is alleviated from the burden of deciphering the frequently
cryptic and verbose trace output.

A case study about the whole toolset is presented in Section 4.

4 Case study

This section describes a case study we performed to validate our visualization framework. Firstly,
the DSL-CBI is developed to describe railway stations. Secondly, an algorithm is proposed to
automatically generate interlocking tables. Thirdly, conflicting routes in the generated inter-
locking tables are checked by NuSMV. Lastly, the conflicting routes of the railway station are
vividly expressed in the railway station through the counterexample framework. So that we can
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compare the conflicting routes the model checker detects the conflicting routes described in the
interlocking table. Fig. 8 shows an excerpt of the whole process.

The railway station designed by DSL-CBI is depicted in Fig. 8(a). Fig. 8(b) presents the
generated interlocking table according to the railway station. Fig. 8(c) shows the verification
of the generated interlocking table via NuSMV, Fig. 8(d) describes the result of verification by
outputting a counterexample in tabular form. A violation trace in terms of the railway station is
illustrated as Fig. 8(e).

According to Fig. 8(c) and Fig. 8(d), trains t1 and t2 starting from two states (3DG and 4DG),
will collide at IG. It means that all the train-routes (the train runs ignoring shunting signals such
as D5, if not, it will be called shunting-route) starting from the signal X and the signal SF are
conflicting routes. The result is in line with the information in the generated interlocking table
(Fig. 8(b)). Finally, a screen shot of the modified railway station depicting the violation trace is
shown in Fig. 8(e), where the key thing to note is the different colors and size of the segment’s
name. By choosing the train ID in the drop-down list, the track of the train’s movement can
be displayed clearly. When t1 is selected, the segments it has passed will be marked in blue.
Similarly, when t2 is selected, the segments it has passed will be marked in green. Finally, we
can see that ’IG’ is the conflicting segment, which is pointed out in red and framed.

With the railway station and the corresponding violation trace as input, the counterexample vi-
sualization framework processed the violation trace and visualized the counterexample in terms
of the original railway station. It is easy to find that the result of model checking meets the re-
quirement (safety property) of the generated interlocking table. The counterexample framework
makes consistency more visible through the modified railway station.

5 Conclusions

In this paper, we have presented a generic visualization framework. It provides a critical link
in a roundtrip-engineering process for modeling and analyzing interlocking systems. Using the
visualization framework, the user is alleviated from the burden of deciphering the frequently
cryptic and verbose trace output, which is often denoted in an analysis tool-specific language,
including references to line numbers of the specification, internal process numbers, temporary
variable names, etc. Moreover, the users have the option of either train running through the
complete counterexample, where color and size changes are used to depict the train movement
according to the interlocking table. So they can understand the case of the error well, even
if the error exists in a hidden place. Specifically, the visualization framework completes the
roundtrip modeling and analysis process for CBI. In order to validate our work, we have applied
our roundtrip-engineering process to the analysis of several different railway stations.

Other tools [5] [6] visualize analysis results from model checkers in terms of UML. To the
best of our knowledge, none of these tools is concerned with the generation and visualization
of violation traces for the railway station. In contrast to work suggested by others [7] [8] [9],
our work focuses on the results of a model checker. Our visualization is explicitly designed
to help analysts interpret counterexamples. However, such a visualization may be useful for
debugging models during development. Without the counterexample visualization framework,
we would be forced to understand the syntax and semantics of the trace output and determine the
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Figure 8: Whole process of the case study
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relationship between the output and the railway station. Even if the developer is very familiar
with the interlocking table, it will take a lot of time to locate the cause of the error in the railway
station.

As future work, we plan to present a step-by-step animation of the counterexample through
the railway station, which will make the violation trace more vivid.Furthermore, a more seamless
integration should be explored between tools we have developed before to further improve our
system.
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Abstract: Model decomposition is a powerful tool to scale the design of large
and complex systems. It enables developers to separate components development
from the concerns of their integration and orchestration. Event-B is a refinement-
based formal method, equipped with three decomposition styles that come with solid
semantic foundations and strong tool support. This paper intends to give some useful
insights and modelling guidelines for using these decomposition styles, illustrated
by an actual development of a master data updating system.
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1 Introduction

Modern software systems are becoming more complex everyday. This trend is going to continue
as industry witnesses unprecedented explosive demands for social and business connectivity.
This poses a huge challenge to system modelling for rigorous quality assurance, while scalability
becomes a great issue. Hence model structuring is paramount in mastering complexity of large
systems. Although there has never been a lack of theoretical research in this area, few modelling
platforms provide a sufficiently good level of tool support to evaluate structuring techniques
and their impact on industrial application of formal modelling. Moreover, there are no clear
guidelines for model designers which often impedes the application of formal verification to
large-scale designs.

Event-B [3] has established itself as a popular formal system development with broad in-
dustrial adoptions. Event-B was designed as a minimalistic formalism to form the core of the
Rodin platform [4]. A great range of features have been provided as extensions to the modelling
platform, covering almost all aspects of model-driven engineering such as requirement, simula-
tion, visualization, testing, formal verification, and code generation. The extension architecture
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allows a modeller to enable only those features that are relevant for the domain of modelled
problem. This keeps the core features of the platform as simple as possible while not sacrificing
any functionalities.

The basic Event-B language supports model structuring by nothing more than the use of events
and refinement inside one model. However, it is highly impractical to construct a large scale for-
mal design as one monolithic model, which results in numerous problems with legibility, main-
tainability, team work, reuse, and so on. Notably, it also affects proof structuring: autonomous
provers are suffocated by a large number of hypotheses and thus anything that makes the context
of a proof smaller is extremely beneficial.

Model decomposition comes as a great potential to solve the above problem. Three different
decomposition styles exist for Event-B, all providing a guarantee of refinement monotonicity:
the model after decomposition is a correct refinement of the one before decomposition, provided
all obligated proofs are given. This allows a decomposed part of the model to be treated as an
independent artefact so that the modeller can concentrate on this part and does not have to worry
about the other parts. The tool supports for these techniques, realized as Rodin plugins, not
only provide assistance on how to decompose a model, but also generate explicit constraints and
relations between the decomposed model and the resulting sub-components.

Technically, decomposition is a special form of refinement by which a single abstract model
is refined by several concrete models and their aggregation. Like refinement, a properly planned
decomposition step results in very low proof cost. It requires, however, a good degree of fore-
sight. First, a model is difficult to decompose if the model does not possess a structure that
can be easily divided and mapped to independent components to be produced by decomposition.
Second, any careless design decision before decomposition may be difficult to correct afterward,
which often leads to complete rework on the development of each individual local component.
Therefore, a modeller can serve a better job when some guidelines are available so that the mod-
eller knows which decomposition style to choose from, and which design decisions need to be
taken care of at each stage.

In this paper we provide some insights and propose modelling guidelines for applying model
decomposition, drawn from our personal experiences and illustrated by a case study by an in-
dustrial user of Event-B. These guidelines are not supposed to give a one-for-all solution for
all decomposition attempts. We introduce stages in decomposition and point out which design
problems (that can be easily overlooked) need to be addressed in each step.

Outline. Sec. 2 briefly introduces Event-B and decomposition in general. Sec. 3 gives our
modelling guidelines. Different decomposition styles are detailed in Sec. 4 – Sec. 6 by showing
their applications on the modelling of a master data updating system. We compare the different
approaches in Sec. 7. Finally, we draw some conclusions in Sec. 8.

2 Background

2.1 Event-B

Event-B is a formal modelling method for developing correct-by-construction hardware and soft-
ware systems. An Event-B model is a state transition system where the state corresponds to a
set of variables v and transitions are represented by a collection of events evt. The most general

No \volume defined! 2 / 15



ECEASST

Figure 1: The Process Model of Update Master Data

form of an event is: evt =̂ any t where G(t,v) then A(t,v) end , where t is a set of parame-
ters, G(t,v) is the enabling condition (called guard) and A(t,v) is an action changing the value
of v. An action comprises several assignments executing in parallel. Each assignment can have
one of the following forms: x := E(t,v), x :∈ S(t,v) or x :| P(t,v,x′), where x are some vari-
ables in v. The first form assigns value of expression E(t,v) to x. The second assignment form
non-deterministically assigns to x some element of set S(t,v). The third assignment form non-
deterministically assign to x some after value x′ satisfying the before-after predicate P(t,v,x′).
In the first and last assignment forms, x can be a vector of variables. The last assignment form is
also the most general one: other assignment forms can be equivalently represented using before-
after predicates. Essential to Event-B is the formulation of invariants I(v): safety conditions to
be preserved at all times.

To facilitate the construction of large-scale models, Event-B advocates the use of refinement:
the process of gradually adding details to a model. An Event-B development is a sequence
of models linked by refinement relations. It is said that a concrete model refines an abstract
one. Abstract variables v are linked to concrete variables w by a gluing invariant J(v,w). Any
behaviour of the concrete model must be simulated by some behaviour of the abstract model,
with respect to the gluing invariant J(v,w).

Rodin [4] is an industrial-strength toolset supporting Event-B. Rodin provides an integrated
modelling environment with a range of editors, modelling assistants, automatic generator of
verification conditions and a set of automated provers tasked to discharge verification conditions.

Example – A Master Data Updating System Fig. 1 shows a master data updating system
that we use as the case study of this paper. The system consists of a User process and a Server
process keeping some master data in sync. When User proposes a data change, it first updates its
local copy, and then sends a request message to Server and waits for the answer. Upon receiving
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the request, Server checks the validity of the proposed change, and updates the master copy
only when the change is deemed valid. Then, Server sends to User a response containing either
an approval or a rejection. User has to roll back the change if a rejection is received. We are
interested in the global property that the local and master databases are always identical before
and after each data update procedure.

The Event-B model in Fig. 2 serves as the most abstract view of the above system. The
initial model is designed to have as few variables and events as sufficient to express the above
mentioned property (see invariant inv0 3). The model contains variables udb and sdb denoting
User and Server’s database respectively. The Boolean variable is denotes if the global system is
in synch. There are three events, namely u update, s update and u final. When the system is
in synch, u update changes the local database, which invalidates the insynch status. While the
system is out of synch, s update may occur to update the server database (either to be the same
as udb or unchanged). Finally, u final occurs to put the system back in synch by making the
local database to be identical as the server database. Note that s update may be skipped when
the system is out of synch. Although this cannot happen in the real system, we permit it in the
abstract model to simplify proofs, which does not affect the satisfaction of the global property in
consideration. This spurious behavior will be removed by refinement and decomposition in the
further developments.

variables: udb,sdb, is inv0 3 : is = T⇒udb = sdb

u update
when

is = T
then

is := F
udb :∈ DB

end

s update
when

is = F
then

sdb :∈ {sdb,udb}
end

u final
when

is = F
then

is := T
udb := sdb

end

Figure 2: The top abstract model of Update Master Data

2.2 Decomposition

The top-down style of development used in Event-B allows the introduction of new events and
data-refinement of variables during refinement steps. A consequence of this development style
is an increasing complexity of the refinement process when dealing with many events and state
variables. Decomposition addresses such difficulty by providing a mechanism for splitting a large
model into several sub-models (that can be further developed independently). Several decompo-
sition techniques have been proposed by extending the existing Event-B notation. This paper is
concerned with three existing approaches: shared-variable [2], shared-event [7] and modularisa-
tion [11], all of which are supported by Rodin plug-ins [13, 1]. These decomposition techniques
differ in that different model elements are shared among sub-components. For shared-variable
decomposition, a part of state information (variables) is shared among sub-components. Further
refinements then concentrate on how each component processes shared state information. For
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shared-event decomposition, a set of events are synchronised and shared by sub-components.
Hence, it is important to take care of the inputs/outputs of these synchronised events. Modulari-
sation defines a set of interfaces that are shared and accessed by different components. Interfaces
provide callable operations and promises that these operations can deliver. The implementation
of an operation should guarantee that the promises are fulfilled for any given circumstance.

Shared-variable decomposition is similar to rely/guarantee approach from Jones [12]: inter-
nal/external events is essentially an encoding of rely/guarantee conditions. It also corresponds to
concurrent action systems [5] where a solution for the interleaving semantics is proposed.

Shared-event decomposition allows separation of aspects by using synchronisation and com-
munication based on Butler’s work [6] combining Action System and CSP [10]. CSP value
passing channels correspond to events that communicate via shared parameters.

The separation of procedure declaration from implementation have a long history both in
computer programming and modelling. Modularisation closely relates to the treatment of pro-
cedures in Hoare logic [9, 8]: procedure calls are used as a metaphor to benefit from refinement
monotonicity. Consequently independent model aspects can be considered separately although
this should not be confused with modelling a procedure call as a construct of a programming
language.

3 Guidelines

The primary challenge of applying decomposition is to ensure that the structure of the original
model fits the requirements of the chosen decomposition style, leading to helpful sub-models
that can be developed separately with a tangible advantage in terms of proof efforts and overall
model scale. As with any top-down approach for system development using refinement, the
more abstract models are initially, the more useful the decomposition step will be. Here we do
not focus on directly justifying the use of a particular decomposition style. Instead we focus on
how to proceed when decomposing using one of the suggested decomposition styles.

We define a general top-down guideline for the three decomposition techniques based on the
following common template.

Stage 1 To model the system abstractly, expressing all the relevant global system properties.

Stage 2 To refine the abstract model to fit the structure expected by a given decomposition
technique.

Stage 3 To apply decomposition.

Stage 4 To develop the resulting sub-models independently.

Following this guideline, global properties are captured early in the model and guaranteed
to hold in the final models by combining refinement and decomposition. The development of
each decomposed part is done independently of the others. Consequently, we can have different
implementations for a decomposed model that is guaranteed to work with any implementation
of other decomposed models.

In the subsequent sections, we elaborate on the application of different decomposition tech-
niques using our proposed modelling guideline.
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4 Shared-Variable Decomposition

Consider Fig. 3 where machine M has four events, e1 to e4, and three variables, v1 to v3. The
solid lines connect variables used by events. In Fig. 3, M is shared-variable decomposed and
events are partitioned into sub-components: e1 and e2 are allocated to machine M1; e3 and e4
are allocated to machine M2. Consequently, v1 belongs to M1 and v3 belongs to M2 (private
variables). Variable v2 is shared between M1 and M2. Furthermore, additional external events
are required to simulate how shared variables are handled in the other sub-component (e3 e is
added to M1 and e2 e to M2). Assuming that e2 has the general form

e2 =̂ any t where G(t,v1,v2) then v1,v2 :| P(t,v1,v2,v1′,v2′) end ,

the corresponding external event e2 e can be generated as follows.

e2 e =̂ any t,v1 where G(t,v1,v2) then v2 :| ∃v1′ ·P(t,v1,v2,v1′,v2′) end .

Intuitively, e2 e is a projection of e2 onto the state without variable v1.
There exist certain constraints about shared-variable decomposition during the development

of the resulting sub-components: they can be refined independently but shared variables and
external events must be present and cannot be refined. More information on shared-variable
decomposition in Event-B can be found in [2].

Figure 3: Shared-variable decomposition

4.1 Master Data Updating System

We describe in detail how to develop the example of update master data using shared-variable
decomposition. The model described in Section 2 represents our abstract model of Stage 1. We
continue with the subsequent stages of our modelling guideline.

Stage 2. Shared Channels Between Components. In this preparation stage, we introduce the
channels (the shared elements) acting in between User and Server. The channels are modelled
by two variables creq and cres, corresponding to the set of messages going through the request
and response channels respectively.

Memo SV1 In this preparation stage, variables going to be shared are introduced.
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Moreover, since in Stage 4 the shared variables and external events can be neither removed
nor refined, the shared elements introduced in this preparation stage must be concrete.

Memo SV2 The shared variables must be concrete.

Furthermore, we are going to split the variables and events into two groups, corresponding to
each site, preparing for the later decomposition step. An important design constraint here is that
User’s events can only reference the variables belonging to User and the shared channels, but not
the variables of Server. The same for Server’s events.

Memo SV3 Events belonging to each sub-component only reference its own vari-
ables and shared variables.

As a result, variable is must be refined away. We replace is by uis, the local in-synch flag,
with a gluing invariant uis = is, i.e. the global in synch is consistent with the User’s view. A
separated in-synch flag sis is introduced for Server. Moreover, in order to separate User and
Server completely, we introduce new variables for keeping some information belong to each
site. For User, variable udb old is added in order to keep the old value of User’s database for
undoing later if necessary. For Server, variable sc keeps the user’s change to the database on the
server site for updating Server’s database if the change is valid.

Despite of the details that we have to introduce in order to clearly separate the future sub-
components, we aim to keep the model at this stage fairly abstract. It should contain only
necessary information for maintaining the global properties and specifying the shared elements
between future sub-components. Other information, e.g. control/data flows within each sub-
component can/should be abstracted away.

Memo SV4 Unnecessary details irrelevant to decomposition should be abstracted
from the model in Stage 2.

For example, we assume for the moment that the update of the database and sending the request
message from User happens simultaneously. This is represented by event u update and req, a
refinement of the abstract event u update.

u update and req refines u update
any ch where

uis = T∧ ch ∈ CH
then

uis,udb,udb old,creq := F,upd(udb 7→ ch),udb,{ch}
end

In u update and req, the local database udb is updated to be upd(udb 7→ ch), the new value
obtained by applying changes ch; the old local database is saved in udb old; and the actual
change is send as a request to the server via channel creq. Note that u update and req satisfies
our Memo SV3, i.e. reference only variables belonging to User and the shared channel creq.

Other events in this model include: s receive req for Server to receive some request; s accept res
for Server to update its database and send a positive response; s reject res for Server to send a
negative response without updating its database; u receive res acc and u receive res rej for User
to receive some (positive/negative) response and act accordingly.
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An important advantage during the model design in this stage is the use of the abstract model
from Stage 1. Consistency enforced by refinement guides our design in Stage 2, i.e. constraints
on the shared variables will be derived from the need to maintain the global properties introduced
in Stage 1 (typically in terms of invariants).

In our example, the following invariants are discovered during the process of discharging proof
obligations such as guard strengthening and invariant preservation of the model. They relate the
content of the channels and the internal status of User and Server. Invariants inv1 7 and inv1 8
relate Server’s database sdb with the User’s database (current udb or old udb old) depending on
the content of the channel cres. Invariants inv1 9 and inv1 10 state that User is out of synch if
there are some request or response messages.

inv1 7 : cres = {T}⇒ sdb = udb
inv1 8 : cres = {F}⇒ sdb = udb old
inv1 9 : creq 6=∅⇒uis = F
inv1 10 : cres 6=∅⇒uis = F

Stage 3. Decomposition Summary. This stage is semi-automatic: we provide the tool with
input on how the events are partitioned into different future sub-models. Intuitively, we separate
our events into two groups, corresponding to User and Server accordingly. The variables distri-
bution amongst these model are calculated according to the information about events distribution.
The summary of our decomposed models is as follows.

User Server
Internal events u update and req s receive req

u receive res acc s accept res
u receive res rej s reject res

Private variables udb,udb old,uis sdb,sc,sis
Shared variables creq,cres creq,cres

Stage 4. Developments of Sub-models. We present a summary of the additional refinement
steps for each model. Most invariants in the sub-models are technical and related to the sequen-
tialisation of the actions, reflecting the process flows in Figure 1.

User The control flow is introduced via means of a program counter upc to capture the actual
sequential steps inside the User process. Other internal variables of User are introduced
accordingly, i.e. User’s change uch and User’s stored response type ures.

Server Similarly, the control flow of Server is introduced via means of a program counter spc.
Internal variables of Server, such as the check result scr, are introduced.

5 Shared-Event Decomposition

In Fig. 4, M is shared-event decomposed into two parts: M1 and M2. Variables are partitioned
into the sub-components: v1 is placed in M1 and v2, v3 are placed in M2. Unlike the shared
variable approach, no variable sharing is allowed. Events using variables allocated to different
sub-components (e2 shares v1 and v2) must be split.
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Figure 4: Shared-event decomposition

Assuming that event e2 has the following form

e2
any t where

G1(t,v1)
G2(t,v2)

then
v1 :| P1(t,v1,v1′)
v2 :| P2(t,v2,v2′)

end

,

event e2 1 is defined as a partial version of e2 only referring to variable v1, i.e.

e2 1 =̂ any t,v1 where G(t,v1) then v1 :| P1(t,v1,v1′) end .

Event e2 2 is defined similarly but only refers to v2.

Memo SE1 The abstract model of shared-event decomposition is such that each
event updating non-private variables may be syntactically split into two events.

5.1 Master Data Updating System

Using the same initial model in Fig. 2, we describe the following stages in the application of a
shared event decomposition. The system is designed to be decomposed into components User
and Server synchronously communicating by value passing messages.

Stage 2. The Value Passing Protocol. The goal of this stage is to have a model where the
state variables are partitioned amongst the future sub-models. Typically, this stage involves
refinement of events to introduce the shared elements in the form of events’ parameters. Similar
to the shared-variable style, a good abstract model is pursued where only necessary information
related to the global properties and the shared elements are specified.

Memo SE2 Irrelevant details should be abstracted away from the model before de-
composition.
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In this refinement, we prepare the decomposition by introducing synchronous channels and re-
spective value passing protocol. The content of the protocol is represented by shared parameters
(in the resulting sub-events). At this stage, the communication is abstract and occurs in a single
event.

Memo SE3 Shared elements are introduced by means of event parameters.

The global flag is is replaced by uis and sis for User and Server sync respectively. The gluing
invariants between uis, sis and is are given by inv1 1, inv1 2 and inv1 3: uis always matches is;
while a request is being processed, sis matches is; otherwise, the server is synchronised (sis=T).

variables: udb,sdb,uis,
u ch,u rq
sis,s st,s ch

inv1 1 uis = is
inv1 2 u rq = PRC⇒ sis = is
inv1 3 u rq 6= PRC⇒ sis = T

Some control variables are added: u ch corresponds to the User change; u rq holds the request
state on the User side where PRC corresponds to the processing state; s st corresponds to the
server state and s ch holds the change from the Server’s viewpoint. Refined event u update
models a modification that is stored in u ch before being sent to the server by the new event
rq. Event rq simultaneously sends the request from User and receives it in the server. Then the
request is stored in s ch and User (u rq := PRC) and Server (s st := VAL RQ) states are updated
. The server is considered out of sync once receives a request (sis := F).

u update refines u update
any ch where

ch ∈ CH
uis = T
u rq = IDLE

then
uis,u ch := F,ch

end

rq
any msg where

uis = F∧msg = u ch∧u rq = IDLE
s st = S IDLE

then
u rq := PRC
s ch,s st,sis := msg,VAL RQ,F

end

Note that event rq has been designed so that it can be syntactically split into parts concerning
only with variables of the User or Server (Memo SE1). The request validation can be deferred
until the decomposition because it is irrelevant to the considered global property. The server
is updated in the refined event s update for a valid request. Even when the request is deemed
invalid, a response is sent back by the new event rsp. This event syncs in the Server and updates
the User’s request. If the request is valid, u ch is applied locally; if the request is invalid, udb
remains the same. In either case, udb is back in sync with the server.

