Multi-Objective Test Suite Optimization for
Event-B Models

Tonut Dinca

University of Pitesti, Department of Computer Science
Str. Targu din Vale 1, 110040 Pitesti, Romania
ionut.dinca@upit.ro

Abstract. Event-B is a formalism that is used in modeling and prov-
ing the consistency of complex systems. The method has been success-
fully used in the development of several complex real-life applications.
For complementing the theorem-proving and model-checking tools de-
veloped for Event-B models, test suite generation methods have been
recently introduced as research theme. In order to optimize the large
test suites produced by the existing approaches, in this paper the test
suite optimization problem is introduced for Event-B models. However,
there exist many optimization criteria in real-life testing problems. Given
that, six specifically multi-objective test suite optimization problems are
defined. Two modern Multi-Objective Evolutionary Algorithms are used
for solving them: NSGA-II [6] and SPEA-2 [18]. The experiments have
been conducted using five test suites generated from two industrial in-
spired Event-B models (five different machines).

1 Introduction

Event-B [1] is a formal modeling language for reliable systems specification and
verification which was introduced about ten years ago and widely used in in-
dustrial projects. The Event-B formalism is supported by a mature tool called
Rodin' which offers different capabilities such as theorem-proving, composition
or model-checking of Event-B models.

Recently, there has been an increasing interest for automatically test suite
generation for Event-B models [15, 7]. Most approaches generate a large number
of test cases for a particular model until a test adequacy criterion is achieved.
For example, the ProB tool [13] (available in the Rodin platform) can be used
to explore the state space of Event-B models, verify various properties using
model-checking and generate test cases along the traversal using certain coverage
criteria (e.g. event coverage). This approach has been applied to models from
the business application area in [15].

The cost of executing, storing, and maintaining these large test suites can
be reduce through test suite optimization techniques. The test suite optimiza-
tion produces a subset of the initial test suite that preserves the original test

! nttp://sourceforge.net/projects/rodin-b-sharp

2 I. Dinca

adequacy criterion by removing the redundant test cases with respect to the
considered criterion. However, in real testing problems, there exist multiple test
criteria, because a single ideal criterion is simply impossible to be formulated
and achieved. Harman argues in his recently paper [9] that single-objective test
suite optimization is not useful in practical, because testers typically have many
different objectives. For example, a frequently optimization problem is to pro-
duce a minimal test suite which achieves maximal coverage of the model entities
with a minimal execution cost.

This paper introduces for the first time the multi-objective test suite opti-
mization problem for Event-B models. Due to the complexity of this problems
(it is exponentially related to the original test suite size), we chose the Multi-
Objective Evolutionary Algorithms for solving them.

The primary contributions of this paper are as follows:

— The paper introduces a multi-objective formulation of test suite optimiza-
tion problem for Event-B models. Six specifically test suite optimization
problems were proposed: minimize the size of test suite, minimize the num-
ber of executed events, minimize the longest execution path, minimize the
execution time, maximize the distribution quality and balance the lengths of
the paths while the longest path is minimized. For all this problems, the test
adequacy criterion is the event coverage. The mathematical formulations of
this problems facilitate the using of multi-objective evolutionary algorithms
for solving them.

— In order to increase the confidence, the paper uses two modern Multi-Objective
Evolutionary Algorithms for solving the above optimization problems: Non
Dominating Sorting Genetic Algorithm (NSGA-II) [6] and Strength Pareto
Evolutionary Algorithm 2 (SPEA-2) [18].

— The paper also chose a total of 5 test suites generated from two industrial
inspired Event-B models (five different Event-B machines under test) as
subjects for the test suite optimization problems.

In the remainder of the paper we describe the Event-B framework (Section
2), introduce the test suite optimization problem for Event-B models (Section 3),
mathematically define the six different test suite optimization problems (Section
3.1), present the multi-objective evolutionary algorithms (Section 3.2), describe
our experiment set up and results (Section 4), and draw the conclusions (Section
5).

2 Event-B and Test Suite Generation

Event-B is a formal method [1] for modeling the states and behavior of a system
in order to prove its consistency. The states are modeled by global variables while
the behavior is modeled by events. Events transform the system from a state to
another state by updating the values of variables. Event-B uses mathematical
proof based on set theory and logic to ensure the consistency of modeled system.

Multi-Objective Test Suite Optimization for Event-B Models 3

The components of an Event-B model are grouped in two categories: Contexts
and Machines. Contexts contain types and constants (static parts of system)
while Machines contain variables and events (the dynamic parts).

An event has guards, actions and optionally parameters. The guards repre-
sent the enabling conditions of the event while actions determine how specific
variables change as a result of the event execution. Parameters are local variables
whose values can be used for updating the global variables. The general form of
an event is

Event = any p where G(p,v) then S(p,v) end,

where p is the set of local parameters, v is a set of global variables appearing in
the event, G is a predicate over p and v, called the guard and S(p, v) represents a
substitution. If the guard of an event is false, the event cannot occur and is called
disabled. The substitution S describes how the global variables in the set v are
modified. The values of the global variables are constraint by invariants which
are properties of the system that should be preserved during system execution.
The execution of a model starts with a special event which initializes the global
variables. At each execution step the set of enabled events (for which the guards
are satisfied) is computed and one enabled event is non-deterministically chosen
to be executed (all its actions are simultaneously executed).