Several gluing invariants are discovered as a result of the generated proof obligations. inv1 4
state that while u rq is processed, User/Server changes match; if u rq is deemed invalid, sdb/udb
are identical (inv1 5); a valid request results in sdb matching with udb updated with u ch (inv1 6).

inv1 4 : uis = F∧u rq = PRC⇒ s ch = u ch
inv1 5 : u rq = INVLD⇒udb = sdb
inv1 6 : u rq = VLD⇒upd(udb 7→ u ch) = sdb

Our model is synchronous since the messages exchanged by User and Server are sent and re-
ceived simultaneously. Alternatively, we could also model asynchronous communication by
introducing a buffer between udb and sdb suggesting a three way decomposition.
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Stage 3. Decomposition Summary. Sub-models User and Server result from the allocation of
the original variables according to their use. The decomposition is summarised in the following
table:

User Server
Variables udb,u ch,uis,u rq sdb,s st,sis,s ch
Events u update,u final, rq, rsp s update, rq, rsp

Stage 4. Developments of Sub-models. The decomposition allows the separation of send-
ing/receiving a request by defining the request as parameter msg shared by User and Server
(similarly applied to the server’s response). The resulting sub-models can be refined indepen-
dently:

User A program counter is added defining the local states (update udb, send request, receive re-
sponse, commit/discard change). Two events refined the two possible outcomes: l commit
for valid modifications updating udb and l discard to discard the modification. An addi-
tional refinement could add a request queue removing the waiting between the server reply
and the next modification.

Server The server is refined by modelling the request validation with a new event s val.

6 Modularisation

In modularisation, interfaces are defined for sub-components such as the interface I in Fig. 5,
which contains interface variable iv and operations o1 and o2. Operations are specified by pairs
of pre/post-conditions. An interface is separated from its implementation IM that provides con-
crete behavior for each of the interface operations. An abstract machine of the integrated system
is modeled in M, which is refined by M1 where sub-component behavior is replaced with respec-
tive operation calls.

Figure 5: Decomposition via modularisation

In M, logical subunits must be identified so that they can be easily mapped to operation calls.
Respective variables in M are mapped to interface variables, and actions can be replaced by
interface operations. An interface must be carefully designed such that a minimal level of details
of the sub-component behavior is exposed.
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Memo M1 A module interface should be as general (weak) as possible because of
re-usability.

Following the above principle, we should expect that sometimes an interface is too weak in
that the post-conditions of its operations are not strong enough to establish the soundness of the
caller machine.

Memo M2 In case of a too weak interface, we should strengthen operation post-
conditions using the undischarged proof obligations as guidance.

Machine M1 can be further refined. However, operation calls to o1 and o2 must stay intact.

Memo M3 Operation calls must be preserved in the chain of refinements except for
parameter refinement.

Unlike the two other decomposition approaches, modularisation offers a greater degree of
flexibility on how to construct a decomposed specification because of lower coherence among
sub-components. One consequence is that the modularisation approach applies to both top-down
and bottom-up designs, and even blurs the boundary. For top-down development, the guideline
in Sec. 3 can be used in modularisation approaches as well. In bottom-up development, sub-
component interface may already exist before a global integration scenario is designed. This is
useful for many industrial use cases in which service integrations and customizations are for-
mally analyzed.

6.1 Master Data Updating System

We take a different approach here that does not follow the guideline in Sec. 3. Even though
we will explain the approach in a top-down fashion, it resembles certain aspects of a bottom-
up development in that the design of sub-component interfaces is relatively independent of the
global integration, because the interfaces are standard communication interfaces that produce
and consume messages.

We start with an abstract machine that only specifies message flows and does not state the
global property. Interfaces are defined for the two processes and implemented by separate ma-
chines by adding local control and data flow information. A sufficient amount of implementation
details, such as local variables and properties, is carefully chosen and exposed in their interfaces
to enable the verification of the global property. Finally, the top abstract machine is refined by
adding details of operation calls and message buffers. The global property is then verified on a
final refinement.

Stage 1. Specifying Abstract Message Flows. The top abstract machine uses flags to indicate
whether a certain message has been sent or received. For example, if the flag req snt is T then
a request message has been sent. Several invariants describing the order of message events are
added for property verification later. As an example, inv6 specifies that a response message has
to be sent before it can be received. Message events are abstract at this level and simply set the
flags accordingly.
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variables: req snt,req rcv,res snt,res rcv
inv6 : res snt = F⇒ res rcv = F

send req =̂ when req snt = F∧ res rcv = F then req snt = T end

Stage 2. Process Interfaces. The interface of each process defines a set of message operations.
These operations do not consider how messages are transported, but merely specify the types of
messages that they provide or expect. For example, interface User provides messages to be sent
(get request), and take incoming messages fed to them for local consumption (put response). In
particular, get request produces a message equivalent to the local change (ch) proposed by the
user.

get request
pre

req snt = F∧ res rcv = F
return

msg
post

msg′ = ch
req snt′ = T

end

put response
any msg
pre

msg ∈ BOOL∧ req snt = T
res rcv = F

post
ures′ = msg
res rcv′ = T

end

Stage 3. Process Implementations. Concrete details of sub-components are added in im-
plementations, such as events that describe how control states and local variables are updated.
Message-related flags are no longer present, thus we provide a link between those flags and local
control states (u cs) as gluing invariants like the one below among others.

inv18 req snt = F⇔u cs ∈ {start,upd,req}

An interface implementation is essentially an Event-B refinement step. We need to prove that
the postcondition of any interface operation must be fulfilled by the corresponding events that
implement the operation. We also need to prove relative deadlock freedom that, whenever an
interface operation is enabled, some of its implementing events must be executable.

Stage 4. Final Global Machine. The top-level machine is refined at this level to contain
operation calls and actual message exchanging behavior. Each process has a buffer to store
incoming messages. When a message needs to be sent, the corresponding interface operation
of the sender process is called to retrieve the outgoing message, which is then added to the
corresponding buffer. When a message is to be received, the message is taken out of the buffer
and passed to the receiver process by calling the respective interface operation. In the following
code, the prefix user is used in interface variables and operations of the user module.

send req =̂ when user req snt = F∧user res rcv = F then buf s = buf s∪ {user get request} end

Stage 5. Property Verification. Unlike the other approaches, the global property is encoded
and proved at the final global machine. The proof is based on the symbolic values of the local
and master databases delivered as operation post-conditions in the process interfaces.
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7 Discussions

All approaches decompose global machines into two components, one per process1. Shared-
variable and shared-event approaches start with similar abstractions, specifying a minimal set
of events reflecting how the local and remote databases are updated while preserving the global
property of interest. A series of refinements are introduced with appropriated chosen gluing
invariants and proofs of deadlock freedom and convergence. The two approaches are differ-
ent in that the shared-event version implements a synchronous message passing model. The
choice is mostly motivated by the fact that synchronised message passing events can be shared
by two processes. However, the system could be modelled in an asynchronous communication
by introducing a buffer sub-component. These two approaches ensure that the global properties
are preserved before decomposition. Afterwards each individual sub-component focus on their
specific properties. A system involving a shared object is favoured by a shared variable decom-
position where the shared object can be accessed by all the sub-components. On the other hand,
communicating system parts can be shared event decomposed possibly introducing a middleware
to allow an asynchronous approach.

In contrast to the other approaches, the modularisation version formulates and proves the
global property at the final stage, after the module interfaces are designed. This is possible
because the global machines and modules are loosely coupled, only linked by interfaces. An
advantage that immediately comes to mind is flexibility: changes to existing components and
inclusion of new components do not necessarily affect unchanged modules nor their proofs.
However, the largest challenge of modularisation is the design of appropriate interfaces as they
play a crucial role in linking multiple worlds while preserving the global property. During the
design of our model, we go through iterations of “trial and error” to find the appropriate amount
of information to be exposed in interfaces. As we learned from our experiences, a good practice
is to start with an initial interface containing a minimal amount of information and weak possible
post-conditions for operations. When these are insufficient to prove the global property, we can
gradually bring more information to the interface and strengthen post-conditions.

8 Conclusion

We have presented modelling guidelines for three decomposition techniques of Event-B, illus-
trated by a case study. Due to limited space, it was impossible to tell the complete story of the
case study development. We emphasise on the several design decisions that were taken dur-
ing the development of the examples, in order to successfully apply decomposition, resulting
in helpful sub-models for further independent elaboration. Together, the guidelines and these
design decisions act as a document of our experience in applying decomposition techniques.

Decomposition is a powerful technique to cope with the complexity of system development
but applying decomposition comes at a price: the cost of planning a development strategy that
fits a certain decomposition style. It turns out that mastering the technicalities related to es-
tablishing decomposition correctness and even an extensive tool support are still not enough to
systematically apply decomposition. Decomposition is rarely successful without prior planning

1 The models are available online at http://eprints.ecs.soton.ac.uk/22164/
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and such development planning is not yet supported by an established methodology.
One fascinating topic for future research is to see how different decomposition techniques

complement each other in the same development. The diversity in decomposition approaches
may be exploited to make decomposition more flexible and simpler for an end user. We are also
planning to formalise the criteria of model decomposability and, if successful, mechanise them
in a tool. Such a tool, in principle, could give an immediate answer on which decomposition
technique, if any, would succeed for a given model.
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Abstract:
The PLUSCAL-2 language allows algorithm designers to formulate concurrent and
distributed algorithms in a form that is similar to pseudo-code. However, the lan-
guage has a precise semantics, and the PLUSCAL-2 compiler generates a TLA+

model that can be verified using the TLC model checker. We adapt Holzmann’s
partial-order reduction technique to PLUSCAL-2 algorithms in order to alleviate the
state explosion problem. In particular, we exploit the structure of PLUSCAL-2 al-
gorithms for computing predicates that ensure that the TLA+ actions corresponding
to two PLUSCAL-2 statements (or groups of statements) are independent. We have
extended the TLC model checker to take into account these predicates and reduce
the number of states that must be explored. We validate our approach by showing
its efficiency for several examples drawn from the literature.

Keywords: Model checking, partial-order reduction, verification, distributed algo-
rithms

1 Introduction

Model checking [CGP99] is a popular verification technique for concurrent and distributed al-
gorithms. It provides tools for deciding automatically whether properties (typically expressed
in temporal logic) are verified for finite instances of systems or algorithms, described in a for-
mal modeling language. Its main limitation is the well-known state explosion problem, which
can be mitigated by verifying algorithms at a high level of abstraction. For example, Lamport’s
specification language TLA+ [Lam02], which is supported by the model checker TLC [YML99],
is intended for high-level models of distributed and concurrent algorithms. Although TLA+ is
very expressive and can concisely describe complicated algorithms, algorithm designers are of-
ten reluctant to adopt formal modeling languages, and prefer to express their ideas in pseudo
code or similar informal notation. Lamport therefore introduced the PLUSCAL algorithm lan-
guage [Lam06]. While retaining the high level of abstraction of TLA+ expressions, it provides
familiar constructs of imperative programming languages for describing algorithms, such as pro-
cesses, assignments, and control flow.

The PLUSCAL compiler generates a TLA+ specification, which is then verified using TLC.
PLUSCAL is a high-level and powerful modeling language for algorithms, featuring mathemati-
cal abstractions, non-determinism, and user-specified grain of atomicity; it emphasizes the analy-
sis, not the efficient execution of algorithms. Aiming at a simple translation to TLA+, PLUSCAL

also imposes some significant limitations. In particular, it does not support process hierarchies,
which are often natural for distributed algorithms, where physically separate nodes communi-
cate by message passing, but local threads access shared memory. Moreover, PLUSCAL does not
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enforce variable scoping, and it requires the user to state properties in TLA+ rather than at the
PLUSCAL level. In previous work, we proposed a new version PLUSCAL-2 [AMQ10] that aims
at overcoming these limitations.

We encoded several distributed algorithms in PLUSCAL-2, compiled them to TLA+ models,
and used the TLC model checker to verify the algorithms. However, the well-known state space
explosion problem limits the sizes of instances that can be verified effectively. Since TLA+ and
PLUSCAL-2 are mainly intended for verifying asynchronous distributed algorithms, it became
clear that we should turn to partial-order reduction methods, which are known to provide effec-
tive reduction techniques in this context.

Partial-order reduction relies on actions being recognized as independent. It is substantially
easier to compute dependencies between PLUSCAL-2 statements than inferring them from the
resulting “flat” TLA+ models. We therefore decided to extend the compiler by a static analyzer
that produces the necessary information and feeds it as an additional input to the model checker,
helping it to reduce the state explosion problem.

The remainder of the paper is organized as follows: we discuss the background and motiva-
tions for our work in section 2. In section 3 we define independence predicates for PLUSCAL-2
algorithms. In Section 4 we present our extensions to the TLC model checker. Some experi-
ments and their results appear in section 5. Related work is discussed in section 6, and section 7
concludes the paper.

2 Background

2.1 PLUSCAL-2

Lamport [Lam06] introduced the PlusCal algorithm language, which is intended to make formal
verification techniques easily accessible to algorithm designers. PlusCal has the flavor of pseudo-
code but also has a precise semantics, and the compiler generates a TLA+ model from a PlusCal
algorithm, which can then be verified using TLC [YML99], the TLA+ model checker.

We designed a variant of PlusCal, called PLUSCAL-2 [AMQ10], with the objectives of (1) al-
lowing for hierarchical process structures, (2) enforcing the scopes of locally declared variables,
and (3) making the language self-contained by including fairness annotations and correctness
properties, which in PlusCal need to be manually added in the generated TLA+ model. For the
purposes of the present paper, item (2) is the most important one because it helps us determine
under which conditions two PLUSCAL-2 statements are independent. As a running example,
Figs. 4 and 5 in the appendix show an encoding of an algorithm due to Dolev, Klawe, and
Rodeh [DKR82] (“the DKR algorithm”) for electing a leader in a unidirectional ring.

The PLUSCAL-2 compiler first converts algorithms into an intermediate language, which is
based on atomic blocks of guarded commands [Dij75]. We will explain in Sect. 3 how we
generate independence predicates from this intermediate representation.

2.2 Reduction Techniques

The state explosion problem is well known to be the most serious limitation for the application
of model checking techniques. It refers to the fact that the state space generated by a transition
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# Processes Time(seconds) Total States Distinct States
4 0.2 205 95
8 2.3 31289 7121
10 22.9 352426 63986
12 349.2 3811181 575747

Table 1: Model checking results for the leader election algorithm.

system usually grows exponentially in the number of processes. For example, Table 1 shows the
numbers of (total and distinct) states generated when model checking the DKR algorithm using
TLC, the TLA+ model checker, after translating the PLUSCAL-2 model to TLA+. Many different
techniques have been proposed to mitigate state explosion. Symbolic state space representation
aims at compact data structures that are less sensitive to the number of actual states, and state
space hashing reduces the memory footprint by storing only hash codes instead of actual states.
Symmetry reduction identifies states that are equivalent modulo an equivalence relation, helping
to reduce the number of states that need to be explored.

In distributed algorithms, which are the focus of PLUSCAL-2 and TLA+, the main potential
for reducing state spaces comes from the fact that many actions executed by different processes
commute, i.e. the same global configuration is obtained when performing these actions in either
order. Whereas the standard interleaving model of concurrency distinguishes two executions
that differ in the order in which two independent transitions are performed, a semantics based
on partially ordered executions would identify them. Partial-order reduction techniques [GW94,
Val90, FG05, HP94] aim at identifying independent transitions and avoiding the construction of
equivalent runs. We have adapted the notion of independence for transitions given by Holzmann
and Peled [HP94].

A statement a is characterized by the set Cond(a) of states where a is enabled and, for any state
s ∈ Cond(a), the set Act(a,s) of states that can be reached by executing a in s. Two statements a
and b are independent at state s if the following conditions hold:

• s ∈ Cond(a), i.e., statement a is enabled at s,

• s ∈ Cond(b), i.e., statement b is enabled at s,

• Act(a,s)⊆ Cond(b), i.e., the execution of a cannot disable b,

• Act(b,s)⊆ Cond(a), i.e., the execution of b cannot disable a, and

• ⋃s′∈Act(a,s) Act(b,s′) =
⋃

s′∈Act(b,s) Act(a,s′), i.e., the same sets of states can be reached by
executing a and b in either order.

In practice, it is usually too costly to compute independence of statements precisely, and one
settles for an underapproximation: any two transitions that cannot be shown to be independent
are considered as dependent. The following section describes how we compute an approximate
independence relation for (blocks of) PLUSCAL-2 statements. Section 4 explains how we have
adapted the partial-order technique proposed by Holzmann and Peled [HP94] to PLUSCAL-2
and implemented it in TLC.
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3 Computing independence predicates for PLUSCAL-2

We now explain how we compute predicates that ensure that two blocks of PLUSCAL-2 state-
ments are independent at a given state. Our definition is simplified by the fact that PLUSCAL-2
obeys variable scoping and that the compiler outputs an intermediate format that is based on
three kinds of blocks.

3.1 Intermediate representation of PLUSCAL-2 algorithms

The PLUSCAL-2 compiler first produces an intermediate representation of the given algorithm,
which consists of labeled blocks of loop-free guarded commands that will be executed atomi-
cally. Each block is then translated to a TLA+ action, and sequencing between blocks is ensured
by adding explicit control variables. More precisely, blocks of the intermediate language are
given by the following grammar, where brackets denote optional parts:

block ::= assignment [ ;block ]
| ∃ id ∈ expr : block
| branch

C1 then block
...

or Cn then block
end

Left-hand sides of assignments can be simple variables, array components as in

net[out] := Append(net[out], [type 7→ “one”, number 7→ mynumber])

or record components. The existential quantification statement executes its corresponding block
for some value of id from the set that is produced by evaluating the expression expr. The branch
statement is executable only if some guard (state predicate) Ci is true at the current state.

3.2 Inductive definition of independence predicates

In general, two blocks A and B are independent if they modify different parts of the state space,
and if neither reads a variable that may be modified by the other. We will make this intuition
more precise by inductively defining a predicate Pindep(A,B) that guarantees that blocks A and B
are independent at any state satisfying the predicate and where both blocks are enabled. In the
definition of Pindep(A,B), we make use of an auxiliary predicate Punch(A,E) for a block A and an
expression E, which ensures that the value of E is unaffected by the execution of A.

Before we present the formal definition, consider the example where both blocks A and B cor-
respond to the assignment at line 19 of the DKR algorithm, executed by two different processes
p and q. The representation of this assignment in the intermediate format is

net[ Node data[self].out] :=
Append(net[ Node data[self].out], [type 7→ “one”, number 7→ Node data[self].mynumber])

Proc. AVoCS 2011 4 / 15



ECEASST

where the index self into array Node data denotes the identities of the processes executing the
statement. Because out is a local variable, the compiler has transformed the reference to it into
the access to the field out of record Node data[self], which holds the local variables of process
self of process type Node. We might consider the two assignments to be dependent since both
update the same global variable net, and compute the independence predicate FALSE. However,
they will actually be independent provided the values of the local variables out of processes p
and q are different, and we may therefore generate the independence predicate

Node data[p].out 6= Node data[q].out.

The same predicate is computed as the “unchanged predicate” Punch(A,E), where A is the block
corresponding to the single assignment above (executed by process p) and E is the expression
Head(net[out]).type = “one” occurring in the code of process q.

Predicate for two assignments. In the definition of the independence predicate for two as-
signments, we may assume that they are both enabled, and therefore execution of one may not
disable the other one. We rely on the set of locations read and updated by two assignments in
order to compute their independence predicate. Locations can be scalar variables or array or
record components, and we represent them as

loc ::= base | 〈base,〈path, loc∗〉〉

where base is a variable name, path is a sequence of expressions e1, e2, ... en that resolves to an
index in an array or record, and loc∗ is the set of locations accessed in the path expression. For
two assignment blocks A and B, we first compute the locations locA and locB updated by A and
B, as well as the sets rdA and rdB of locations read by these blocks. For example, if A is

a[i] := q[ j+4, j+ k]

then we obtain

locA = 〈a,〈[i], i〉〉
rdA = {〈q,〈[ j+4][ j+ k], j,k〉〉, i}

where the location i in rdA comes from the read access to i on the left-hand side of the assignment.
Now, to ensure that the two assignments are independent, we must guarantee that one assign-

ment statement does not update a location that is accessed by the other assignment statement:

• the location written by assignment A should not be read by assignment B,

• similarly, the location written by assignment B should not be read by assignment A, and

• they should not write to the same locations.

We therefore compare pairs of locations 〈l1, l2〉 and compute predicates Pl1,l2 that ensure that
l1 and l2 do not denote the same location:
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• If the base variables for l1 and l2 are different then the locations cannot be the same and
Pl1,l2 = TRUE.

• Otherwise, we compute Pl1,l2 by comparing the paths for the two locations.

– If both the paths have the same number of expressions e1
i , . . . ,e

n
i (for i = 1,2) then

Pl1,l2 ∆
=

n∨

j=1

e j
1 6= e j

2.

In particular, Pl1,l2 = FALSE if n = 0.

– Otherwise, we define Pl1,l2 ∆
= FALSE.

Finally, the independence predicate Pindep(A,B) is the conjunction of all predicates Pl1,l2 for
all locations that must be checked to be different:

Pindep(A,B)
∆
=
( ∧

l∈rdB

PlocA,l
)
∧
( ∧

l∈rdA

Pl,locB
)
∧PlocA,locB

We now define the predicate Punch(A,E) that ensures that the assignment A leaves the expres-
sion E unchanged. Clearly, this is the case if the location modified by the assignment A is not
read by the expression E, and given the location locA updated by A and the set rdE of locations
read by expression E, we set

Punch(A,E)
∆
=

∧

lE∈rdE

PlocA,lE .

As we mentioned in Section 2.2, we compute a sound approximation of independence pred-
icates, and our computation could be refined. For example, the independence predicate for two
array updates

v[a] := e and v[b] := e′

includes the conjunct a 6= b. In fact, the two assignments can be independent if a = b but also
e = e′ and each assignment leaves the right-hand side of the other assignment unchanged. Since
the right-hand sides of assignments are often complex expressions whereas the left-hand sides
are usually simple, we chose not to implement this improvement in order to keep independence
predicates small.

Other refinements depend on the concrete operations that appear in the right-hand sides. For
example, FIFO channels are represented in TLA+ (and PLUSCAL-2) by sequences, where mes-
sage sending corresponds to appending at the end of the sequence, and message reception to
removing the first element of the sequence by the Tail operation. If both actions are actually
enabled, the sequence must be non-empty, and the two actions indeed commute, as illustrated in
Fig. 1. Since these operations occur frequently in the algorithms we consider, we implement this
optimization.
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Figure 1: Append and Tail commute over non-empty sequences.

Independence predicates for sequential composition. Independence predicates for complex
blocks are computed recursively. In particular, assume that block A is of the form

lhs := e; A′

and that we have already computed the independence predicates P1 for the leading assignment
and B and P2 for the blocks A′ and B. The overall independence predicate, Pindep(A,B), is the
conjunction P1∧P′2 where P′2 is obtained by replacing the base variable of lhs by the value of that
variable after assignment. Considering again the assignment of the running example, we obtain

P′2
∆
= LET net

∆
= [net EXCEPT ![ Node[p].out]

= Append(@, [type 7→ “one”, number 7→ mynumber])]
IN P2[ net/net].

The predicate Punch(A,E) is defined in an analogous way.

Independence predicates for branches. Now assume that block A is of the form

branch
C1 then A1

or C2 then A2
end

(the generalization to a branch block with n arms will be obvious). The overall independence
predicate for a branch must ensure the following conditions:

1. whenever C1 holds (and therefore A1 may be executed), A1 and B are independent,

2. the symmetric condition for A2 and B, and

3. executing B cannot disable any execution of A that would have been possible in the original
source state, or enable an execution that would have been impossible.
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Assume that we have already computed independence predicates Pindep(A1,B) and Pindep(A2,B)
that ensure independence of A1 and A2 with B. These predicates will be used for ensuring con-
ditions (1) and (2). For condition (3) to hold, we require that the conditions C1 and C2 are
unaffected by any execution of B. We therefore obtain the overall independence predicate

∧C1⇒ Pindep(A1,B)
∧C2⇒ Pindep(A2,B)
∧ Punch(B,C1)∧Punch(B,C2)

The unchanged predicate Punch(A,E) for the block A and any expression E is given by the
conjunction

∧C1⇒ Punch(A1,E)
∧C2⇒ Punch(A2,E)

Independence predicates for existential quantification. To compute the independence pred-
icate Pindep(A,B) for an existentially quantified block

A ≡ ∃ id ∈ expr : A1

where A1 is the sub-block that is to be executed for some value of identifier id in the set obtained
by evaluating expr, we again assume that we already have computed the independence predicate
Pindep(A1,B). The predicate Pindep(A,B) must ensure the following conditions:

• A1 (for any value of id) should be independent of block B and

• execution of B should leave unchanged the value of expression expr.

These two conditions suggest the definition of Pindep(A,B) as

∧ Punch(B,expr)
∧ ∀id ∈ expr : Pindep(A1,B)

Similarly, the unchanged predicate Punch(A,E) can be defined as

∀id ∈ expr : Punch(A1,E).

Generating a matrix of independence predicates. When computing the independence pred-
icates Pi j for pairs of atomic blocks Ai and B j, we perform some elementary simplification, and
in particular propagation of constants TRUE and FALSE. We then define a TLA+ operator that
represents the matrix of independence predicates, and that will be passed to the model checker.
The operator takes four parameters, which correspond to the names of the blocks and the process
identifiers p and q, and is defined as

IndepMatrix(p,q,A,B) ∆
=

CASE

A = name1∧B = name1 → P11
2 A = name1∧B = name2 → P12

...
2 A = namen∧B = namen → Pnn
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where name1, . . . , namen are the names of the TLA+ actions that are generated for the atomic
blocks of the PLUSCAL-2 algorithm in intermediate representation. (In the actual implementa-
tion, we only give those entries of the matrix for which Pi j is different from FALSE, and add a
catch-all clause that returns FALSE for all other inputs.)

4 Implementation of Partial-order Reduction in TLC

In order to benefit from the independence information computed for all actions, we had to im-
plement partial-order reduction in the TLC model checker. TLC builds the state graph of a TLA+

model in breadth-first order, using a FIFO queue. Once the state graph has been computed, any
liveness properties are verified. TLC starts by enqueueing all the initial states, then launches
several threads which repeatedly execute the following algorithm:

• Remove a state from the FIFO queue. If the state has not yet been explored, generate all
its successor states and add them to the state graph.

• For each successor state, check if it satisfies all the invariant properties and add it to the
end of the FIFO queue.

• If some successor does not satisfy some invariant property, report an error, abort model
checking, and print the corresponding counter example.

We extend TLC by an implementation of the partial-order reduction technique first proposed
by Holzmann and Peled in [HP94]. They explain the technique for a depth-first search algorithm
whereas in our implementation we adapted it to breadth-first search. The other modification
concerns the concept of processes, which is fundamental in [HP94]. Processes are not present in
TLA+, but a parameter self representing the process executing the statement is introduced by the
PLUSCAL-2 compiler.

The pseudo-code of the partial-order reduction algorithm that we implemented is as follows:

1 main() {
2 curstate = Pop new state from FIFO queue
3 order enabled actions for curstate
4 for each action a in enabled actions of curstate {
5 NotInStack = true
6 AtLeastOneSuccessor = false
7 for each succstate in successors of action a {
8 if succstate in not already seen {
9 add succstate to the list of already seen states

10 add succstate to the FIFO queue
11 }
12 else {
13 NotInStack = false
14 }
15 AtLeastOneSuccessor = true
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16 }
17 if AtLeastOneSuccessor and NotInStack {
18 break from loop over enabled actions
19 } } }

This algorithm picks a state from the FIFO queue of the TLC model checker and performs a
critical step at line 3, to reorganize the list of actions. The processes are reordered on the basis
of a “safety” criterion: an action is safe if it is independent of all other currently enabled actions
and if it is non-observable by the formulas under verification. An action is non-observable if it
does not modify any variable that appears in the formula. The algorithm in Fig. 2 explains how
actions are ordered, and it is here where the independence predicates produced previously are
evaluated at the current state.

1 orderActions(curstate) {
2 for each action a in enabled actions of curstate {
3 isIndependent = action a independent of all other enabled actions
4 isNotObservable = check observability for each successor state of a at curstate
5 if isIndependent and isNotObservable {
6 mark action a as safe
7 }
8 else {
9 mark action a as unsafe

10 } }
11 reorganize the list of actions as safe:unsafe:disabled
12 }

Figure 2: Algorithm for ordering actions using safety principle.

The actions are reordered in such a way that the actions which satisfy the safety properties
are placed at the head of the list, then the actions which are unsafe and finally, the actions that
are disabled. Enabledness of actions is determined by computing the successors of all actions at
the current state; the results of this computation is reused when actually producing the succes-
sor states, although not all of them have to be stored for further verification if the reduction is
successful.

5 Experimental Results

We evaluated our reduction techniques over two algorithms taken from the distribution of the
Spin model checker [Hol04]. The two algorithms are the DKR leader election algorithm and a
concurrent sorting algorithm. Because the verification results are similar for the two algorithms,
we only discuss those for the DKR algorithm.

The Leader election algorithm that we implemented in PLUSCAL-2 for generating TLA+

specifications along with the independence relation is the algorithm for electing a leader in a
unidirectional ring due to Dolev, Klawe, and Rodeh [DKR82], shown in Figs. 4 and 5.
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Figure 3: Results for the DKR algorithm with and without partial-order reduction in TLC.

The PLUSCAL-2 compiler generates two actions for this algorithm, which correspond to the
blocks of actions labeled start (initialization) and forever (one pass through the loop). It should
be noted that the second action is of much coarser granularity than that of a typical transition in
Spin, which makes computing useful independence predicates more challenging. Nevertheless,
our algorithm computed non-trivial predicates for these actions. Figure 3 shows the numbers of
states generated for different numbers of processes with and without partial-order reduction.

As the number of processes increases, the number of states generated by TLC increases expo-
nentially, resulting in state space explosion. This makes it impractical to verify larger instances
of this algorithm. In contrast, the number of states increases only linearly when partial-order
reduction is used. The running time of TLC is reduced accordingly, varying between 0.09 sec-
onds for 4 processes to 0.17 seconds for 12 processes (on a standard laptop running Windows)
compared to 0.2 and 349 seconds, respectively, without partial-order reduction. In particular, the
overhead of evaluating the independence predicates during model checking is negligible com-
pared to the gains due to state space reduction. These results clearly show that our method is
effective for this algorithm.

6 Related Work

Our work on partial-order reduction for PLUSCAL-2 is closely related to that for the Spin model
checker [Hol04], as our technique is based on the static partial-order reduction algorithm pro-
posed by Holzmann and Peled and implemented in Spin. It computes the independence pred-
icates before the actual verification. Compared to other static techniques for partial-order re-
duction [GW94, Val90], the technique of [HP94] tends to have lower runtime overhead; it also
applies to the verification of safety and liveness properties.

Dynamic partial-order reduction is another variant of partial-order reduction techniques. Flana-
gan and Godefroid [FG05] proposed a dynamic partial-order reduction technique for model
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checking software. They dynamically compute the redundant parts of the state graph to avoid
the unnecessary exploration. Their algorithm also adapts to dynamic changes in the structure of
the network, such as creation of new processes and threads, and new memory allocations. Its
implementation is less complicated as it does not require static analysis of the algorithm and is
particularly suited for verifying software whose source need not be available. On the other hand,
it may imply higher run-time overhead because independence of actions is determined dynam-
ically. We believe that the technique that we have implemented, which is based on conditional
independence of actions, is a better compromise for higher-level models of algorithms, which
we target in PLUSCAL-2.

The original technique of [FG05] is intended for stateless model checking. In [YCGK08],
another dynamic partial-order reduction approach has been introduced that is compatible with
stateful model checking. They propose a scheme for storing abstract local states using their
identities along with the difference between the two successive local states. It becomes inexpen-
sive as compared to capturing the entire state. Both the techniques of [FG05] and [YCGK08]
are targeted towards examining programs rather than models and do not rely on static analysis of
specifications.

7 Conclusions

In this paper, we have reported on our implementation of partial-order reduction for the veri-
fication of algorithms written in the PLUSCAL-2 language. Based on the approach proposed
by Holzmann and Peled [HP94], which is known to support the verification of safety and live-
ness properties, it relies on generating predicates that ensure the independence of (groups of)
statements. We have also extended the TLA+ model checker TLC so that it takes advantage of
this information to avoid redundant explorations of equivalent paths. We have shown that the
technique performs well over two standard examples. The main difference with respect to the
implementation in Spin is that we work within a language that provides a much more expres-
sive expression language. A minor difference is our adaptation of the partial-order reduction
to a breadth-first search algorithm. We believe that there are many possibilities for identifying
“domain-specific” independence predicates, beyond what we have so far implemented for oper-
ations on FIFO channels. Also, the TLA+ actions that we generate from PLUSCAL-2 algorithms
are typically of much coarser granularity than in standard Promela models. A priori, this reduces
the effectiveness of partial-order reduction, and complicates the computation of useful indepen-
dence predicates. We have been pleasantly surprised by how well the method worked for the two
examples we presented, but more validation is necessary over existing PLUSCAL-2 algorithms.

Acknowledgements: We wish to thank the anonymous referees for their helpful comments.
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A Example: Leader election algorithm

1 algorithm Leader
2 extends Naturals (* standard modules *)
3 constants
4 N, (* Number of processes *)
5 I (* node given the smallest number *)
6

7 variable
8 net = [p ∈ 0..(N-1) 7→ 〈〉], (* the network represented as a queue *)
9 nr leaders = 0 (* number of leaders elected *)

10

11 process Node[N]
12 variables
13 active = TRUE, know winner = FALSE,
14 mynumber = (N+I-self)%(N+1), neighbourR = 0,
15 maximum = (N+I-self)%(N+1), in = self-1, out = self%N,
16 msg = 〈〉
17 begin
18 start:
19 net[out] := Append(net[out], [type 7→ “one”, number 7→ mynumber]);
20 forever:
21 loop
22 if Len(net[in]) > 0 then
23 msg := Head(net[in]);
24 if msg.type = “one” then
25 if active then
26 if msg.number # maximum then
27 net[out] := Append(net[out], [type 7→ “two”, number 7→ msg.number]);
28 neighbourR := msg.number;
29 else
30 know winner := TRUE;

Figure 4: Leader election algorithm.
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1 net[out] := Append(net[out], [type 7→ “winner”, number 7→ msg.number]);
2 end if
3 else
4 net[out] := Append(net[out], [type 7→ “one”, number 7→ msg.number]);
5 end if;
6 else if msg.type = “two” then
7 if active then
8 if (neighbourR > msg.number) ∧ (neighbourR > maximum) then
9 maximum := neighbourR;

10 net[out] := Append(net[out], [type 7→ “one”, number 7→ neighbourR]);
11 else
12 active := FALSE;
13 end if
14 else
15 net[out] := Append(net[out], [type 7→ “two”, number 7→ msg.number]);
16 end if;
17 else if msg.type = “winner” then
18 if msg.number = mynumber then
19 nr leaders := nr leaders + 1;
20 end if;
21 if ˜know winner then
22 net[out] := Append(net[out], [type 7→ “winner”, number 7→ msg.number]);
23 end if;
24 end if;
25 net[in] := Tail(net[in]);
26 end if;
27 end loop;
28 end process
29 end algorithm
30

31 (* Invariant for model checking *)
32 invariant nr leaders <= 1
33

34 (* Finite instance for model checking *)
35 constants N = 3, I = 1

Figure 5: Leader election algorithm (part 2).
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Abstract: Good requirements structure can greatly facilitate the construction of
formal models of systems. This paper describes an approach to requirements struc-
turing for control systems that aims to facilitate refinement-based formalisation. In
addition to the well-known monitored and controlled phenomena used to analyse
control systems, we also identify commanded phenomenon reflecting the special
role that an operator plays in system control. These system phenomena guide the
structure of the requirements analysis and documentation as well as the structure of
the formal models.

We model systems using the Event-B formalism, making use of refinement to sup-
port layering of requirements. The structuring provided by the system phenomena
and by the refinement layers supports clear traceability and validation between re-
quirements and formal models. As a worked example, we structured the require-
ments of an automotive lane departure warning system using this approach. We
found missing requirements through this process and we evolved the requirement
document through domain experts’ feedback and formal modelling.

Keywords: structuring requirement, requirement engineering, validation, formal
verification, lane departure warning system

1 Introduction

Control systems are usually complex as they continually interact with and react to the evolving
environment. Because of the complexity of these systems, constructing and structuring their
functional requirement documents (RD) can be a time consuming process. In addition, their RD
may not be clear and complete for developers of the system. However, since these systems are
usually used in life critical situations it is essential to have a comprehensive RD to help with the
improvement of safety and reliability of the system.

Formal methods are mathematical based techniques used for specification and development of
systems as well as verifying their properties [Win90]. Modelling using formal methods is known
to improve system understanding and thus help to find missing and ambiguous requirements.
However, one difficulty of using formal modelling is formalising an informal RD.

In this paper we propose an approach to construct the RD of control systems incremen-
tally to help with understanding the system requirements and to facilitate the process of for-
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mal modelling. This approach consists of three stages and is based on monitored, commanded
and controlled (MCC) phenomena introduced in [But09] as an extension of Parnas’ 4-variable
model [PM95].

In the first stage an RD is constructed and structured incrementally through iterations, as our
understanding of the system improves (i.e. by considering the requirements in more depth).
The second stage involves modelling the RD in a step-wise manner by using refinement. Here,
requirements are layered and each layer is modelled in one refinement level. The third stage of
this approach deals with any identified missing and ambiguous requirements by revising the RD
and the model.

This approach also provides the means for validating a model against its RD in order to ensure
that the model is an accurate representation of the system’s requirements. This validation also
facilitates the traceability between a model and its RD.

As a worked example, we structured the requirements of an automotive lane departure warning
system (LDWS) using the proposed approach. Requirements of this system are evolved in three
phases. In the first phase we produce and structure the RD of the LDWS based on information
in the public domain. In the second phase, the generated RD is discussed with domain experts.
In the third phase, the RD of LDWS is formally modelled using Event-B formal language. Also,
as will be discussed any changes in requirements, i.e. identified missing and ambiguous require-
ments, are applied to both the RD and the Event-B model.

This paper is organised as follows: in Section 2 MCC phenomena are discussed. An overview
of the proposed approach is given in Section 3. Section 4 introduces the lane departure warn-
ing system (LDWS) briefly. The RD of the LDWS and its formal model are represented in
sections 5, 6 and 7. The validation of the model against some of its requirements is shown in
Section 8. Section 9 and 10 discuss the related and future work. In Section 11 some of the
advantages of the proposed approach are represented.

2 Guidelines for Modelling Control Systems

The guidelines outlined in [But09] can be used for formal modelling of control systems. The
formal models consist of variables and guarded actions (events) and control systems consist of
plants, controllers and in some cases operators who can send commands to the controller, shown
in Figure 11.

The modelling steps suggested in this guidelines are based on the four-variable model of Par-
nas [PM95]. Variables shared between a plant and a controller, labelled as ‘A’ in Figure 1, are
known as environment variables and are categorised into monitored variables whose values are
determined by the plant and controlled variables whose values are set by the controller. There
are also environment events and control events which update/modify monitored and controlled
variables respectively. The other two variable categories of the four-variable model are input and
output. In [But09] it is suggested that these are not used in abstract formal model; instead [But09]
provides patterns for introducing them as refinements.

If a system involves operators, according to [But09] in addition to the phenomena introduced
in the four-variable model, phenomena shared between controller and the operator can be iden-

1 The diagram uses Jackson’s Problem Frame notation [Jac01].
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tified. These phenomena, labelled as ‘B’ in Figure 1, are represented by command events which
are the commands given by an operator and commanded variables whose values are determined
by command events and can affect the way other events behave.

In [YBR10] a cruise control system is modelled following MCC guidelines. In addition [YBR10]
shows that modelling based on the MCC guideline helps to have a more structured process of
modelling and refinement for a control system.

B

A

Figure 1: A control system.

3 Overview of the Proposed Approach

Modelling guidelines represented in [But09] requires the modeller to identify the MCC phenom-
ena of a system before the commencement of the modelling process. This inspired us to propose
an approach for structuring RD and modelling using MCC phenomena. This approach comprises
of three stages, which are shown in Figure 2.

Notice that we use the term phenomena when we deal with (informal) requirements of a system
and the term variable when we model the system formally. Also as our focus in this paper is
not on requirement elicitation methods, it is assumed that the textual RD of the control system
exists.
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Figure 2: Overview of the three stages. Stage 1 - Structuring RD; Stage 2 - Layering structured
RD and designing the initial formal model; Stage 3 - Revising the RD and the model.
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3.1 Stage 1: Structuring Requirement Document

The following are the steps suggested for structuring the existing textual RD into monitored,
commanded and controlled sections:

1. Identify the system’s MCC phenomena based on its textual RD. An example is the moni-
tored phenomenon speed in LDWS.

2. Organise RD into three monitored (MNR), commanded (CMN) and controlled (CNT) sec-
tions, each representing requirements of the corresponding phenomenon. If the require-
ment refers to

• only one phenomenon, it will be moved to the relevant MCC section.
• more than one phenomenon, but of the same type (e.g. they all are monitored phe-

nomena), the requirement will be added to the corresponding section.
• more than one phenomenon, but of different type, then it is designer’s judgment

which section is mostly appropriate.

3. Add unique ID labels. Every ID starts with the section that the requirement belongs to (i.e.
MNR, CMN, CNT), followed by a unique number for that requirement.

4. Revise RD to accommodate any identified missing or ambiguous behaviour of the system.
The revision step involves going back to Step 1 to identify any phenomena that the new
requirement represents and then adding the requirement to the appropriate section.

The last step helps one to seek the most obvious MCC phenomena in the initial structuring
of the RD and improve it incrementally through iterations. This iteration is shown in Figure 2-
Stage 1. Section 5 represents structuring the RD of an LDWS using these steps.

3.2 Stage 2: Layering Requirements and Designing the Initial Models

In order to deal with the complexity of a control system, our aim is to use refinement to introduce
system requirements in a step-wise manner. However, deciding on how to layer requirements and
what to model in each levels is usually difficult.

We propose to overcome this problem by modelling one feature and the minimum number
of requirements essential for this feature to be meaningful in one level of refinement. A feature
is usually one of the MCC phenomenon of the system. However, sometimes a phenomenon is
interrelated to other phenomena and thus they should be modelled simultaneously. Examples of
features for the LDWS are phenomena warning and status.

We also suggest to focus on the main role or behaviour of the system, which usually cor-
responds to a controlled phenomenon, in the most abstract level. If the system has more than
one role, it is the modeller’s judgment to choose the most important role to be initially modelled.
This means the abstract model will focus on the role of the control system, while the rest of the
requirements will be elaborated into the model through refinement levels. For instance, the main
behaviour of an LDWS is to issue warnings and this is modelled in the abstract level. After that
in the first refinement the phenomenon status is introduced. Section 6 describes this stage in
more details through the LDWS example.
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3.3 Stage 3: Revision of RD and Formal Model

Modelling a system formally can result in finding missing and ambiguous requirements of the
system. We suggest to handle these requirements similarly to the revision step in Stage 1, where
phenomena of new requirements are identified and based on them requirements are added to the
corresponding MCC sections of the structured RD. However, in addition to revising the RD, it
is necessary to update the formal model. This is because the RD and the model should be kept
consistent to help with the process of validation and traceability.

If a new requirement is related to any of the previously modelled phenomena (modelled in
Stage 2), this requirement can be modelled in the same refinement level as its phenomenon. For
instance if the new requirement gives further information about the main behaviour of the sys-
tem, which is modelled in abstract level, we update this level. However, if the newly identified
requirement has no effects on any levels of the current formal model, for instance if the require-
ment introduces a new phenomenon, it can be introduced to the model in a new refinement level.

As shown in Figure 2, Stage 3 can be iterated meaning that as long as new missing or am-
biguous requirements are identified, the RD and the model of the system should be revised. This
stage is explained further in Section 7 using the example of LDWS.

4 An Overview of LDWS

LDWS is a driver assistance system which receives camera observations of the lane and uses
this information to warn the driver of a lane departure, when the car is travelling above a certain
speed. One way to detect the car departing the lane is by estimating the car’s current position in
the lane using lane detection algorithm on camera’s observation [RME00].

In order to warn the driver before the vehicle crosses the lane, a virtual lane width which is
inside the lane boundaries is assumed. This virtual lane, called the earliest warning lines (EWL),
is determined by the LDWS based on the speed of the car. When the vehicle is within the earliest
warning lines, the LDWS does not issue any warnings. This area is called the “no-warning zone”,
and the area pass EWL is the “warning zone” [Fed05], shown in Figure 3.

Lane boundary

Warning Zone

Earliest Warning Line No-Warning 
Zone

Figure 3: Warning and no-warning zone for an LDWS.

5 Stage 1: Constructing and Structuring RD of LDWS

In this section we discuss some of the requirements of the LDWS which are structured according
to the first stage of the proposed approach, Section 3.1. The RD which is produced based on the
information available in the public domain [Fed05, RME00, PMGB05] is outlined in Section 5.1.
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This RD then is modified in Section 5.2 according to the feedback received from the domain
experts.

5.1 First Version of Requirement Document

To structure the RD we first examined the public sources to identify the MCC phenomena. The
identified monitored phenomena are position of the car relative to the centre of the lane, lane
width and current car speed which also determines the EWL. The identified commanded and
controlled phenomena are respectively status of the LDWS which is set through a switch button
and warning. Requirements related to these phenomena are organised into MNT, CMN and CNT
sections using appropriate identifiers for every requirement as shown in Table 1.

Table 1: First version of the structured RD of the LDWS.

Req ID Requirement Description
MNR1 LDWS should detect the earliest warning line (EWL) and vehicle position relative to

visible lane boundaries based on the lane width and car width.
MNR2 LDWS should track lane boundaries where lane markings are clearly visible in day-

light (sunny/cloudy), night times and twilight (sunrise/sunset) lighting conditions.
MNR3 The width of the “warning zone” depends on the speed of the car. The higher the

speed of the car the closer the earliest warning line (EWL) to the centre of the lane.
CMN1 LDWS can be switched on and off by the driver through a single button.
CNT1 LDWS should issue a warning when the vehicle has left the no warning zone (has

crossed the EWL), and is entering the warning zone.
CNT2 When LDWS is on it starts its role provided that the car speed is greater or equal to a

certain speed.

5.2 Second Version of Requirement Document

Discussing the first version of the LDWS’s RD with domain experts from GM India Science Lab
resulted in identifying some missing requirements. One of these requirements was that the driver
can change the EWL by setting the offset they wish to have from the lane boundaries.

We retook the structuring steps and as the result the commanded phenomenon offset was iden-
tified. Thus, the three requirements related to offset, shown in Table 2, are added to CMN section.
Notice that we refer to requirement MNR3 in CMN4 to show that these requirements are related.

6 Stage 2: Layering Requirements and First Model of LDWS

The initial formal model of LDWS was produced based on the second RD. We have used Event-
B formal language which also provides supports for refinement. The process of modelling starts
with identifying requirements necessary for constructing the abstract level. After building the
abstract model, the remainder of the RD is introduced in refinement levels.
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Table 2: Second RD - Requirements are added based on experts’ feedback.

Req ID Requirement Description

CMN2 The driver can set the offset they want to have from either side of the lane boundaries
through two buttons which are responsible for increasing and decreasing the distance.

CMN3 The offset is always within a certain positive range.

CMN4 In addition to speed (MNR3) the width of the “warning zone” or earliest warning line
depends on the offset from the lane boundaries. The greater the determined offset the
closer the EWL to the centre of the lane.

6.1 Event-B and its Tool

For the purpose of this paper we only focus on two elements of an Event-B [Abr10] model.
Firstly, variables and secondly events. An event consists of two elements, guards which are
predicates defined for describing the conditions need to hold for event occurrence, and actions
which determine the changes of state variables. An event becomes enabled if its guards hold.
One of the advantages of Event-B is its open source tool, known as Rodin, which provides
automatic proof and a wide range of plug-ins [ABH+10].

6.2 Requirements for Modelling the Abstract Level

As mentioned in Section 3.2, Stage 2 involves layering and modelling requirements based on the
features of the system. In this stage, each feature is modelled in one level of refinement. Also,
the main behaviour of the system (i.e. the main controlled phenomenon) is modelled in the most
abstract level. Examining the structured RD of the LDWS shows that the requirement CNT1
represents the main role of this system; “issuing warnings when the car has left the no warning
zone”. Thus, the controlled phenomenon warning is to be modelled at the abstract level.

After this we identify any interrelated phenomena, usually monitored and commanded re-
quirements (MNR, CMN), which are vital for modelling warning. Thus, requirements related to
crossing EWL should also be modelled at this level. These are firstly, the requirement MNR1,
since the controller should receive the monitored phenomena car position and lane width in order
to decide whether or not the EWL is crossed. Secondly, MNR3 and CMN4, since the position of
the EWL depends on the monitored phenomenon speed and the commanded phenomenon offset.

The next step is to identify requirements which describe the limitations and restrictions of the
identified phenomena, or requirements which show how these phenomena affects/restricts the
system. Based on this we need to model firstly CNT2, which describes the restriction imposed
on warning by the system. The second is CMN3, as it gives details about restrictions of offset.

Finally we identify any requirements which represent state changes of the identified phenom-
ena. This results in identifying CMN2, since it represents how offset can be modified. Notice
that in Event-B requirements which are identified as restrictions of phenomena are usually mod-
elled as guards for events or as types of the phenomena. Also, requirements which define state
changes are usually modelled as actions of events.
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6.3 Modelling Abstract Level

In the previous section, requirements and phenomena for modelling the abstract level were iden-
tified. In this section we start modelling the abstract level by representing each of these phenom-
ena as a system variable. Also according to [But09], the corresponding environment, command
and control events for every variable is defined.

At this level, the monitored variables are speed, laneWidth, and carPosition (the difference
between the car centre and the lane centre). The LDWS also needs to know the width of the
car, modelled as the constant carWidth, in order to detect the value of carPosition. Environment
events which are responsible for modifying monitored variables are defined to simply set the
monitored variables non-deterministically through a parameter (MNR1 and MNR3).

The commanded variable modelled at this level is offset (CMN2). Since the value of offset
is within a specific range (CMN3), two constants called offset LB and offset UB are defined to
represent the lower and upper bounds of this variable. The command events which modify the
value of offset are IncreaseOffset and DecreaseOffset. Also, the controlled variable warning is
defined as a Boolean variable. The control event IssueWarning, shown in Figure 4a, is defined to
set warning to TRUE when the car crosses the EWL (CNT1).

To model crossing EWL, we firstly define a function named EWL Func which returns the dis-
tance of the EWL from the lane boundaries based on the car speed and the offset (MNR3 and
CMN4). This function is defined as EWL Func ∈ N× o f f set LB..o f f set UB→ N, meaning
that for every possible tuple of speed (of type N) and offset (within the range o f f set LB..o f f set UB)
there is a value for the EWL Func. We assume that the return value of this function, which rep-
resents the position of EWL, are provided. Based on this function grd3 in Figure 4a is defined to
model that event IssueWarning will be enabled when the car passes the EWL. In addition, CNT2
is modelled by defining a constant minSpeed and adding grd1 in Figure 4a.

event IssueWarning

where

@grd1 speed ≥ minSpeed

@grd2 offset ∈ offset_LB‥offset_UB

@grd3 carWidth + carPosition ≥  laneWidth –

EWL_Func (speed↦offset)

@grd4 warning = FALSE

then

@act1 warning ≔ TRUE

end

event IssueWarning

extends IssueWarning

where

@grd5 status = ON

end

(A) (B)(a) Abstract level

event IssueWarning

where

@grd1 speed ≥ minSpeed

@grd2 offset ∈ offset_LB‥offset_UB

@grd3 carWidth + carPosition ≥  laneWidth –

EWL_Func (speed↦offset)

@grd4 warning = FALSE

then

@act1 warning ≔ TRUE

end

event IssueWarning

extends IssueWarning

where

@grd5 status = ON

end

(A) (B)

(b) Refinement level

Figure 4: Control event IssueWarning.

6.4 First Refinement

In this level of refinement we focus on the feature status which is a commanded phenomenon
(CMN1). The process of identifying requirements corresponding to this phenomenon is similar
to the process mentioned in Section 6.2 for the controlled phenomenon warning.

Since no other phenomenon is interrelated to status, at this level of refinement only status
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is introduced. Also, requirement CNT2 is added to the model at this level, as it represents a
restriction imposed by the phenomenon status on the controller.

This phenomenon is modelled by defining the variable status and command events SwitchOn
and SwitchOff which set status variable from OFF to ON and vice versa (CMN1). Also, CNT2
is modelled by adding grd5 to the control event IssueWarning as shown in Figure 4b.

7 Stage 3: Revision of RD and Model of LDWS

Modelling requirements formally helped us to find some of the missing and ambiguous require-
ments. So, based on Section 3.3, in Stage 3 we revise the RD and the model of the LDWS.

7.1 Missing Requirements and Revision of the RD

Two of the identified missing requirements are discussed in this section. The first is that we
realised requirements related to the situations where a car has crossed the actual lane boundary
and is travelling on the boundary should be differentiated from when the car has crossed the
EWL and therefore is about to cross the boundary. As shown in Figure 5, this is mainly because
of limitations of the camera’s field of view which can result in detection of only one boundary.

Lane boundary

Lane boundary

Lane boundary

Camera’s Vision Field

Figure 5: Limited field of vision for a camera when car is travelling on lane boundary.

We retake the structuring steps of Stage 1, Section 3.1, to add relevant requirements to the
structured RD. Firstly, the LDWS should detect that the car has crossed the boundary. Thus, the
requirement MNR4 is added to the RD. Secondly, the LDWS should issue warnings if crossing
boundary is detected. This resulted in producing requirement CNT3, Table 3.

The other missing requirements are about the situations under which the LDWS should stop
the warning process. Examining the LDWS showed that the process of issuing warnings should
finish when the driver steers away from the lane boundaries and thus from the EWL. Here, the
car is back within the lane and any issued warning should be stopped. Taking the structuring
steps resulted in adding requirement CNT4 to the RD. Another situation where warning should
stop is if the LDWS is switched off by the driver. This requirement is shown as CMN5 in Table 3.

7.2 Adjusting Abstract Model

To identify which of the newly found requirements of Table 3 need to be added to the abstract
model, we retake the requirement selection process of Stage 2. As the phenomenon warning
was modelled in the abstract level, we need to consider whether any of the new requirements are
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Table 3: Third RD - Requirements are added based on Formal Modelling.

Req ID Requirement Description

MNR4 LDWS should detect when the car has crossed the lane boundaries and is travelling
on the boundary.

CMN5 If LDWS is issuing the warning and the driver switches the system off, the warning
signal should be stopped.

CNT3 In addition to (CNT1), LDWS issues warning when it detects that the car has crossed
the lane boundaries and is travelling on the boundary (MNR4).

CNT4 LDWS should stop the warning signal when the system is performing (CNT2) and
the warning signal has been issued but the driver steers away from the boundaries and
therefore the car remains within the no warning zone.

related to this phenomenon. The examination of the new RD shows that requirements CNT3 and
CNT4 need to be introduced at this level. In addition, MNR4 should be modelled here, because
the monitored phenomenon crossing lane is required for modelling CNT3.

Therefore, the abstract model is modified by defining crossingLane as a Boolean monitored
variable which is TRUE if the car has crossed the lane boundary. CNT3 shows that there are
two cases where the LDWS should decide on issuing warnings. Firstly when the car is about
to cross the lane boundaries because it has crossed the EWL (CNT1). Secondly, when the car
has crossed the lane boundary (CNT3). These are modelled in the two control events, Issue-
Warning CloseToBound and IssueWarning CrossingLane respectively, Figure 6. The require-
ment CNT4 is modelled by introducing the new control event FinishWarning. At this level of
abstraction this event has a guard as warning = T RUE and the action warning := FALSE.

event 

IssueWarning_CrossingLane

where

@grd1 speed ≥ minSpeed

@grd2 warning = FALSE

@grd3 crossingLane = TRUE

@grd4 status = ON

then

@act1warning≔TRUE

end

event   IssueWarning_CloseToBound

where

@grd1  speed ≥ minSpeed

@grd2  offset ∈ offset_LB‥offset_UB

@grd3  carWidth + carPosition ≥ 

laneWidth – EWL_Func (speed↦offset)

@grd4  warning = FALSE

@grd5  crossingLane = FALSE

@grd6  status = ON

then

@act1warning≔TRUE

end

Figure 6: Control events IssueWarning CloseToBound and IssueWarning CrossingLane

7.3 Adjusting First level of refinement

As mentioned, requirements of the commanded phenomenon status were introduced in the first
refinement level. Examining the new requirements of Table 3 show that CMN5 needs to be
modelled at this level. This is done by defining two SwitchOff events. The event SwitchOff1 sets
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variables status to OFF and warning to FALSE, if it was previously TRUE, while SwitchOff2
sets status to OFF and has the guard warning = FALSE.

8 Validation of the Model

Validation of the model against its RD can be done by adding a validation column to the right
hand side of the structured requirement tables. Every requirement is then validated by adding
the elements of the model, such as an event or a variable, which represent that requirement to its
validation column. Also as quick reference, we refer to the level in which the requirement was
modelled just after the ID of the requirement. Table 4 shows validation of some of the LDWS
requirements against the model. For instance, requirement CNT1 is modelled in the abstract
level using the following elements:

1. the controlled variable warning;

2. the control event IssueWarning CloseToBound;

3. and showing that the car has entered the warning zone through the guard carWidth +
carPosition≥ laneWidth−EWL Func(speed 7→ o f f set) in the control event IssueWarn-
ing CloseToBound.

It is important to mention that the process of validation should take place at the end of every
modelling step. This means as well as modelling RD, validation should be done incrementally.
Thus, if a requirement is modified, the model and the validation column both should be updated
to keep them consistent with the RD. Also, not always the entire RD is modelled, which means
the validation column may only contain the reason for not modelling the requirement rather than
the elements of the model. This is the case for the requirement MNR2, Table 4.

9 Related Work

In this section we look at some related works and compare them to our proposed approach.

9.1 Concretization and Formalization of Requirements

[FHP+05] has provided some guidelines for concretization and formalization of requirements
of embedded systems. In formalization part, four steps have been suggested. Identification to
produce an RD; Normalization to construct a glossary of terms that requirements use; Structuring
to organise RD based on their “contents in a taxonomy”, such as car speed; Formalization to
formalise the structure, behaviour, interaction and data of the system.

In [FHP+05] grouping requirements is based on “different aspects”, while we represent guide-
lines based on MCC phenomena for an engineer. In addition, our proposed approach allows one
to revise the structured RD and construct a formal model incrementally. This means identified
missing/ambiguous requirements can be addressed in the forthcoming iterations, while [FHP+05]
does not tackle this issue. Also, we proposed a way for layering requirements which facilitates
the use of refinement-based modelling, while this is not specified in [FHP+05].
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Table 4: Validation of the requirements against the model.

Req ID Requirement Description Validation Column

MNR1
ABST

LDWS should detect EWL and vehicle po-
sition relative to visible lane boundaries
based on the lane width and car width.

Monitored variable: carPosition &
laneWidth; Constant: carWidth; Envi-
ronment event: UpdateCarPosition &
UpdateLaneWidth.

MNR2 LDWS should track lane boundaries where
lane markings are clearly visible in day-
light (sunny/cloudy), night times and twi-
light (sunrise/sunset) lighting conditions.

Not Considered, since we are not con-
cerned with requirements related to the
performance of the camera and image
processing unit.

CMN1
Refine

LDWS can be switched on and off by the
driver through a single button.

Set: STATUS= {ON,OFF}; Com-
mended variable: status; Command
event: SwitchOn & SwitchOff.

CMN2
ABST

The driver can set the offset they want to
have from either side of the lane boundaries
through two buttons which are responsible
for increasing and decreasing the distance.

Commanded variable: offset; Com-
mand event: DecreaseOffset & In-
creaseOffset.

CNT1
ABST

LDWS should issue a warning when the
vehicle has left the no warning zone (has
crossed the EWL), and is entering the
warning zone.

Controlled variable: warning; Control
event: IssueWarning CloseToBound;
Guard: carWidth + carPosition ≥
laneWidth − EWL Func(speed 7→
o f f set).

9.2 HJJ

In the HJJ approach [HJJ03] the specification of control systems is initially based on the system
view rather than the software view. In this respect our approach has a similarity to HJJ. In the
HJJ approach the focus is to model the environment and requirements while also the properties
that the control system relies on are captured as “rely condition”.

In HJJ all requirements of a system are dealt with in one step of specification, while our
approach uses refinement. Also, we differentiate between monitored, commanded and controlled
phenomena which assists with structuring the RD and mapping it to a formal model.

9.3 Requirement Tracing based on WRSPM

[JHLR10] introduces an approach for tracing requirements to an Event-B formal model. This
approach is based on WRSPM [GGJZ00] (World, Requirement, Specification, Program and Ma-
chine) which distinguishes between phenomena, system’s state space, and artifacts which rep-
resent constraints. The method of [JHLR10] for traceability involves taking a requirement and
identifying phenomena and artifacts of the environment and system for that requirement. The
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identified phenomena and artifacts are then modelled and traceability information is provided.
Both our approach and [JHLR10] are concerned with formal modelling of informal require-

ments and providing traceability. While [JHLR10] is more focused on traceability between an
RD and the formal model, the approach represented in this paper is more on structuring and for-
mal modelling. Also, we provide some guiding steps for layering requirements for a refinement-
based modelling, while this is not specified in [JHLR10].

9.4 SCR

Our approach shares features with the SCR (Software Cost Reduction) method [HJL96]. SCR is
a formal method for specification of control systems with a tabular notation.

Like our approach, SCR is based on the four-variable model. In addition to these four vari-
ables, the SCR uses mode classes (the system states), conditions (predicates of system states),
and events (represent changes in system variables and mode). The SCR method does not have
commanded phenomena though these can be represented as monitored variables.

Our experience is that distinguishing monitored and commanded phenomenon facilitates re-
quirements elicitation as they serve distinct roles. SCR is more a specification method, while in
this paper we focus on structuring the RD as well as specification and traceability.

In SCR an engineer is required to identify the monitored, controlled, input and output vari-
ables of the system. However, we have a system-level view on the behaviour of the controller.
Therefore, we focus on monitored, controlled and commanded variables in the more abstract
models and introduce input and output variables in refinement levels.

10 Future Work and Limitations

This approach can be improved and developed further by experimenting its application in other
case studies. Also, the current approach focuses on the functional RD and we are yet to deal
with some of the challenges presented by non-functional requirements. In addition to improving
the approach, part of our future work involves developing a more complete formal model of the
LDWS. Examples of requirements which can be considered in the future work are timing and
fault tolerance requirements. Our other future work involves evolution of the passive LDWS to
an active lane centring system and examining the evolution of the requirement document in this
case.

11 Conclusion

In this paper we discussed the evolution of the requirement document of the LDWS through do-
main expert’s feedback and modelling using Event-B. The MCC modelling guidelines [But09]
inspired us to structure the requirement document based on monitored, controlled and com-
manded phenomena. Also in this paper, some criteria for layering the requirements and mapping
informal requirements to a formal model were provided. We followed the approach proposed
in the paper to structure and model the RD of an LDWS. Some of the advantages provided by
following the proposed approach are:
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• Improving the requirement document by gathering and structuring the requirements incre-
mentally in iterations.

• Facilitating the process of validation of the model against the requirement document and
therefore helping with traceability between the model and requirements.

• Traceability enables us to maintain the requirement document and the model consistent in
an easier and more manageable style.

The process of formal modelling of the LDWS also helped to identify missing requirements.
We structured the newly identified requirements and revised the RD to accommodate them.
These changes were also applied to the model. This shows that in order to achieve a more
accurate requirement document and formal model the process of structuring requirements and
modelling needs to be iterated.

We believe that the proposed approach can facilitate formal modelling of control systems and
it can be used for modelling a structured RD using any refinement-based formal language. Fur-
thermore, it is possible to use the MCC approach for organising requirement documents without
modelling them formally.
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Abstract: This paper discusses the use of symbolic model checking technology
to verify the design of an embedded satellite software control system called atti-
tude and orbit control system (AOCS). This system is mission-critical because it
is responsible for maintaining the attitude of the satellite and for performing fault
detection, isolation, and recovery decisions of the satellite. An executable AOCS
implementation by Space Systems Finland has been provided to us in Ada source
code form. In order to use symbolic model checking methods, the Ada implemen-
tation of the system was modeled at a quite detailed implementation level using the
input language of the symbolic model checker NuSMV 2. We describe the mod-
eling techniques and abstractions used to alleviate the state explosion problem due
to handling of timers and the large number of system components controlled by
AOCS. The specification of the required system behavior was also provided to us
in a form of extended state machine diagrams with prioritized transitions. These
diagrams have been translated to a set of temporal logic properties, allowing the
piecewise checking of the system behavior one extended state machine transition at
a time. We also report on the scalability of symbolic model checking tools for the
case study at hand as well as discuss potential topics for future work.

Keywords: symbolic model checking, AOCS, NuSMV 2, verification, satellite soft-
ware

1 Introduction

Model checking [CGP99, BK08] is a technology where a formal model of a system’s behav-
ior is checked against its formal requirements often expressed in temporal logic. One of the
main approaches in model checking is symbolic model checking using binary decision diagrams
(BDDs) [BCM+92] that is especially suitable for hardware designs. Symbolic model checking
is also suitable for analyzing other systems with a high branching degree due to environment
non-determinism. Bounded model checking (BMC) [BCCZ99] was invented to scale symbolic
model checking to analyzing even larger systems, especially for finding bugs in hardware de-
signs with a high number of state bits. The basic idea in bounded model checking is to look
for counterexamples to the specified property that are shorter than a user specified maximum
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length called the bound. With this length restriction the search for counterexamples of bounded
length can be reduced into propositional satisfiability (SAT), and the search can be performed by
efficient SAT solvers, see e.g., [ES03].

The linear temporal logic (LTL) (see e.g., [BK08]) is a widely used temporal logic in model
checking. Bounded model checking for LTL was shown to be linearly encodable to propositional
satisfiability (SAT) in [HJL05, BHJ+06]. The same papers also describe a complete BMC al-
gorithm that is guaranteed to terminate either with a counterexample or by proving the property
holds but quite often requiring very high bounds in the case the property holds. Both the incom-
plete and complete variants of this approach have been implemented in the NuSMV 2 model
checker [CCG+02, HJL05, BHJ+06], and are used in the experiments of this paper.

This paper discusses the use of symbolic model checking technology to verify the design of
an embedded satellite software control system called attitude and orbit control system (AOCS).
Our approach is based on modeling an implementation given inAda source code in the input
language of the NuSMV 2 model checker [CCG+02].

The AOCS system is mission-critical because it is responsible for maintaining the attitude of
the satellite, and for performing fault detection, isolation, and recovery decisions of the satellite.
An executable AOCS implementation by Space Systems Finlandhas been provided to us in Ada
source code form. In order to use symbolic model checking methods, the Ada implementation of
the system was modeled at a quite detailed implementation level using the input language of the
symbolic model checker NuSMV 2. We describe the modeling techniques and abstractions used
to alleviate the state space explosion problem due to handling of timers and the large number of
system components controlled by AOCS.

The specification of the required system behavior was also provided to us in a form of mode
transition diagrams, which basically are extended state machines with prioritized transitions.
These diagrams have been translated to a set of linear temporal logic (LTL) properties, allowing
the piecewise checking of the system behavior one extended state machine transition at a time.
We also report on the scalability of symbolic model checkingtools for the case study at hand as
well as discuss potential topics for future work.

We have also done earlier work on using model checking methods for verifying safety-critical
systems in the nuclear safety area [BFV+09a, BFV+09b, VPB+08]. Also in that context the
modeled systems are quite similar to the embedded mission-critical software considered here:
the systems have a relatively high number of timers, as well as having to cope with a highly non-
deterministic environment that includes a number of faultycomponents that have to be recovered
from during the runtime of the system. In that domain, we havebeen using both NuSMV 2 as
well as the Uppaal model checker [BDL+06]. Our experience is that NuSMV 2 is usually better
performing for systems with a high branching degree (such asthe AOCS system considered
here), while Uppaal is much better performing for systems having a complex timing behavior.
The main difference between the safety-critical and the mission-critical environments is that in
the mission-critical systems, bug hunting methods (e.g., incomplete BMC based methods) can
typically be seen as sufficient, while for safety-critical systems, the main focus is on complete
system verification (complete model checking, e.g., BDD-based LTL model checking).

The same AOCS system has been used as a case study in the DEPLOYproject, and mod-
eling the AOCS system using refinement methodology in Event-B can be found in [ITL+10a,
ITL+10b]. The concrete Event-B models described in these works can be found in [ILT10]. Our
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model is very detailed and directly based on the Ada code implementation. Our motivation has
been analyzing the correctness of the Ada implementation against its specifications, not to use
refinement methodology to derive correct implementations.Thus our approach does not require
significant changes in the software engineering methodology.

2 Attitude and Orbit Control System

The Attitude and Orbit Control System (AOCS) [Var10] is a generic component of satellite
onboard software. It is mainly used to determine and controlthe attitude of the spacecraft while
it is in orbit. Since there is disturbance from environment,if left uncontrolled, the spacecraft
will change its orientation. Because of this, its attitude needs to be monitored and adjusted
continuously. The information from various sensors provides the necessary input for the AOCS
computation. Based on this, the actuators are used to preserve or change the attitude or orbit of
the spacecraft.

In AOCS, different software functionalities are realized by corresponding managers. There
are four managers, AOCS manager, FDIR manager, Mode managerand Unit manager, which
are executed in sequence to fulfill various functionalities. The AOCS manager has as its main
responsibility to compute the attitude control algorithm.The FDIR manager (Fault Detection,
Isolation and Recovery) is executed every time when new monitor data becomes available. There
are three types of possible errors that are handled by the system: mode transition errors, attitude
errors and unit errors. The Mode manager is in charge of mode transitions. In this AOCS
implementation, there are six operational modes [Var10] listed below.

• Off. Normally, the spacecraft is in this mode after the system isbooted.

• Standby. The system stays in this mode until separation from the launcher is completed.

• Safe. When the system is in this mode, it indicates that a stable attitude is obtained and
the system endeavors to keep the coarse pointing control.

• Nominal. In this mode, the system is further trying to reach the fine pointing control.

• Preparation. The fine pointing control is reached and the unit Payload Instrument (PLI)
is getting ready for the science mission.

• Science. The PLI is ready to carry out tasks. The overall goal is to stay in this mode as
long as possible.

The normal mode transitions are shown in Figure1(a) as a state diagram. In Figure1(b), the
bold arrows demonstrate the handling of mode transition errors in AOCS by the FDIR manager.

The Unit manager is used to manage unit resources, which encompasses avoiding conflicts
in the usage of units and handling the units during their reconfiguration. There are in all seven
different units: Earth Sensor (ES), Sun Sensor (SS), GPS, Star Tracker (STR), Reaction Wheel
(RW), Thruster (THR) and Payload Instrument (PLI). The firstfour in this list are sensors, while
RW and THR are actuators. The last unit, Payload Instrument,is a scientific measurement unit.
In addition, there are two configurations, nominal and redundant, for each unit. Nominal unit
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(a) Normal mode transitions. (b) Mode transition error handling.

Figure 1: Possible mode transitions in AOCS.

configuration is the start setup where the unit begins its operation. All of the units also have a
redundant backup copy. The redundant unit is used when the nominal unit fails. Both the nominal
and redundant units have two possible configurations, on or off, in the available operational
modes.

3 Modeling and Verifying of AOCS

We modeled the previously described AOCS system in the inputlanguage of the NuSMV 2 model
checker [CCG+02], starting from an Ada implementation. The system model is checked against
a set of Linear Temporal Logic (LTL) properties that are generated from a specification given as
extended state machine diagrams with prioritized transitions. Below, Section3.1 describes the
general modeling of the system, and Section3.2 shows how the LTL properties are generated
from the specification.
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Figure 2: Modeling of the unit PLI.

3.1 Modeling the AOCS System

The current implementation of AOCS system is written in Ada,and the system is modeled in
NuSMV 2 at a level of detail that closely follows the Ada source code. The main aspects of
modeling are described below.

3.1.1 Modeling the Units

There are in all seven units in the system as described in Section 2. Incorporating so many units
in a single model is likely to cause state explosion [Val96]. Our current solution to cope with this
problem is to construct a concrete model of only one unit, thePLI, and to introduce an abstraction
of the other units. Specifically, as only theerror property of the other units is mentioned in the
LTL formula to be checked, the abstraction omits the other aspects of the units. Thus, the basic
strategy is to introduce one Boolean variable representingthe error property of each unit that
non-deterministically obtains its truth value at each timepoint modeling the fact that any subset
of the other units can generate an error for the software to handle at any time. By these means,
the state space of the model is controlled to a reasonable size.

Figure2 shows the data structures for modeling the PLI unit in the NuSMV 2 language. The
moduleunits accommodates the concretely modeled units. As discussed above, the PLI is cur-
rently the only unit fully modeled, but new units could be added to the variable list in this module
as needed. The moduleunit t defines the basic properties of a unit. Here, the variableorig status
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(a) Source code sample snippet. (b) NuSMV 2 modeling code sample.

Figure 3: Modeling of a code snippet in NuSMV 2.

records the status of the use of the unit. The unit can be either free or locked. The variablestepis
used to record the number of steps it has used to make transition to a new operational state since
the transition is usually a multi-step process. One of the interesting properties isbr, which spec-
ifies the two configurations, nominal and redundant, represented as A and B in the model of the
unit. This property is further illustrated in modulebranches, which uses the modulebranch t
to fully define the properties of each configuration of the unit. The functions manipulating the
properties of units are modeled in detail as described in Section 3.1.2below.

3.1.2 Modeling Ada Code

The overall structure of the Ada code is an infinite loop in which the four managers, AOCS man-
ager, FDIR manager, Mode manager and Unit manager, are executed in sequence. All the actual
functions and procedures defined in the Ada source code implementation are modeled as state la-
bels in the NuSMV 2 model. The modeling of source code generally mimics the implementation.
At this point, the translation is not yet done automatically. The core of this manual modeling is
to treat each function entry point in the implementation as apotential program counter value and
encode each function invocation as a single time step of the model. A similar idea of constructing
models from program code is presented in [BCG+09] for C programs.

Figure3 presents an example on how the source code is manually mappedto a NuSMV 2
model. Figure3(a) is a part of the source code excerpted from the implementation with some
irrelevant code removed. The working procedure of this sample code is quite straightforward. In
procedureExecute Step, it checks whether the value of variableTrans.Targetis Standby. If this
condition holds, then it calls the procedureTo StandbyMode. The latter procedure first checks
the value of the variableTrans.Step. If the value of this variable is 0, then it will be increased
to 1. Figure3(b) is the corresponding model in NuSMV 2. It first defines the variables used in
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the procedures. Note that it has defined an additional variable label that does not appear in the
source code. Generally, this variable is used as a program counter to determine which procedure
or function is being executed at present. Thus,label has the two procedure names,execute step
andto standbymode, as its possible values. Next, these variables are initialized with initial val-
ues as shown by theinit clause. Lastly, thenext state transitions are defined for variableslabel
and trans.step. These transitions in the model are exactly as those implemented in the source
code. Variablelabel is used as an example to show how variable values are updated.In thecase
clause, it is first checked whether the current values oflabel and trans.targetareexecute step
andstandby, respectively. If this holds, the value oflabel is updated toto standbymode. Oth-
erwise, the value is unchanged. Note that the possible transitions of variabletrans.targetare not
presented here for the ease of explanation. Note also that the Ada code has no recursion which
makes modeling simpler, as there is no need to explicitly model the stack of the program.

3.1.3 Timer Abstraction

Besides abstracting entire units as described in Sect.3.1.1, we apply a form of data abstraction.
Most of the data structures in the implementation are modeled as they are, however, some of
them are abstracted in the model. For instance, there are several timers in AOCS. The timers
are mainly used to trigger certain events to occur and to record the timeouts of events in the Ada
code. In the implementation, timers are defined as an integertype. If these were directly modeled
as they are, then the modeling would become very expensive toanalyze using NuSMV 2 due to
state explosion. Therefore, we conduct an abstraction [CBKK94] of these timers that removes
unnecessary details with non-deterministic choice in a sound way: the abstract model has more
behaviors than the concrete one. If we are able to prove an LTLproperty for the abstract model,
it will also hold in the concrete one.

As a simple example, suppose there is a timer initialized with value 0. Under normal condi-
tions, this timer is incremented by 1 every time a periodic timer interrupt occurs. The timer is
reset to 0 when a reset command is issued. Assume that increasing the timer to 100 triggers a
special event. We create an abstraction of this timer as a state machine diagram shown in Fig-
ure 4(a). The value 100 of the timer is modeled as a separate state,while the values 0..99 and
101.. are collapsed into single abstract states, respectively. Especially note how non-determinism
is used in state ”0..99” when the increment operation occursto either stay in the same state or to
go to the state ”100”. Such a timer abstraction can, of course, result in spurious counterexamples.
However, in our case study, no spurious counterexamples areobserved.

The NuSMV 2 model code for this timer is shown in Figure4(b).

3.2 LTL Property Generation

The LTL properties that are used to check the constructed model are generated from the mode
transition diagrams in the requirements document. In general, four state diagrams, normal mode
transitions (Figure1(a)), mode transition error handling (Figure1(b)), attitude error handling
and unit error handling, are used for the generation of LTL properties. The generation procedure
of these LTL properties is automated from a tabular notation. The main steps are summarized
below. First, the extended state machine diagrams with prioritized transitions are transformed
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(a) Abstract states and transitions modeling the timer.
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(b) NuSMV 2 model code snippet for the abstract timer.

Figure 4: Abstraction of a timer.

manually to a tabular notation consisting of a priority listin which the possible mode transitions
of each state are prioritized according to the specific mode.Next, a Python script is written which
can read the priority list and generate the corresponding LTL properties from it.

Mode ”safe” is used below to demonstrate how its related LTL properties are automatically
generated from the mode transition diagrams. First, there are three types of possible errors that
can occur at a specific mode according to the previous description of the AOCS system. It
might be possible that two or more errors are occurring at thesame time. Thus, it is necessary
to prioritize the possible errors as well as the normal mode transition so that the property can
reflect the fact that the system is handling one type of mode transition at a time. According to the
nature of the AOCS system, the priorities of possible state transitions are inferred as follows. The
mode transition error will always have the highest priority. The priority of attitude error handling
follows it. Unit error handling in turn follows the attitudeerror handling. Finally, normal mode
transition has the lowest priority. In case of mode ”safe”, its state transition under the condition
mode transition error can be found from Figure1(b) while its related transition in the context of
normal mode transition is depicted in Figure1(a). Its mode transitions in case of attitude error
and unit error are extracted from the related state diagramsand shown in Figure5(a) and (b),
respectively. Note that in Figure5, the depicted mode transition diagrams are truncated in order
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(a) Attitude error in Safe. (b) Unit error in Safe.

Figure 5: Attitude and unit errors handling in Safe mode.

Table 1: Priority list of mode transitions for Safe mode.

Mode Priority Guard Target mode Atomic
safe 1 safeto nominalerror safe yes

2 attitudeerror off yes
3 unit error ES SSRW and redundancynot available off yes
4 coarsepointing reached nominal no

to only highlight the modes involved in the transitions. Thecorresponding priority list of mode
transitions can be constructed as shown in Table1. In the column ”Priority” of Table1, smaller
integer indicates a higher priority of the specific mode transition.

The LTL properties related to a specific state can be generated automatically from the priority
list composed in the former step. The core idea is to extract the information about current mode,
guard and target mode from the list. All guards belonging to transitions of higher priorities than
those of the current mode transition should be disallowed for a lower priority transition to be
enabled. The following LTL formula is the template for the generation of all the properties.

G
((
(mode= CURRENTMODE)∧GUARDS

)
→

X
(
(mode= CURRENTMODE)U ((mode= TARGETMODE) ∨

POSSIBLEHIGHER PRIORITYTRANSITION)
))

(1)

In the above formula,CURRENTMODE, GUARDSand TARGETMODE are the variables
that will be substituted by the concrete values extracted from the priority list. The variable
POSSIBLEHIGHER PRIORITYTRANSITIONat the end of the template formula is needed for
correct translation of mode transitions that are multi-step processes instead of atomic steps, as
indicated in the column “Atomic” in Table1. When we ran an earlier version of the experi-
ments, we noticed an anomaly with some property that had an unexpected counterexample. We
managed to trace this counterexample back to a mismatch of the levels of atomicity between the
mode transition diagrams and the Ada code implementation ofthe system. Namely, in the Ada
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implementation some of the state transitions are not atomic, and a lower priority mode transition
needs to be aborted by the enabling of a higher priority transition “half-way through” a multi-
step mode transition from one mode to the next. Such a mismatch between the specification and
the implementation level of atomicity can possibly lead to subtle interpretations of the required
behavior of the system, and our formal model checking was able to point such a case to us. The
addition ofPOSSIBLEHIGHER PRIORITYTRANSITIONenables correct handling of aborted
transitions.

As an example, the concrete LTL formulas generated from Table1 are listed as follows.

G
((
(mode= safe)∧ (modetrans error 6= none)

)
→

X
(
(mode= safe)U (mode= safe)

))
(2)

G
((
(mode= safe)∧ (modetrans error = none)∧ (attitude error 6= none)

)
→

X
(
(mode= safe)U (mode= off)

))
(3)

G
((
(mode= safe)∧ (modetrans error = none)∧ (attitude error = none) ∧
unit error

)
→

X
(
(mode= safe)U (mode= off)

))
(4)

G
((
(mode= safe)∧ (modetrans error = none)∧ (attitude error = none) ∧
¬unit error ∧coarsepointing reached

)
→

X
(
(mode= safe)U ((mode= nominal)∨ (modetrans error 6= none) ∨

(attitude error 6= none)∨unit error)
))

(5)

Note that in formulas (3) and (4), the mode transition fromSafe to Off is atomic according
to the implementation. Thus, no additional higher prioritytransition needs to be added. By
contrast, in formula (5), the mode transition fromSafe to Nominal is a multi-step process in the
implementation. The possible higher priority transitions, therefore, must be considered for the
purpose of aborting handling.

It can be easily shown that these LTL formulas can be extendedto related CTL formulas
by simply adding the universal path quantifierA. Since CTL formulas are also checked in the
following experiments, formula (2) is used as an example to show how CTL formula (6) can be
obtained from the corresponding LTL formula.

AG
((
(mode= safe)∧ (modetrans error 6= none)

)
→

AXA
(
(mode= safe)U (mode= safe)

))
(6)

4 Experimental Results

The experiment is carried out in a computing cluster environment with some background load.
Each compute node in the cluster has two 6-core AMD Opteron 2345 CPUs and the memory
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is 32 GB (about 2.5 GB per core). The cluster has in all 112 compute nodes. We use NuSMV
2.5.2 to model and verify the AOCS system. The code of the AOCSsystem is about 2200 lines
of Ada while the NuSMV 2 model code is about 800 lines with onlythe unit PLI fully modeled.
The model has roughly 80 variables and 25 state labels. The model currently has in total 2124.483

states, out of which 84.5 million states are reachable.
BDD-based LTL model checking is used in NuSMV 2 to check whether the generated LTL

formulas hold or not. In addition, bounded model checking (BMC) is also used to find possible
counterexamples. BMC is based on the reduction of the bounded model checking problem to a
propositional satisfiability problem. NuSMV 2 internally invokes a propositional SAT solver to
search for an assignment that satisfies the generated problem. In this experiment setup, NuSMV 2
is compiled to link to MiniSat [ES03], a high performance and open-source SAT solver. Specifi-
cally, the incremental BMC algorithm (check ltlspec sbmc inc) [BHJ+06, ES03] is used
in NuSMV 2 to check the generated LTL specifications. Since NuSMV’s default BMC is in-
complete, we also tried to supply the command line option-c that performs the completeness
check [BHJ+06]. To obtain better performance results for BDD-based modelchecking, the
value of the environment variablepartition methodis configured asIwls95CPinstead of the de-
fault one. In general, this method is conjunctive partitioning with clusters generated and ordered
according to the heuristic introduced in [RAB+95].

In this experiment, there are 28 LTL properties generated from the mode transition diagrams
in the system according to the generation method previouslydescribed. In all the cases, the time
bound set to check each LTL property is configured to be 30 minutes. The purpose is to make
the checking time long enough so that it can go deeper into thestate space and find possible
counterexamples. CTL model checking is also carried out with the generated CTL properties as
demonstrated in Subsection3.2. In general, the CTL model checking can deliver almost the same
amount of conclusive results as LTL model checking does. Theused time, however, is about an
order of magnitude slower than that of LTL model checking. For the BMC part, a very large
integer is supplied as the bound, so that the check will only terminate when a timeout or memory
out is reached, or when a counterexample is found. The experimental results are summarized in
Table2. The 28 properties are listed as P1 to P28 in the table.

In Table2, the column ”BDDLTL” indicates the results using the NuSMV 2 BDD-based LTL
model checking algorithm.T indicates that the property holds whileF means that the prop-
erty does not hold. The number after the forward slash is the time used by the checking and
it is measured in seconds. T.O. means that the check exceeds the configured time bound. The
column ”BMC incomplete” represents the results using the incremental BMC algorithm while
its neighbor ”BMC complete” indicates the results using thesame command but with command
line option-c enabled so that it will perform the completeness check whichalso tries to prove the
property holds. M.O. indicates that the check exceeds the memory limit. For P4’, the numbers
after the forward slash in these two columns indicate the time to find counterexamples. The num-
ber in the parenthesis is the step at which timeout, memory out is reached or a counterexample is
found. For instance, the ”BMC incomplete” column of property P1 states that the check is timed
out at step 158. This means that there is no counterexample against P1 in 158 time steps. The
table, as a whole, shows that the BMC without completeness check can reach larger bounds than
its complete variant.
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Table 2: Results of model checking LTL properties with partition method as Iwls95CP.

Property BDD LTL BMC BMC
incomplete complete

P1 T/101.59 T.O.(158) M.O.(141)
P2 T/100.99 T.O.(434) M.O.(141)
P3 T/102.78 T.O.(158) T.O.(113)
P4 T/79.82 T.O.(119) T.O.(113)
P4’ F/125.70 F(61)/5.23 F(61)/22.28
P5 T/99.76 T.O.(434) M.O.(141)
P6 T/1133.09 T.O.(119) T.O.(113)
P7 T/1434.05 T.O.(119) T.O.(85)
P8 T.O. T.O.(119) T.O.(85)
P9 T/105.49 T.O.(434) T.O.(141)
P10 T.O. T.O.(119) T.O.(113)
P11 T.O. T.O.(119) T.O.(113)
P12 T/1205.76 T.O.(119) T.O.(113)
P13 T.O. T.O.(119) T.O.(113)
P14 T.O. T.O.(119) T.O.(113)

Property BDD LTL BMC BMC
incomplete complete

P15 T/121.10 T.O.(434) M.O.(141)
P16 T.O. T.O.(158) T.O.(141)
P17 T.O. T.O.(119) T.O.(113)
P18 T.O T.O.(119) T.O.(113)
P19 T.O. T.O.(119) T.O.(113)
P20 T.O. T.O.(119) T.O.(113)
P21 T.O. T.O.(119) T.O.(113)
P22 T/120.53 T.O.(434) M.O.(141)
P23 T.O. T.O.(158) T.O.(141)
P24 T.O. T.O.(119) T.O.(113)
P25 T.O. T.O.(119) T.O.(113)
P26 T.O. T.O.(119) T.O.(113)
P27 T.O. T.O.(119) T.O.(113)
P28 T/78.47 T.O.(198) T.O.(141)

Let us study in detail the property P4, which has the LTL representation

G
((
(mode= standby)∧ (modetrans error = none)∧ (attitude error = none) ∧
separationdone

)
→

X
(
(mode= standby)U ((mode= safe)∨ (modetrans error 6= none) ∨

(attitude error 6= none))
))
. (7)

The formula contains the conditionPOSSIBLEHIGHER PRIORITYTRANSITION, as discussed
in Section3.2above, to enable aborting the multi-step transition by a higher-priority transition.
A previous version of the property, denoted by P4’ in Table2, has the LTL representation

G
((
(mode= standby)∧ (modetrans error = none)∧ (attitude error = none) ∧
separationdone

)
→

X
(
(mode= standby)U (mode= safe)

))
(8)

and omits the possibility of aborting the transition. As seen from the table, using P4’ results in a
false negative model checking result.

5 Conclusions

The AOCS system is a typical instance of a mission-critical system with various mode tran-
sitions triggered by inputs from a highly non-deterministic environment, including recovering
from components faults. We have described how a symbolic model checker input language can
be used to model an implementation of the AOCS system given its implementation in Ada source
code. One of the key methods employed has been abstraction which can control the state space of
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the model to a reasonable size. We have described techniquesand abstractions used to alleviate
the state explosion problem due to handling of timers and thelarge number of system compo-
nents controlled by AOCS. The LTL properties used to check the model are generated based on
mode transition diagrams of the system and the generation procedure is automated from a tabular
notation.

Even after the abstractions, the AOCS system is currently too large to be fully automatically
verified using symbolic model checking methods. Instead of getting rid of the close one-to-one
correspondence of the Ada source code and the correspondingNuSMV 2 model, and thus making
the model state space more manageable, we have instead resorted to incomplete model checking
methods, bounded model checking in particular. This leavesus with challenging problems for the
symbolic model checker development work that we are also concurrently doing in other projects.

In the experiments, the BDD-based LTL model checking can deliver results to about half of
all the checked properties while for the other properties the approach times out. The incremental
BMC algorithm is mainly used for bug hunting but it does also show the non-existence of short
counterexamples to the remaining properties. A timed out BDD-based LTL model checking run,
however, does not provide any additional information of theproperty. Out of curiosity, we also
ran the complete BMC algorithm, that tries to also prove properties correct, not only look for
counterexamples. Similar to our previous experiences, thecomplete BMC algorithm is not able
to prove properties correct for models of significant size.

There are many topics for further work. Firstly, the modeling from Ada source code to
NuSMV 2 models is currently manual work. If this part was automated, a lot of optimizations
that are easy to do automatically would become available. The Ada code is sequential, and as
only the system mode changes are observed from the outside, many of the internal states could
potentially be automatically removed by an optimizing “model compiler”. However, doing such
optimizations manually is currently too time consuming andrisky (it is easy to make modeling
errors when “hand optimizing the model”).

On the BMC side, the parallel and distributed BMC engine of [WNH09] could be used to
go deeper into the system state space by exploiting multiplemulti-core computers running on a
single BMC instance in parallel. While the properties we check are not strictly safety properties
(some of the counterexamples could be infinite loops where e.g., the mode does not change
at all), they still have some counterexamples that can be represented by finite paths (e.g., the
mode entered next is a wrong one). For these latter “safety” counterexamples, the approach
of [LHJ10] can be used, which is tailored to more efficiently finding thesafety counterexamples
of PSL (superset of LTL) properties using BDD-based engines.
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the materials needed to complete this case study. This project has been financially supported by
the RECOMP project funded by ARTEMIS-JU, Tekes - Finnish Funding Agency for Technology
and Innovation, Conformiq Software, Space Systems Finland, and Academy of Finland (projects
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Verifying Autonomous Systems
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The essential aspect of autonomous systems is that they must decide for themselves what to do and when
to do it. How often they need to do this depends on the level of autonomy utilized.

Autonomous Systems are Useful. Modern business, industrial, and even domestic, systems increas-
ingly rely on core autonomous software. But why? Autonomy is typically used where direct human con-
trol is (a) infeasible, or (b) expensive. In (a), such systems are required to work in distant, dangerous, or
overly complex environments where humans cannot directly supervise activities; in (b), autonomy can
often lead to cheaper and more efficient solutions.

Autonomous Systems are Critical. Autonomous software is able to decide for itself about the best
course of action to take in any given situation. However, how can we be sure the software will do what
we would have done? In spite of such concerns, autonomous systems are being deployed in both safety
critical (e.g. aerospace, medical monitoring, industrial processes) and business critical (e.g. financial,
security, privacy) areas. Examples include robotic assistants being developed for use in home health-
care, autonomous (air, road, space, underwater) vehicles, and pervasive environments where a complex
monitoring, reporting and advisory system might act autonomously based upon multiple sensor inputs.
For all these, we must know: is it safe; is it secure; and will it always do what we wish it to?

Autonomous Systems are Different. Crucially, we now need to assess not just what a system does, but
why it chose to do it. In this, the “agent” concept has been found to be a very useful abstraction for de-
scribing autonomous behaviour in that it essentially captures flexible autonomous action, i.e. “the ability
to make its own decisions and act independently from its environment”. Yet the “rational agent” concept
has now superseded this. A rational agent “should also have explicit reasons for making the choices it
does, and should be able to explain these if necessary”. Such agents are typically programmed and ana-
lyzed by describing their activities (e.g. ‘actions’), motivations (e.g. ‘goals’), information (e.g. ‘knowl-
edge’/‘belief’), and how all these change over time. Thus, a rational agent must dynamically monitor
and instigate new activity, assess, and possibly revise, the information it holds, generate new motiva-
tions or revise current ones, and also decide what to do, i.e. deliberate over motivations and actions.
Such a model is, typically, easier to understand, program, and maintain, involves shorter code length,
and is much more flexible than standard approaches [DFL+10a]. This has led to hybrid autonomous
systems, combining rational agents for high-level autonomous decisions, with standard control systems
for low-level activities, now being widely used in real applications [DFL+10b].

Autonomous Systems need Formal Verification. For autonomous software, we not only need to ask
“what will it do?”, but also “why does it make this choice?” and “will its decisions change as it learns
new behaviour or new behaviour emerges?”. The criticality and complexity of autonomous software
calls for deep analysis which is provided through the formal description of requirements using combi-
nations of logics, and then formal verification. Since we must verify not just what the software does,
but why it chooses to do it, standard temporal specifications are extended with logics of goals, beliefs,
etc. For example, in a robotic health-care scenario, we might require “if a patient is in danger, then
the medic robot believes that there is a probability of 95% that, within 2 minutes, a helper robot will
want to assist the patient”. With appropriate logical combinations we might formalize the above as the
(complex) formula

in danger(patient)⇒ B≥0.95
medic ♦≤2 Ghelper assist(patient)

∗ Support from EPSRC, through projects “Engineering Autonomous Space Software”, “Verifying Interoperability Require-
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Given an autonomous system based on rational agent(s), together with logical requirements, we have
several options for formal verification. For example, our AJPF model-checker, extends JPF [VHB+03],
a Java model checker, and assesses logical agent specifications against the actual agent code executed.
This code is provided in any agent programming language based on the AIL semantic toolkit [DFWB11].

Example: Formation-Flying Satellites. Increasingly, autonomous satellites will work together, via
formation-flying, allowing them to carry out a range of tasks in a more flexible manner than a single,
larger satellite. We have developed a hybrid agent architecture for such satellites [DFL+10b], have
shown how this reduces the development complexity [DFL+10a], and how this interacts with adaption
and learning in the underlying control systems [LVD+10]. Typical questions we address are: if an
individual satellite senses that it is “out of position”, will it (quickly?) set a goal of getting back into
position; if one of the satellites in the formation fails, either fully or partially, will the others be able to
complete the mission; and will the satellites be able to remain in safe fuel bounds, yet still be available
for interesting “sensing” opportunities?

Example: Autonomy in the Air. Formal Methods for Aerospace [BF09] is an increasingly impor-
tant area. Formal verification can particularly play a role in the certification of unmanned air vehicles
(UAVs). Since manned air vehicles are certified to fly, then what is the core difference between a UAV
and a manned air vehicles? Clearly, one has a human pilot while the other has an “autonomous agent”.
So, why not show that, in all important aspects, the “agent” will behave just as a pilot would? In other
words, that the agent equivalent to the pilot? Though this is impossible in general, for the “rules of the
air” that the pilot should follow, we can use formal verification of the agent to establish this equivalence
and even formalize and verify some aspects of “airmanship” [WFCJ11].

Example: Safe Human-Robot Interaction. When autonomous robots interact with humans, we must
ask: are they safe; will the robot understand what we want it to do; and then will the robot decide to do
what we want? We utilize the Brahms language for modelling the high-level interactions in human-robot
teams [SC02] in which humans are treated (at an abstract level) as rational agents. We then aim to verify
Brahms teamwork descriptions [BFS09] via use of their formal semantics [SSD+11].
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One of the most important safety critical systems is the signaling system which allows the
train movement in a safe condition. In such systems, certain properties need to be exhaustively
verified in order to guarantee a minimum confidence regarding the reliability of the system.
Boolean Equations (BE) are used to express these properties [GVK95].

In this paper we propose a graphical tool prototype called VeRaSiS for generating and validat-
ing automatically the safety properties of train movement in a railway system. The tool has four
main features: graphical simulation of track topologies, fully automatic BE generation, convert-
ing of BE to a Event-B model, and BE validation. Figure 1 gives an overview of the architecture
and the work flow of the tool.

Track Topology(1) Graphical Simulation

Model Validated

Model Not Validated

BELGenerator

(2) Validation Phase

Boolean Equation

BE2EventB
Event-B
Model

EventBME2SME

Figure 1: The VeRaSiS architecture and approach

For the graphical simulation of track topologies we narrowed our choices to (1) the devel-
opment of a new tool from scratch, or (2) to extend an existing one. Since building a tool from
scratch is a time consuming task, and several tools are already available to support graphical sim-
ulation, we decided to use an existing tool. Considering that we wanted to generate an Event-B
model, some tools from the Event-B tool landscape were analyzed. There are, to our best knowl-
edge, only two tools available that allow graphical simulation of Event-B models. Brama [Ser06]
and BMotion Studio [LBL09] (BMS). In Brama, the modeler creates the graphical representa-
tion of the model with Flash. This tool required knowledge of Flash programming to be used.
The second tool was BMS. Similar to Brama, BMS enables the developer of a Event-B model
to set-up a domain specific visualization. However, BMS allows the model creation with static
images and drag and drop, not requiring additional skills. For this reason and since the possibil-
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ity to represent graphically a track topology already exists in BMS, we decided to use this tool.
However, the approach of BMS is in conflict with the VeRaSiS work flow, where the formal
model is generated from the graphical visualization. As a consequence, we had to extend BMS
in order to create visualizations which are not based on an existing formal model.

The validation phase aims to generate and validate the BE extracted from the graphical sim-
ulation of the track topology. The tool used to translate the graphical representation to BE is
called BELGenerator. To support the generation, a set of typical BE (or templates) are required
to be created and managed to represent the properties of each component of a track topology.
To manage this “library” we will use ProR [Jas10] which is a requirements management tool
with the capability to trace between requirements and a Event-B model. The VeRaSiS tool will
instantiate each necessary template with the information extracted from the graphical simulation.
For instance, consider the track topology in figure 1 in the upper box. In order to move from the
track block LT1 to LT4 the following BE must be validated:

LT 1−LT 4 = S1(Green)∗S2(Red)∗LT 2∗LT 3∗LT 4 (1)

In other words, to move from LT1 to LT4, LT2, LT3 and LT4 have to be free, the signal S2 has
to be red and the signal S1 has to be green.

Finally, the tool called BE2EventB converts automatically the created BE to a Event-B model
which is then validated using ProB [LB08]. In the case that there are errors generated by ProB,
or if ProB finds a problem, those messages are translated in a straightforward message with
the EventBME2SME. The first version of this tool will manage just basic errors.

The tool is designed for industrial use, where we face the challenge that mainstream users
are not familiar with formal modeling. The tool presents the specification in the user’s domain,
shielding them from the formalism.

In future work, we will demonstrate the VeRaSiS approach in a case study based on industrial
specifications. As a consequence, our main goal is to develop a fully functional first version of
the VeRaSiS tool in order to prove its usefulness. This includes in particular the creation of the
BE templates in order to instantiate the BE for other properties of a track like the speed limit.
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Abstract: In this article, we present a formal framework that enables the use of
the Tina model checker to verify safety properties on synchronous interlocking sys-
tems that are concretely deployed on french stations. Our process is decomposed in
two steps: first we translate the synchronous interlocking system in a semantically
equivalent asynchronous Fiacre model, then we use the tool-chain frac-tina-selt to
verify railway safety properties and computational properties.

Keywords: Model transformation, LTL model checking, interlocking system, syn-
chronous and asynchronous model

EVOSYS lead during the last year a R&D project to evaluate the feasibility of formally ver-
ifying safety and computing properties of synchronous railway interlocking models. The main
achievement of this project was the design of three translations from synchronous models written
in Scade [6] or Lucid Synchrone [3] to semantically equivalent asynchronous models expressed
in Fiacre [1]. The first translation is fashioned as a general translation from synchronous to asyn-
chronous models and the two others are more optimized for our concrete case study. Considered
systems are built from a set of nodes, containing one automaton, which are instantiated and eval-
uated by a main execution engine. An interesting property of these models is that instantiated
nodes can be evaluated sequentially in any order without modifying the general behavior of the
system. Our largest test case is still a small railway station, consisting in 244 automata, 300
commands and inputs, 375 outputs, 7 routes and 11 sub-routes.

Our first approach tends to be agnostic from the specific structure of interlocking systems
and is based on the mapping of each equation and automaton of the synchronous model to a
Fiacre process, and each node to a Fiacre component. These components compose in a parallel
way all processes coming from theirs respective local equations and automata translation. In this
approach, synchronous cycles are simulated through a dedicated rendez-vous which gather every
Fiacre process.

Our second translation leverages the particular form of interlocking system written in Scade
and allows us to build a more linear translation in terms of generated processes and channels.
We translate each node in an equivalent Fiacre process, the inputs and the outputs of the nodes
are carried through dedicated multiplexed channels. Since we can choose an arbitrary order for
the evaluation of each instantiated node, we build a special finite-state-machine that sequentially
stimulates each node process and that consequently simulates cycles.

Our last translation builds from the initial model a single process that simulates sequentially
each node, and a component that declares variables and instantiates the process. Roughly speak-
ing, everything happens as if we had inlined every node of the synchronous model in the execu-
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tion engine, translated each automaton to an equivalent conditional statement1 and then translated
the result to a Fiacre model.

Experimental results, with the Tina toolbox [2], showed us the importance of the translation
scheme to control the state space explosion. While the first translation is optimized to maxi-
mize the parallelism of computation, the third one is more adapted to model checking activities.
Indeed, a new state is potentially generated each time a process is evaluated, in the first trans-
lation a process corresponds to an atomic Scade instruction while in the third a unique process
corresponds to the whole interlocking system. We gain a 100 factor in term of size of the state
space by using the third translation, it allowed us to verify a model with up to 5 routes randomly
activated and random train traffic.

A similar work from ours is [5], the authors translate the interlocking system in an UML model
and use an existing translation from UML to NuSMV. After a testing phase, they conclude that
this approach is suitable for simulation but not for model checking. Another interesting work,
that scales to medium sized interlocking systems is [4], the authors use a SAT solver to verify
safety properties. Contrary to ours, their approach does not provide counter examples as traces
and in our opinion this does not ease the analysis performed by railways engineers. We have
studied a system, based on a synchronous product of automata, that mainly manipulate boolean
variables. This is clearly not the perfect kind of models for explicit model checkers. However,
with some optimizations, medium sized systems can be partially checked. While not being
entirely satisfactory, this methodology allows us to quickly verify models that subsume large
classes of unitary scenarios, whereas, a test based approach would have been time consuming.
Our interest is now on symbolic model checking combined with some abstractions and slicing
algorithms which are consistent with railway safety properties.
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Abstract: Timed specifications are often formalised at an absolute level of pre-
cision, which does not always reflect the real world that the specifications model,
i.e., in the real world, inputs cannot be sampled with absolute precision and physical
hardware cannot react instantaneously. As a result the developed specifications can
often become unimplementable. In this paper, we consider the time bands model
in which time may be structured into several layers of abstraction and relationships
between bands may be formalised. This allows the ideal timed specifications to be
approximated at the time band in which the variables are sampled. We consider
implementation of the approximated specifications using teleo-reactive programs
embedded with time bands.

Keywords: Time bands, Real-time systems, Teleo-reactive programs, Refinement,
Cyber-physical systems

1 Introduction

There is an increasing prevalence of cyber-physical systems, where software agents are used
to control physical systems. In safety-critical applications, one must ensure dependability of
the overall system; however, formally reasoning about cyber-physical systems is complicated
because we must inherently consider real-time properties, parallelism between an agent and its
environment and hardware/software interactions. Furthermore, components tend to operate over
multiple time granularities (e.g., days, milliseconds) and our reasoning must be able to incorpo-
rate these within a single formalism.

A more difficult task is the development of correct real-time implementations via stepwise
refinement. Real-time logics tend to provide a specification that is too precise about its timing
requirements and assumptions and the models that are developed often become unimplementable
due to the mismatch between the idealised assumptions of the specification and imprecision of
digital clocks, delays in processing and imprecision of physical hardware that are inevitable in
the real world. However, development of implementations from idealised assumptions remains
an attractive option because such developments only need to consider the interactions between
components. We propose a compromise, where we develop implementations of idealised spec-
ifications that only require us to consider the functional aspects of the system. To facilitate
implementation, we approximate the idealised specifications and consider the changes necessary
to the ideal program so that it implements the approximated specification.

∗ This research is supported by Australian Research Council Discovery Grant DP0987452.
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Figure 1: Mine pump example
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Figure 2: Controller diagram

To this end, we propose a method of refinement using the sampling logic of time bands
[BH10], where timed specifications may be associated with notions such as precision and ac-
curacy. The aim is to develop a refinement of an idealised specification (i.e., without consider-
ing real-world imprecisions). We then approximate the specification to the time bands in which
the variables occur and consider the modifications that are necessary for the implementation to
satisfy the approximated specification.

Throughout this paper, we consider the safety-critical system in Fig. 1 in which a pump is
used to remove water from a mine shaft [BL91]. To prevent an explosion, the pump must not
be operating if there is a critically high level of methane in the mine. As depicted in Fig. 2, the
controller must sample sensor values from the environment (dashed arrow) and send signals to
the pump and alarm to turn them on or off. In turn, the pump may change the water level, which
affects the state of the environment.

We implement the controllers using teleo-reactive programming model, which is a high-level
approach to developing real-time systems [Nil01, Hay08]. The teleo-reactive paradigm is rad-
ically different from frameworks such as action systems, timed automata and TLA+ because
actions are considered to be durative (as opposed to instantaneous). Teleo-reactive programs are
particularly useful for implementing controllers for autonomous agents that must react robustly
to their dynamically changing environments.

2 A real-time framework

We reason about a teleo-reactive program by reasoning about the contiguous time intervals over
which it executes. We model time using the real numbers R and define:

Interval =̂
{

∆⊆ R ∆ 6= {} ∧ ∀t, t′:∆ • ∀t′′:R • t < t′′ < t′⇒ t′′ ∈ ∆
}

Thus, if t and t′ are in the interval ∆, then all real numbers between t and t′ are also in ∆. Note that
an interval may be open or closed at either end. We use glb.S and lub.S to refer to the greatest
lower and least upper bounds of a set of numbers S, respectively, where we use ‘.’ to represent
function application. For intervals ∆,∆′, we define the length of ∆ (denoted `.∆) and ∆ adjoins
∆′ (denoted ∆∝ ∆′) as follows:

`.∆ =̂ lub.∆−glb.∆
∆∝ ∆′ =̂ (lub.∆ = glb.∆′) ∧ (∆∪∆′ ∈ Interval) ∧ (∆∩∆′ = {})

The partitions of an interval ∆ ∈ Interval is given by Π.∆, which is defined as follows:

Π.∆ =̂ {z: seq.Interval | (∆ =
⋃

ran.z) ∧ (∀i:dom.z−{0} • z.(i−1)∝ z.i)}
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Given that variable names are taken from the set V ⊆ Var, a state space is given by ΣV =̂ V→
Val, which is a total function mapping each variable in V to a value from Val. We leave out the
subscript when the set V is clear from the context. A state is a member of ΣV and a predicate over
a type X is given by PX =̂ X→ B (e.g., a state predicate is a member of PΣV ). The (real-time)
trace of environment behaviours is given by StreamV =̂ R→ ΣV , which is a total function from
time to states representing the evolution of the state of the system over time. To define properties
of programs running over a time interval ∆, we use an interval stream predicate, which has type
IntvPredV =̂ Interval→PStreamV .

We use lim
x→a+

f .x and lim
x→a−

f .x to denote the limit of f .x from the right and left, respectively. To

ensure that limits are well defined, we assume all variables are piecewise continuous [GM01].
For an expression e, interval ∆ and stream s, we define:

−→e .∆.s =̂

{
e.(s.(lub.∆)) if lub.∆ ∈ ∆

lim
t→lub.∆−

e.(s.t) otherwise
←−e .∆.s =̂

{
e.(s.(glb.∆)) if glb.∆ ∈ ∆

lim
t→glb.∆+

e.(s.t) otherwise

Thus, −→e .∆.s and←−e .∆.s denote the value of e in the right and left limits of ∆, respectively. For
a state predicate c and interval ∆ ∈ Interval we define the always and sometime operators as
follows.

(�c).∆.s =̂ ∀t:∆ • c.(s.t)

(�c).∆.s =̂ ∃t:∆ • c.(s.t)

Example 1 (Safety requirement for the mine pump.) A required safety condition of our mine
pump example is that in any state of the real-time stream (i.e., at the absolute level of precision),
if the methane level, m, is above the critical level, C, then the pump must be stopped. Note that
this means that the pump must have physically come to a stop, which we distinguish from the
output control signal that turns the pump off.

Safety =̂ �(m≥ C⇒ stopped) (1)

For an interval predicate p and interval ∆, we say p holds in a previous interval if (prev.p).∆
holds, which is defined as follows:

(prev.p).∆ =̂ ∃∆′: Interval • ∆′ ∝ ∆ ∧ p.∆′

We use � and prev to define invariance of a state predicate c and stability of a set of variables V
as follows:

inv.c =̂ (prev.−→c ⇒�c)

st.V =̂ ∀v:V • ∃k:Val • inv.(v = k)

Hence, (inv.c).∆ holds iff �c.∆ holds provided that c holds at the right limit of an interval that
precedes ∆ (i.e., c is invariant in ∆) and st.V holds iff the value of each v ∈ V does not change
within ∆ (i.e., V is stable in ∆).

We define the following operators to facilitate reasoning about interval predicates. The chop
‘;’ operator allows one to split a given interval into two parts, where p1 holds for the first interval
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and p2 holds for the second [ZH04]. The weak chop ‘:’ states that either p1 holds or the chop
p1 ; p2 holds over the given interval.

(p1 ; p2).∆ =̂ ∃∆1,∆2: Interval • (∆ = ∆1∪∆2) ∧ (∆1 ∝ ∆2) ∧ p1.∆1 ∧ p2.∆2

(p1 : p2).∆ =̂ p1.∆ ∨ (p1 ; p2).∆

Note that unlike the duration calculus [ZH04], we do not require that the intervals ∆1 and ∆2 in
the definition of chop are closed.

We assume point-wise lifting of the boolean operators on stream and interval predicates in the
normal manner, e.g., if p1 and p2 are interval predicates, ∆ is an interval and s is a stream, we have
(p1 ∧ p2).∆.s = (p1.∆.s ∧ p2.∆.s). Furthermore, when reasoning about properties of programs,
we would like to state that whenever a property p1 holds over any interval ∆ and stream s, a
property p2 also holds over ∆ and s. Hence, we define universal implication over intervals and
streams as follows. Operators ‘≡’ and ‘W’ are similar.

p1V p2 =̂ ∀∆: Interval • p1.∆V p2.∆ p1.∆V p2.∆ =̂ ∀s:Stream • p1.∆.s⇒ p2.∆.s

3 Idealised teleo-reactive programs

Teleo-reactive programs are introduced by way of an example.

Example 2 (Teleo-reactive controller for the mine-pump.) The teleo-reactive program in Fig. 3
implements a controller for the system in Fig. 2. The main program (mine pump) consists of a
sequence of two guarded actions. For such a sequence, the first alternative that has a true guard
is executed continuously while that guard remains true and no earlier guard in the sequence be-
comes true. As soon as that guard becomes false or an earlier guard becomes true, the execution
switches to the first true guard. For example, if program mine pump is executing pump water,
it continues to do so while the methane level, m, is continuously less than the critical level, C,
i.e., m < C. In doing so, pump water may switch back and forth between its two alternatives,
depending on the water level. However, as soon as the methane level reaches its critical level, the
execution of pump water is immediately terminated and control is passed to the first alternative
of mine pump. That is, within a hierarchical teleo-reactive program, the guards of the top-level
program take precedence over an activity within a lower-level program.

For any interval over which m≥C continuously holds, the first branch of mine pump executes.
Execution of Alarm‖Stop Pump consists of the parallel execution of primitive actions Alarm and
Stop Pump. Note that the actions execute in a truly concurrent manner (as opposed to via an
interleaving semantics).

Definition 1 For a state predicate c, set of variables O and interval predicates r and p, the
syntax of a teleo-reactive program is given by P where

P ::= O:JpK | seq.GP | P
−→‖ P | relyr • P | init c • P

GP ::= c→ P
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mine pump =̂

〈
m≥ C → Alarm‖Stop Pump ,

true → pump water

〉

pump water =̂

〈
w high ∨ (¬w low ∧ ¬stopped) → Run Pump ,

true → Stop Pump

〉

Figure 3: Teleo-reactive controller for the mine pump

Here O:JpK denotes a primitive specification with outputs O that behaves as described by
the interval predicate p. A guarded program c→ P consists of a state predicate c that guards
a teleo-reactive program. A program may either be a primitive specification, a sequence of
guarded programs, the parallel composition of two programs, a program with a rely condition r
or a program with an initialisation c. We follow the convention of using Z for a teleo-reactive
program and S for a sequence of guarded programs. Sequences are written within brackets ‘〈’
and ‘〉’ and ‘a’ is used for sequence concatenation. We let vars.p and vars.c denote the set of
all variables that occur free in interval predicate p and state predicate c, respectively. The set of
variables of Z is given by vars.Z, where

vars.(O:JpK) =̂ vars.p∪O
vars.〈〉 =̂ {}

vars.(〈c→ Z〉aS) =̂ vars.c∪ vars.Z∪ vars.S

vars.(Z1
−→‖ Z2) =̂ vars.Z1∪ vars.Z2

vars.(relyr • Z) =̂ vars.r∪ vars.Z
vars.(init c • Z) =̂ vars.c∪ vars.Z

The functions in,out:P→ PVar return the input and output variables of a teleo-reactive program,
respectively. We define:

out.(O:JpK) =̂ O
out.〈〉 =̂ {}

out.(〈c→ Z〉aS) =̂ out.Z∪out.S

out.(Z1
−→‖ Z2) =̂ out.Z1∪out.Z2

out.(relyr • Z) =̂ out.Z
out.(init c • Z) =̂ out.Z

The set of input variables of Z is given by in.Z =̂ vars.Z\out.Z.
Because the semantics of teleo-reactive programs is truly concurrent (as opposed to an inter-

leaving semantics), two concurrent programs Z1
−→‖ Z2 may not modify the same variable, i.e.,

we require that out.Z1 ∩ out.Z2 = {}. However, in program Z1
−→‖ Z2 the outputs of Z1 may be

used as inputs to Z2, thus parallel composition is not necessarily commutative. We define simple
parallelism Z1‖Z2 as a special case of parallel composition in which the inputs of Z1 and Z2 are
disjoint with the outputs of Z2 and Z1, respectively. Unlike Z1

−→‖ Z2, the programs under simple
parallelism commute.

Teleo-reactive programs are often only required to execute correctly under certain environment
assumptions; these assumptions may be formalised within a rely condition.

Definition 2 We say interval predicate r is a rely condition of teleo-reactive program Z iff
vars.r∩out.Z = {}.

Definition 3 A set of variables V is an output context of a teleo-reactive program Z iff V ⊇ out.Z
and V ∩ in.Z = {}.
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Suppose O is a set of variables, p is an interval predicate, Z, Z1 and Z2 are teleo-reactive programs,
and S and T =̂ 〈c→ Z〉aS are sequences of guarded programs and r is a rely condition of Z. If
V is an output context of each of the programs below, we define:

behV .(O:JpK) =̂ p ∧ st.(V\O) (2)

behV .〈〉 =̂ true (3)

behV .T =̂ ((�c∧behV .Z) : (←−¬c∧behV .T)) ∨ ((�¬c∧behV .S) : (←−c ∧behV .T)) (4)

behV .(Z1
−→‖ Z2) =̂ behV\out.Z2 .Z1 ∧ behV\out.Z1 .Z2 (5)

behV .(relyr • Z) =̂ r⇒ behV .Z (6)

behV .(init c • Z) =̂ prev.−→c ∧ behV .Z (7)

Figure 4: beh function

The behaviour of a teleo-reactive program Z in an possibly wider output context V is given
by behV .Z as defined in Fig. 4. The behaviour of a specification O:JpK with respect to the set
V is given by (2), where in addition to behaving as specified by p, the variables of V that are
not in O are guaranteed to be stable. An empty sequence of programs (3), is chaotic and allows
any behaviour. The behaviour of a non-empty sequence of guarded programs, (4), is defined
recursively. There are two disjuncts corresponding to either c or ¬c holding initially on the
interval. If c holds initially, either �c ∧ behV .Z holds for the whole interval or the interval may
be split into an initial interval in which �c ∧ behV .Z holds, followed by an interval in which
¬c holds initially and behV .T holds (recursively) for the second interval. The other disjunct is
similar. Note that each chopped interval must be a maximal interval over which either �c or
�¬c holds. The behaviour of the parallel composition between Z1 and Z2 is given by (5) and
is defined to be the conjunction of the two behaviours with the outputs of each branch removed
from the output context of the other. The behaviour of a program Z with rely condition r is
denoted relyr • Z and its behaviour is given by (6). Thus, the program executes as defined by
behV .Z provided the rely condition r holds. The initialisation of Z specifies a condition that holds
prior to execution of Z and hence, the behaviour of init c • Z is given by (7).

Definition 4 For teleo-reactive programs Z and Z′, we say Z is refined by Z′ (denoted Z v Z′)
iff behV .Z′V behV .Z for any V that is an output context of both Z and Z′.

Lemma 1 If O, O′ are a sets of variables and p, p′ are interval predicates, then

(O′ ⊆ O) ∧ (st.(O\O′) ∧ p′V p)⇒ (O:JpKv O′:Jp′K) .
Definition 5 For an interval predicate p, we say p splits iff p.∆V ∀δ :Π.∆ • ∀i:dom.δ • p.(δ .i),
and p joins iff ∃δ :Π.∆ • ∀i:dom.δ • p.(δ .i)V p.∆.

For example, interval predicate ` < 3 splits but does not join, �c and `≥ 3 join but do not split
and �c both splits and joins.
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The next theorem presents a method for decomposing refinements that is specific to guarded
sequences of actions. The theorem requires that the abstract guarantee predicate joins and the
rely condition splits.

Theorem 1 Suppose T =̂ 〈c→ Z〉aS is a teleo-reactive program. If r is a rely condition of T
that splits and g is an interval predicate that joins, then relyr • O:JgK v T holds provided that
both relyr • O:J�c⇒ gKv Z and relyr • O:J�¬c⇒ gKv S hold.

Although it is tempting to replace r in relyr •O:J�c⇒ gKv Z by r ∧�c, such a replacement
is incorrect because c often refers to output variables. For example, the output variable stopped
appears in first the guard of pump water in Fig. 3.

Example 3 (Mine-pump in Fig. 3 satisfies Safety.) Note that the program in Fig. 3 is idealised,
i.e., we assume that the guards are continuously evaluated and that the pump reacts instanta-
neously. By defining MO =̂ out.mine pump and

Stop Pump =̂ {stopped}:J�stoppedK (8)

it is straightforward to prove that MO:JSafetyKv mine pump holds, which proves that the mine
pump program in Fig. 3 implements the safety requirement Safety.

MO:JSafetyKvmine pump
⇐ Theorem 1, Safety joins

MO:J�(m≥ C)⇒ SafetyK v (Alarm‖Stop Pump) ∧
MO:J�(m < C)⇒ SafetyK v pump water

⇐ first conjunct, LHS: Lemma 1, definition of Safety, RHS: definition of ‖
second conjunct: definition of Safety

(MO:J�stoppedK v Stop Pump) ∧
(MO:JtrueK v pump water)

⇐ first conjunct: (8) and Lemma 1, second conjunct: Lemma 1 and out.pump water⊆MO
true

The ideal execution of a teleo-reactive program would continuously evaluate its guards all
the time. Of course, continuous evaluation is not feasible and it has to be approximated by
repeated sampling and evaluation. One of the main issues addressed in this paper is handling the
imprecision introduced by such implementations by making use of Burns’ Time Band framework
[BB06, BH10].

4 Teleo-reactive programs with sampling

4.1 Sampling

A reactive controller uses (discrete) sampling events to determine the state of its (continuous)
environment. Although a sampling event is viewed as instantaneous in the time band of the
controller, sampling events actually take time. Thus, sampling events are prone to timing preci-
sion errors (where there is a range of possible sampled values due to imprecise timing of when
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the sample is taken) and sampling anomalies, i.e., sampling two or more sensors causes a non-
existent state to be returned. Sampling is also prone to sensor errors (where the sensors have
inaccuracies in measuring the environment), but such errors are not the focus of this paper.

We use a logic that assumes each environment variable in an expression is read exactly once
during a sampling event and that this value is used for each occurrence of the variable in the
evaluation of the expression. However, different variables may be read at different times within
an interval, which makes it possible for a sampling event to return a state that does not actually
exist [BH10]. Given a set of states SS⊆ ΣV , we define

values.SS =̂ λ v:V • {σ :SS • σ .v} apparent.SS =̂ {σ :Σ | (∀v:V • σ .v ∈ values.SS)}
where the notation {σ :SS • σ .v} is equivalent to {x | (∃σ :SS • x = σ .v)}. That is, values.SS
returns a state that maps each variable v ∈ Var to the set of values that v may have in SS and
apparent.SS generates the set of all states in which each variable is one of its values in a state in
SS, but different states could be used for different variables.

To reason about sampling anomalies, we define a function states, that returns the set of all
states that occur within a real-time interval of a given stream, and a function av that returns the
set of apparent states. If ∆ is an interval and s is a stream, we define:

states.∆.s =̂ {t:∆ • s.t} av.∆.s =̂ apparent.(states.∆.s)

Using functions states and av, we formalise state predicates that are definitely true (denoted �)
and possibly true (denoted�) over a given interval ∆∈ Interval and stream s∈ Stream as follows:

(�c).∆.s =̂ ∀σ :av.∆.s • c.σ (�c).∆.s =̂ ∃σ :av.∆.s • c.σ

If (�c).∆.s holds, then c holds for each apparent state in the interval ∆ and if �c holds then c
holds in some apparent state. Note that �cV�c and �cV�c. There are several relationships
between � and �; we refer the interested reader to [BH10]. In this paper, we find the following
lemma to be useful.

Lemma 2 For a state predicate c and variable v, st.(vars.c\{v})V (�c =�c) ∧ (�c =�c).

4.2 Time bands

The set of all time bands is given by the primitive type TimeBand, which defines a unit of time,
e.g., seconds, days, years. The precision of a time band is given by ρ:TimeBand→ R>0. We
define a time band b1 + b2 to be a band such that ρ.(b1 + b2) =̂ ρ.b1 + ρ.b2. Given that R[S]
denotes the relational image of the set S through relation R, for a real-valued variable v, interval
∆ and stream s, we define

diff .v.∆.s =̂ let vs = (states.∆.s)[{v}] in lub.vs−glb.vs

Thus, diff returns the difference between the maximum and minimum values of the given variable
in the given interval and stream. To this end, we define the accuracy of a variable v in time band
b using accuracy.v.b, which limits the maximum change to the variable within events of time
band b. For any variable v and time band b, we implicitly assume the following rely condition:

`.∆≤ ρ.b V diff .v.∆≤ accuracy.v.b (9)
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Lemma 3 For a variable v, constant k, and time band b,

`≤ ρ.b ∧�(v < k−accuracy.v.b)V�(v < k) .

Proof. The proof is trivial by the assumption (9) on accuracy. 2

4.3 Extended syntax and semantics

For a guarded sequence of actions T and a time band b, we use T † b to denote that the guards of
T are repeatedly evaluated within the precision of time band b. We use functions grd.(c→ Z) =̂ c
and body.(c→ Z) =̂ Z to return the guard and body of the guarded program c→ Z, respectively.

Definition 6 For any i ∈ dom.T , the effective guard of T.i (denoted eff .(T.i)) is given by
grd.(T.i) ∧∧j:0..i−1¬grd.(T.j).

That is, the effective guard of T.i is the actual guard of T.i in conjunction with the negations of
all guards that precede i in T .

Execution of program T † b consists of evaluation of all guards within intervals of size ρ.b
or less. Then, branch T.j is executed over interval ∆ if there is a partition δ of ∆ such that the
effective guard of T.j possibly holds in each δ .i, and furthermore, the body of T.j executes as
defined by the behaviour function over ∆. For a state predicate c and a time band b, we define
shorthand:

LcMb.∆ =̂ ∃δ :Π.∆ • ∀i:dom.δ • (`≤ ρ.b ∧�c).(δ .i) (10)

Lemma 4 If c is a state predicate, b is a time band, p is an interval predicate that joins, s is a
stream and ∀Ω: Interval • ((`≤ ρ.b) ∧�c⇒ p).Ω.s holds, then ∀∆: Interval • (LcMb⇒ p).∆.s.

Proof. For any interval ∆, we have the following calculation:

(LcMb⇒ p).∆.s
= point-wise lifting, definition of LcMb

(∃δ :Π.∆ • ∀i:dom.δ • ((`≤ ρ.b) ∧�c).(δ .i).s)⇒ p.∆.s
= logic
∀δ :Π.∆ • ∀i:dom.δ • ((`≤ ρ.b) ∧�c).(δ .i).s⇒ p.∆.s

⇐ p joins
∀δ :Π.∆ • ∀i:dom.δ • ((`≤ ρ.b) ∧�c).(δ .i).s⇒ p.(δ .i).s

⇐ logic
∀Ω: Interval • ((`≤ ρ.b) ∧�c⇒ p).Ω.s

2

We prove the following lemma that relates guard evaluation over the precision of a time band
to the approximated value of the variables.

Lemma 5 For a variable v, constant k and time band b, Lv < k−accuracy.v.bMbV�(v < k).
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〈
m≥ D → Alarm‖Stop Pump,

true → pump water

〉
†M

Figure 5: Top-level program with methane time band

Proof. For any interval ∆ and stream s, we have

(Lv < k−accuracy.v.bMb⇒�(v < k)).∆.s
⇐ Lemma 4, �c joins
∀Ω: Interval • ((`≤ ρ.b) ∧�(v < k−accuracy.v.b)⇒�(v < k)).Ω.s

⇐ Lemma 3 and Lemma 2
true

2

If j ∈ dom.T , we define the execution of guarded program T.j within time band b as follows:

execV .(T.j).b.∆ =̂ Leff .(T.j)Mb.∆ ∧ behV .(body.(T.j)).∆

Thus, there must exist a partition of ∆, δ , such that for each index i ∈ dom.δ , the length of the
interval δ .i is at most the precision, ρ.b, of time band b and the effective guard of T.j possibly
holds within δ .i. Furthermore, the behaviour of body.(T.j) holds within ∆. We say a teleo-
reactive program T is well-formed iff last.T = true→ Z for some program Z.

Definition 7 For a well-formed teleo-reactive program T † b, we define

behV .(T † b).∆ =̂ ∃δ :Π.∆ • ∃act:(dom.δ → dom.T) • ∀i:dom.act •
((execV .(T.(act.i)).b).(δ .i) ∧ ((i > 0)⇒ act.i 6= act.(i−1))

Thus, we say behV .(T † b).∆ holds iff there is a partition, δ , of ∆ and a mapping, act, from the
domain of δ to the domain of T such that for every i ∈ dom.act, execution of T.(act.i) holds in
δ .i and furthermore, consecutive intervals of δ are mapped to different elements of T . Note that
dom.act = dom.δ . Definition 7 allows both Zeno and non-Zeno executions of T , however, we
can only implement non-Zeno behaviour. This is not problematic because the definition does not
require Zeno behaviour, i.e., it allows non-Zeno behaviour.

A version of the top-level mine pump program from Fig. 3 that does not make idealised as-
sumptions is given in Fig. 5, where the changes are identified within the boxes. In particular, we
have introduced a time band M ∈ TimeBand which represents the time band of the methane. In-
troduction of M within the program defines the minimum rate at which the methane is sampled.
Because the program approximates the value of m using a sampling event, the guard m≥ C has
been replaced by m ≥ D. We calculate the relationship between C and D that is necessary for
proving Safety in Section 5.1.

5 Approximating specifications with time bands

We have developed a method of refining timed specifications and a formal semantics for both
idealised and time-banded teleo-reactive programs. We are able to prove that the idealised teleo-
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reactive programs implement the (ideal) specifications. However, as with robust automata, prov-
ing that the requirements that are specified at the absolute level of precision are implemented by
the time-banded teleo-reactive programs is, in general, difficult.

5.1 Incorporating the methane time band

We have a decomposition theorem for time-banded teleo-reactive programs that is similar to
Theorem 1 for idealised programs.

Theorem 2 Suppose T =̂ (〈c→ Z〉a S) † b is a time-banded teleo-reactive program and O is
a set of variables. If r is a rely condition of T that splits and g is an interval predicate that
joins, then relyr • O:JgK v T holds provided that both relyr • O:JLcMb⇒ gK v Z and relyr •
O:JL¬cMb⇒ gKv S hold.

Example 4 (Program in Fig. 5 satisfies Safety.) Applying Theorem 2 to prove MO:JSafetyK
gives us the following proof obligations.

MO:JLm≥ DMM ⇒ SafetyK v Alarm‖Stop Pump (11)

MO:JLm < DMM ⇒ SafetyK v pump water (12)

We let D≤ C−accuracy.m.M and have the following calculations:

Lm≥ DMM ⇒ Safety
W logic

�stopped

Lm < DMM ⇒ Safety
W Lemma 5, D≤ C−accuracy.m.M

�(m < C)⇒ Safety
≡ antecedent of Safety is false

true
Hence, we have:

(11)
⇐ calculation above, definition of ‖

MO:J�stoppedK v Stop Pump
⇐ (8) definition of Stop Pump

true

(12)
⇐ calculation above

MO:JtrueK v pump water
⇐ out.pump water⊆MO

true

We have considered the time taken to sample the methane into account and established a
relationship between a threshold and true value of the methane to prove Safety. However, the
program in Fig. 5 is not realistic because it assumes that the the pump is stopped instantaneously.
In fact, the specification requires the pump to be stopped from the beginning of the interval over
which the methane is sampled to be high, even before the first high sample is taken. In the next
section, we describe how the program may be modified so that the safety condition holds for a
pump that is guaranteed to stop in its own time band.

5.2 Incorporating the pump time band

We consider the program in Fig. 6, where the program begins executing after initialisation
stopped, the guard for stopping the pump has been modified to m ≥ E and Stop Pump P is
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used to stop the pump. Given that P ∈ TimeBand is the time band of the pump, we define:

Stop Pump P =̂ {stopped}:Jinv.stopped ∧ ((`≤ ρ.P) : (�stopped))K (13)

i.e., execution of Stop Pump P over any interval of length ρ.P or greater (i.e., the precision
of the pump) is guaranteed to stop the pump. Note that this specification does not limit the
deceleration of the pump, i.e., there may be several possible implementations of this specification
at higher precision time bands. Each implementation must only guarantee that

−−−−→
stopped holds

within an interval of the precision ρ.P. Note that the bands within the program in Fig. 6 serve
slightly different purposes; band P restricts the precision of the pump events, while M restricts
the rate at which the methane is sampled in the guard.

Lemma 6 For a continuous variable, m, in time band M, and constant E,

prev.Lm < EMM V
←−−−−−−−−−−−−−−−−
m≤ E+accuracy.m.M

Proof. The proof makes use of the accuracy of m within time band M.

prev.Lm < EMM
V Lemma 3

prev.(�(m < E+accuracy.m.M))
V continuity of m

prev.(
−−−−−−−−−−−−−−−−→
m≤ E+accuracy.m.M)

V continuity of m
←−−−−−−−−−−−−−−−−
m≤ E+accuracy.m.M

2

Lemma 7 For a continuous variable m in time band P, and constant K,

←−−−−
m≤ K ∧ ` < ρ.PV�(m < K +accuracy.m.P) .

Proof. Because m is continuous and no greater than K at the left limit of an interval that is of
length bounded by ρ.P, m cannot increase by more than its accuracy in band P. 2

We present a third decomposition theorem for proving refinements where the given program
executes under some initialisation.

Theorem 3 Suppose T =̂ (〈c→ Z〉aS)† b is a time-banded teleo-reactive program, O is a set
of variables, r and g are interval predicates and d is an state predicate. If r is a rely condition of
T that splits and g joins, then relyr • O:JgKv init d • T holds provided:

relyr • O:
r
LcMb ∧ prev.(L¬cMb ∨

−→
d )⇒ g

z
v Z (14)

relyr • O:
r
L¬cMb ∧ prev.(LcMb ∨

−→
d )⇒ g

z
v S (15)
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init stopped •〈
m≥ E → Alarm ‖ Stop Pump P ,

true → pump water

〉
† M

Figure 6: Top-level program with methane and pump time bands

Example 5 (Program in Fig. 6 satisfies Safety.) Applying Theorem 3 to prove MO:JSafetyK v
init stopped •mine pump gives us:

MO:
r
Lm≥ EMM ∧ prev.(Lm < EMM ∨

−−−−→
stopped)⇒ Safety

z
v Alarm‖Stop Pump P (16)

MO:
r
Lm < EMM ∧ prev.(Lm≥ EMM ∨

−−−−→
stopped)⇒ Safety

z
v pump water (17)

By assuming E ≤ C− accuracy.m.M, using Lemma 5, the proof of (17) is straightforward be-
cause the left-hand-side of v in (17) reduces to MO:JtrueK. For (16), we strengthen the assump-
tion to E < C−accuracy.m.(M+P) and perform the following calculation:

Lm≥ EMM ∧ prev.(Lm < EMM ∨
−−−−→
stopped)⇒ Safety

W weaken antecedent, definition of prev

(prev.Lm < EMM ⇒ Safety) ∧ (prev.
−−−−→
stopped⇒ Safety)

W strengthen consequents

(prev.Lm < EMM ⇒ ((`≤ ρ.P) : (�stopped)) ∧ Safety) ∧ (prev.
−−−−→
stopped⇒�stopped)

W Safety joins, definition of inv
(prev.Lm < EMM ⇒ ((`≤ ρ.P ∧ Safety) : (�stopped ∧ Safety))) ∧ inv.stopped

W Lemma 6; definition of Safety
(
←−−−−−−−−−−−−−−−−
m≤ E+accuracy.m.M⇒ ((`≤ ρ.P ∧�(m < C)) :�stopped)) ∧ inv.stopped

W Lemma 7 and assumption E < C−accuracy.m.(M+P)
(
←−−−−−−−−−−−−−−−−
m≤ E+accuracy.m.M⇒ ((`≤ ρ.P) :�stopped)) ∧ inv.stopped

W logic
((`≤ ρ.P) :�stopped) ∧ inv.stopped

Using Lemma 1 and the definition of ‖, it is straightforward to verify that the specification
MO:J(`≤ ρ.P :�stopped) ∧ inv.stoppedK is refined by Alarm‖Stop Pump P, which completes
the proof of Safety.

6 Conclusions and related work

We have presented a model in which specifications defined over an absolute level of precision
may be approximated to the time bands over which the input variables of the specification are
sampled. This approximating process loosens the specification and the values of variables in-
terpreted in a time band, say b, are taken to be the values of the variable within the precision
of b. We have also described how the behaviour of output variables may be formalised over a
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time band and presented methods for specifying actions using time band predicates. This allows
one to prove properties of the different the time bands without limiting lower-level behaviour.
Implementation of specifications is defined with respect to a refinement relation on interval pred-
icates, which ensures that each real-time behaviour of the implementation is an behaviour of the
abstract specification.

In the context of timed-automata, researchers have developed robust timed automata [GHJ97],
which weakens the specification of the original automata to accept more traces. Implementation
of robust automata is known to be problematic because the original specification is weakened.
Algorithms for developing robust automata from idealised automata so that safety properties
are preserved are currently impractical and preservation of general temporal logic properties is
currently not possible [WDMR08].

Alur et al have considered perturbed timed automata, which focusses on clock errors (or
perturbations) [ALM05]. However in their own words:

Thus, checking equivalence of timed circuits composed of components with im-
perfect clocks, in terms of timed languages over inputs and outputs, remains an
interesting open problem. [ALM05, pg84]

In the context of refinement, Boiten and Derrick have proposed “approximating refinements”
[BD05], where metrics are used to develop implementations for situations in which refinement
is not possible. The argument is that realistic implementations are limited by physical resources
such as memory, which place restrictions on the ideal specifications. Our work differs from this
in that we are concerned with approximating idealised timing specifications.

Henzinger presents a theory of timed refinement where sampling events are executed by a
separate process [HQR99]. Moszkowski presents a method of abstracting between different
time granularities for interval temporal logic, however the model uses a discrete framework of
time [Mos95] as opposed to our continuous model. The formalisms above do not consider the
possibility of sampling anomalies. Broy [Bro01] presents a refinement framework that formalises
the relationships between different models of time. This includes abstraction techniques from
dense to discrete models of time using sampling. However, the sampling theory is not well
developed and the techniques only consider discretisation of dense streams.
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Abstract: Using formal methods requires adequate tool support. Many formal tools
emerge from academic prototypes and evolve towards Industry. This short paper
summaries our on-going work under the auspices of DEPLOY project on providing
answers to many practical questions frequently raised by Industry users regarding
formal method tools notably performance, scalability, integration, user-friendliness,
qualification/certification with respect to Industry standards.
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1 Introduction

The use of formal methods (FM) in the 21th century, especially in an industrial setting, cannot be
considered without adequate tool support [BFLW09]. Quality aspects of FM tools are therefore a
major factor influencing adoption. Potential industrial adopters frequently raise questions on this
topic and it is not easy for them to find an answer given FM tools are a niche market requiring
highly specialized skills.

This short paper presents some evidence taking the form of Frequently Asked Questions (FAQ)
about tooling gathered during FM deployment experiments. Real experiments were carried out
in the industry by the DEPLOY project (www.deploy-project.eu) and were compared with ex-
perience reported by others. In many cases, a comparative discussion is made between Open vs.
Closed Source tools. A concise set of answers is presented here. More elaborated answers on
this topic and other formal related themes can be found at: www.fm4industry.cetic.be.

2 Some FAQ about Formal Tools

Is there guarantee of long term Tool availability and support ? Industry projects may last
tens of years from the development to the decommissioning of a system. It is therefore crucial for
Industry to ensure proper support throughout the complete project lifetime including its retire-
ment. Tools can be distributed under Open Source or Proprietary Licenses. Each model comes
with its own risk to disappear (bankruptcy for proprietary code vs. community disappearance for
Open Source). Given the niche market, securing the support is nontrivial task (e.g. escrow for
proprietary code, direct community involvement or support for Open Source).

Is the Tool reliable? Closed source reliability is a mater of trust that can be provided by a
certification scheme for example. Concerns have been raised about Open Source tools capability
to achieve higher reliability [Cra99]. However the large number of industrial strength tools
available nowadays tends to prove the contrary: e.g. PVS, nuSMV, and several others. Some
reasons are related to the potential of massive peer review and at the design level, better defined
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interfaces and careful designs required for a distributed development. Furthermore, extensive
test suites are often available for such Open Source tools.

Is the Tool scalable? The ability to scale up depends on different factors. Tool-induced lim-
itations may be due to the underlying formal technology, implementation problems (e.g. some
bottleneck in a processing chain) or simply usability (e.g. limitation to manage large pieces of
models). To assess scalability, references, feedback and reviews provide initial information that
is useful to directly rule out inadequate tools for Industry. A second step is to challenge the tool
on realistic case study in various Industry sectors as the way models are built can also impact the
ability to scale up. Open Source tools might have higher risk of not scaling up, especially if they
are still at the R&D stage. However, there are also highly scalable Open Source tools in the area
of FM (e.g. SPIN and nuSMV model-checkers, ACL2 and Isabelle theorem provers).

Is the Tool usable? It is important that tools facilitate various tasks when building or modifying
a model, carrying out validation and verification activities, working in team, etc. Commercial
tools generally have better usability because special attention is devoted to this aspect whereas
Open Source tools tend to focus more on the core functionality and efficiency, with sometimes
only a command line interface.

Does the Tool integrate well in Industry tool chains? The ability to integrate into existing
industrial tool chains is fundamental. This requires the existence of well-documented data for-
mat, availability of APIs/binaries on specific OS’s/integration with popular tool platforms. This
is an area where Open Source usually outperforms proprietary tools. Furthermore, Open Source
often adopt open standard data format. On the other hand, heightened competition frequently
pushes proprietary tools to keep internal data format hidden.

What is the impact of my Tool w.r.t. Certification? Using a formal tool in the design flow
(i.e. at design time) might have an impact on the certification process, especially if the tool is
generating production artifacts such as source code for systems requiring higher integrity levels.
Evidence of correctness of the output produced by these tools has to be provided by various
means: redundant implementation, extensive test coverage, and specific verification activities.
As a supporting success story, the ProB tool used by Siemens and developed by the University
of Düsseldorf is undergoing a qualification for the railways EN-50128 standard.

Acknowledgements: This work is funded by the European Commission under the EU project
DEPLOY (project reference number 214158).
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1 Introduction
FreeRTOS [Bar11] is an operating system (OS) kernel for embedded real-time applications. It
has recently been proposed as case study in the context of the grand challenge on software verific-
ation [JOW06]. For this purpose, FreeRTOS is particularly interesting because it is open-source,
reasonably small in size, yet relatively complex with respect to the functionality it provides. It
features memory management, I/O-device control, tasks management and scheduling, commu-
nication and synchronisation directives, and real-time event handling. FreeRTOS has been ported
to a range of computing platforms and compilers. The kernel comprises of roughly 3,000 lines
of C code with a small fraction of assembly code.

The core of FreeRTOS is its scheduler. It implements different policies for scheduling tasks
that share a single processing unit. Being a real-time OS, these policies are not aiming at fair
scheduling, but at providing timely responses to events. The scheduler has been subject to recent
verification effort [DGM09], where a specification of the task management is proposed.

In this paper we report on ongoing work on the verification of FreeRTOS for structural prop-
erties (e.g. pointer safety and arithmetic overflow) and liveness properties, ultimately aiming at
functional correctness. This includes the reconstruction of a formal specification of FreeRTOS in
Z [Lin10], bounded model checking of the actual implementation of FreeRTOS with the SOCA-
Verifier [ML10], as well as annotating the source code with assertions in separation logic to apply
the VeriFast [JSP10] software verifier.

2 Queues in Z
In [Lin10], an initial formal verification of FreeRTOS scheduler was performed. It included
modelling and verification of key data structures using a theorem prover. We took this work
forward, and abstracted its main components into simpler structures that were amenable for
source-code and binary level verification. This involved refactoring and simplification of the Z
model available, as well as proof for feasibility (i.e., preconditions) and well-formedness. This
was in preparation for using the SOCA verifier. Our aim is to establish abstract properties of the
code within the theorem prover, and then use those as annotations for source-level verification.

The key data structure in the FreeRTOS scheduler is a Queue used for scheduling tasks. We
modelled this queue (e.g., 10 pages of Z) and proved properties of interest (e.g., 7 theorems and
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12 lemmas). For instance, sending items (e.g., inter-task communication among queued tasks)
requires knowledge of the task within the scheduler’s queue, room for increasing messages from
that task, etc. Similarly, for receiving items, queue must be known to the scheduler, the task to
the queue, and the scheduled messages for that task within the queue must not be empty. These
and other properties are specified as predicates proved against the scheduler’s Queue model.

3 Applying SOCA & VeriFast
With the intention to verify pre- and post-conditions first specified in [DGM09] and improved
in [Lin10] at the implementation level, the SOCA-Verifier [ML10] was applied to FreeRTOS
binary. SOCA is particularly suited for analysing low-level OS components. It implements
bounded symbolic execution of compiled and liked program executables. The tool features built-
in checks for pointer safety and allows further properties to be specified. To analyse FreeRTOS,
we extended the SOCA-Verifier so that programs compiled for ARM processors can be analysed.
Using SOCA, we were able to analyse the scheduler functions modelled in [DGM09] with a
statement coverage above 85%. The tool did not report any bugs related to pointer safety. Yet,
we could not verify further properties with respect to the shape of data structures because these
are hard to specify at the object-code level.

VeriFast [JSP10] performs rely-guarantee reasoning for programs written in C. It takes as
input the sources of the program, which have to be annotated with method contracts in terms of
separation logic and supports specifying and verifying deep data structure properties, such as the
safe construction and usage of linked list. Currently, the scheduler and the implementations of
data structures like lists and queues in FreeRTOS are being simplified, annotated and verified. In
this process, we discover shortcomings in VeriFast that are being fixed to enable the verification
of the unmodified source code.

4 Future Work
Beyond the completion of our ongoing research, we will investigate in joining our work on
high-level specifications with that on applying implementation-level verification tools through
refinement so that code and annotations can be generated from the specifications. A challenge
for this will be in the development of a suitable model of pointers. Furthermore, we will research
in techniques for specifying and verifying timing properties of FreeRTOS.

Acknowledgements: We thank Jim Woodcock for motivating FreeRTOS to us, and Piyawat
Lamsam and Yuhui Lin for their initial input to our work.
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Time is an integral aspect of computer systems. It is essential for modelling a system’s per-
formance, but may also affect its safety or security. Timed CSP [Sch00] conservatively extends
the process algebra CSP with timed primitives, where real numbers ≥ 0 model how time passes
with reference to a single, conceptually global, clock. While there have been approaches for
model checking Timed CSP ([Sch00, DHSZ06]), to the best of our knowledge we are the first to
present a simulator for Timed CSP. Here, we restrict time to rational values only. Theoretically,
this limits the expressibility of the language. Practically, this limitation turns out to be negligible
(for instance all examples of Schneider’s book [Sch00] can be dealt with in our simulator). The
simulator is the outcome of an undergraduate project at Swansea University [Dra11].

Our Timed CSP simulator ex-
tends the open source tool ProB
[Leu]. ProB’s CSP simulator
works as follows: The CSP

specification is analyzed by a
parser (written in Haskell) and
translated to a representation in
Prolog. A CSP Interpreter (in
Prolog) stores the “firing rules”

of CSP’s operational semantics. The Simulator (also in Prolog) determines the actions available
and the resultant states. A GUI (written in Tcl/Tk) allows the user to interact with the Simulator.

Timed CSP is closed under rational time [DNR11]. Consider, for example, the following firing
rule ( t

; stands for a timed transition of duration t):

P d′
; P′

(P .d Q)
d′
; (P′ .d−d′ Q)

[0 < d′ ≤ d]

Let P .d Q have rational times only (in particular, d is rational). Let d′ be rational. Then d−d′

is rational and, by induction, P′ has rational times only. Thus, P′ .d−d′ Q has rational times only.
Decision 1 Our Timed CSP simulator deals with rational time only.

ProB also implements firing rules for those untimed CSP operators which usually are treated
as syntactic sugar, e.g., the untimed timeout P . Q = (P 2 Q) u Q. We follow ProB’s design:
Decision 2 All untimed and timed operators have their own timed firing rules.

† Acknowledging support by the SafeCap project, http://safecap.cs.ncl.ac.uk/index.php/Safecap Project Wiki.
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To this end, in [DNR11] we extend Timed CSP’s operational semantics as given in [Sch00]:
(1) In a definitional way, as e.g. for the untimed timeout, (2) in a conservative way, as e.g. for the
replicated alphabetized parallel or for the conditional (for which [Sch00] gave no firing rules).

The core of our simulator is a rational arithmetic built on top of Prolog’s built-in proper inte-
gers. Simulating Timed CSP provides two challenges: (1) In order to calculate the largest time
step possible for a Timed CSP process, one has to analyze the process recursively. Consider, for
instance, the process T = (P .e Q) .f R with 0 < e < f and untimed processes P,Q and R. In T ,
the process P is enabled within the time interval [0,e). A time step of length e (and a τ-transition)
leads to the new state Q .f−e R. Thus, the largest time step possible in T is e – see [DNR11] for
details. (2) When the user chooses a timed transition of, say, d time units, the constant d needs
to be propagated recursively along the term structure. Given, e.g., a time step 0 < d < e for the
above term T , the resulting Timed CSP term is (P .e−d Q) .f−d R.

Currently, our simulator implements a slightly restricted sublanguage of Timed CSP: Pro-
cesses can include only rational constants in timed operators; while most Timed CSP opera-
tors have been implemented, the operator a@u→ P(u) (time of an action) is not supported yet.

The screen-shot shows a typ-
ical run of our simulator.
Besides simulating examples
given in [Sch00], we exten-
sively use our tool within the
SafeCap project in order to
explore how the change of
signalling rules affects rail-
way capacity.

The ProB team has checked our implementation and intends to make it part of the next ProB
distribution. This will require some minor changes to our code, mostly regarding syntax. It is fu-
ture work to remedy the above mentioned, surmountable restrictions and to apply our tool within
further application domains.

Acknowledgement We thank Erwin Catesbeiana (Jr.) for inspiring us to go the extra mile.
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1 Shared Variable Analysis

Shared Variable Analysis (SVA) provides a way to analyse systems which use shared variables
using formal model checking [Ros10]; and the Shared Variable Language (SVL) is an input
language to SVA. In this paper we use the Uniform Candy Distribution Puzzle [TS], which has
previously been written in CSP [IR08], to illustrate the strengths of SVA which will be applicable
to the analysis of hardware models. The puzzle describes thepassing and receiving of sweets
between children. We represent the behaviour of a Child in the following SVL process:

Child(i) ={iter{ sig(re f eree);
int k; childsSweets[i] := childsSweets[i]− k;
k := childsSweets[i]/2; i f (childsSweets[i]%2! = 0)then{
sig(ready); childsSweets[i] := childsSweets[i]+1};
childsSweets[(i+1)%N] := isig(ch.(i+1)%N,k);

childsSweets[(i+1)%N]+ k; sig(passed) }}

We then create a puzzle which contains three children and initialise the system so that child
0,1 and 2 have 0, 2 and 4 sweets respectively.

In [Ros10], signals are used as reporting events to enable CSP refinement specifications to be
written. We use signals for reporting, but additionally to control execution. Signals synchronise
the behaviour of children at certain points during their execution. Consequently, we are able to
ensure that each child first acknowledges how many sweets shewill be removing from her own
pile at the beginning of a round. Once all children have read in their current number of sweets
they proceed to add half of their sweet pile to their neighbouring child’s pile. Again, once all
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children have performed this step they will update their sweets pile by removing those passed to
their neighbour from their count, and if they then have an oddnumber an extra sweet is added.

The specialized signal,isig, reports the current value of a shared variable. By using theisig
we are able to use the CSP specification given by Rogennbach [IR08] in terms of this signal and
hence demonstrate that the system will stabilise after ninepasses have occurred and that each
child with have four sweets.

2 Tailoring SVA for Hardware Models

From the VHDL behavioural semantics [IEE00], the puzzle is analogous with the three stages of
a VHDL process firing; taking a snapshot of any VHDL signals used, performing some logical
computation and then updating any signal that it has changed. A VHDL process fires when a
signal it is sensitive to changes; as a result of this the cascaded firing of processes can occur as
internal signals are updated. Only once all internal signals have stopped changing is the system
considered to be in a stabilised state, waiting for some external stimuli to start processes firing
again. At present there is no way to determine if the internalbehaviour of a system has stabilised
within SVA.

Roscoe describes a method for modelling of the StateMate semantics and consequently analysing
StateMate state machines in [RW06]. These state machines distinguish between internal and ex-
ternal stimulus, and perform a variable number ofsteps to stabilise the internal behaviour before
external stimulus can be accepted. Furthermore, [RW06] provides a methodology for tracking
the passing of time, where time is incremented only after a series ofsteps have been performed.
The concepts described in the StateMate compiler tie closely to the behavioural requirement
of VHDL, which are, that internal behaviour is instantaneous and reaches a stable state before
external stimulus may influence the model.

From our initial experiments with SVA and the functionalityavailable within another CSP
compiler we will adopt the ideas of time in Roscoe’s StateMate compiler. This will allow us
to identify, within an SVA model, when the processes have reached a stabilised state, and thus
enable us to assert safety properties on a stabilised hardware system.
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1 Introduction

A development process based on the application of formal notations and verifications techniques
potentially delivers a system that is free from engineering defects. A typical formal development
starts with a comprehensive requirements document, proceeds with a modelling stage where the
requirements are formalised and transformed into implementable steps, and completes with the
construction of a final product, e.g., a program or a hardware description. An automated code
generator transforms models into runnable software quickly, consistently, reproducibly and with
a lower rate of errors than is if coded manually. Most code generators, however, do not offer
the guarantee of an error-free result. Commonly, a code generator is a fairly large program con-
structed informally and producing an output that is not (at least formally) traced to an input. This
undermines the value of using formal methods in safety-critical domains. Industrial standards to
the development of safety-critical systems, such as IEC 61508, require that for any tool used in a
development there is a sufficiently strong justification. Such a justification could be an extensive
prior experience with the tool or a formal certification by a relevant certification authority. As
there are not many formal modelling tools that have been around for decades, the prior use is
rarely an option for formal method adopters. These leaves just two opportunities: certify a code
generator for the use in a given domain, or completely ignore the code generating activity in the
safety case and verify the generated software as if it were constructed informally. The latter case
leaves no reason for using formal modelling in the first place. In the former case, a code gener-
ator itself must be constructed accordingly to the relevant industrial standards for safety-critical
software which means a higher cost, a longer development cycle and, possibly, tips the balance
away from the use of formal modelling. In addition, certification requirements vary considerably
between the certification bodies of differing nations and industries.

We propose an approach where instead of attempting to justify the use of a code generator
a user places no trust whatsoever in the code generation stage but, through a code generator,
obtains software that is certifiable without any further effort. The essence of the approach is
in the transformation of a formal model into runnable software that is demonstratively correct
in respect to a given set of verification criteria, coming from a requirements document. The
technique is generally known as proof carrying code [Nec97]. In our approach, all the correctness
guarantees are embedded in the resultant program; intermediate formal models are disregarded
for the purpose of product certification and the design and functioning of a code generator are
deemed irrelevant.
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To evaluate the idea, we have implemented to a proof of concept tool for code generation from
Event-B models. The tool, called B2H5, is available for evaluation together with a set of sample
problems [Rod11]. B2H5 works in the context of a single Event-B machine and, optionally, a
Flow diagram [Ili11]. The former describes the possibles computation steps, variables and their
types, and global invariant properties. The latter defines an algorithmic structure of a target pro-
gram and may be used to express additional verification constraints. The output is code annotated
with a Hoare logic proof scheme. To this end, we have defined a custom Hoare logic with most
of the inspiration from [OG76]. Proof annotations are automatically derived from event defini-
tions and Flow diagram assertions and hence the tool is completely automatic. Event-B and Flow
proof obligations are recorded as evidence of the satisfaction of side conditions of the inference
rules of the logic. For instance, the Event-B invariant satisfaction proof obligation supplies the
proof for a side condition in the global correctness rule of the Hoare logic. The tool is able to
emit JML [BCC+05] code where non-deterministic statements (derived from non-deterministic
actions or event parameters) are replaced with method calls. Such methods are annotated with
pre- and post-conditions but have empty bodies. It is an obligation for a programmer to fill in
the missing code; verifications tools would ensure that the method conditions are satisfied by the
added code.

The related work may be loosely structured into approaches to verifying compilers and certi-
fying compilers. A verifying compiler, for instance [GHZG99], implements a provably correct
translation procedure for transforming a high-level programming language into machine code.
The correctness is defined in terms of the observable behaviour of a program and, possibly, ad-
ditional annotations. A certifying compiler generates a program together with a proof of its
correctness. A notable example is the proof-carrying code technique [Nec97]. Our approach
belongs to this group.
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