The Event-B development process is based on refinement: a system is mod-
eled as a series of successive refinements, starting with an abstract representation
of the system (the details are ignored). Details are added gradually to the ab-
stract model. A refinement step introduces new functionality (new events) or
add details of current functionality (a detailed version of an existing event).
From a given machine, M7, a new machine, M2, can be built as a refinement of
M. Therefore this model of development produces refinement chains of Event-B
machines.

Our approach for test suite generation. Given an Event-B machine M
with E = {ey, e, ...,em} the set of its events, a test case can be defined as a
sequence of events in E that can be executed in the machine M (an execu-
tion path). Each test case begins with a special event called INITIALISATION
which serves to initialize the global variables of the machine before starting the
execution of a test case. A test suite is by definition a collection of test cases.

An approach using the explicit model checker ProB was proposed in [15] for
test suite generation. It suffers from the classical state space explosion when ap-
plied to models with large variable domains. Given that, we chose to implement
the algorithm from [12]. It constructs a successive set of finite approximation
models for the set of Event-B executable paths up to a length ¢. The iterative
nature of the algorithm fits well with the notion of refinement from the Event-B
method. A detailed presentation of this algorithm is out of the scope of this
paper. We just say that the algorithm was implemented as a plug-in ? for Rodin
platform and was used to generate the subjects for our experiments.

2 http://wiki.event-b.org/index.php/MBT plugin

4 I. Dinca

3 Multi-Objective Test Suite Optimization for Event-B
Models

In this section we introduce the multi-objective test suite minimization problem.
We adopt here the definitions from [16]. Generally, a multi-objective optimization
problem can be defined as to find a vector of decision variables x, which optimizes
a vector of M objective functions f;(x),1 < i < M. The objective functions
are the mathematical formulations of the optimization criteria. Usually, these
functions are conflicting, which means that improvements with respect to one
function can only be achieved when impairing the solution quality with respect
to another objective function. Solutions that can not be improved with respect to
any functions without impairing another one are called Pareto-optimal solutions.

Formally, let us assume that, without loss of generality, the goal is to minimize
the functions f;(x),1 < i < M. A decision vector x is said to dominate a decision
vector y (we write x > y) if and only if the following property is satisfied by
their objective vectors:

filz) < fi(y),¥i € {1,2,.., M} and Fip € {1,2,..., M}, fi,(z) < fio(y)-

The dominance relations states that a solution z is preferable to another
solution y if = is at least as good as y in all objectives and better with respect
to at least one objective. The Pareto-optimal set is the set of all decision vec-
tors that are not dominated by any other decision vectors. The corresponding
objective vectors are said to from Pareto frontier. Therefore, the multi-objective
optimization problem can be defined in the following manner:

Given: a vector of decision variables, x, and a set of objective functions,
fi(x), 1 <i< M,

Problem: minimize{ f1(x), fa(x), ..., far(z)} by finding the Pareto-optimal set
over the feasible set of solutions.

With respect to multi-criteria test suite optimization, the objective functions
fi are the mathematical descriptions of the testing criteria that must be satisfied
to provide desired adequate testing of the model. In real industrial testing prob-
lems, there exist multiple test criteria, because a single ideal criterion is simply
impossible to be achieved. For example, a frequently optimization problem is to
produce a minimal test suite which achieves maximal coverage of the model enti-
ties with a minimal execution cost. Therefore, this is a bi-objective minimization
test suite problem.

Formally, multi-objective test suite optimization problem can be defined in
the following manner [17]:

Multi-Objective Test Suite Optimization.

Given: a test suite T'S, a vector of M objective functions f;,1 <i < M

Problem: to produce a subset T' C T'S, such that T is a Pareto-optimal set
with respect to the set of the above objective functions.

In the following, we instantiate this general multi-objective test suite opti-
mization problem with respect to our Event-B models.

Multi-Objective Test Suite Optimization for Event-B Models 5

Let be an Event-B machine M for which we have generated a test suite T'S.
Of course, T'S satisfies a set of test requirements which are expressed as a level
of coverage of the model. In this paper we only consider that the test suite T'S
achieves the following simple coverage criterion:

Event Coverage Criterion: A test suite T'S = {t1, ..., } of m test cases
for an Event-B model M is said to achieve event coverage criterion if and only
if for each event e of the model M there exists a test case t; € T'S which covers
e.

Having the above criterion in mind, we can formulate the following optimiza-
tion problem:

Test Suite Minimization Problem.

Given: A test suite T'S generated for a machine M with F = {ey, e, ...,e,} the
set of events, and subsets of T'S, T;s, one associated with each of the e;s such
that any one of the test cases t; belonging to T; can be used to cover e;.
Problem: Find minimal test suite 7" from T'S which covers all e;.

This problem is NP-complete because it can be reduced to the minimum
set-cover problem [5] in the following manner.

We recall that for us a test case tc € T'S is an execution path which consists
in a sequence of events from E. Let be cov(tc) = {e € E|tc covers e} the set of
events covered by test case tc. By definition, cov(tc) is a subset of E. Therefore
the solution T of the above test suite minimization problem is exactly a minimum
set cover for F/, because

U cov(t)=E

and T is the minimal subset of T'S which covers E.

Many solutions have been proposed to solve this test suite minimization
problem [4,10,2, 14, 3]. Due to its exponential complexity, in this paper we use
Multi-Objective Evolutionary Algorithms for solving it. For that, we mathemat-
ically reformulate it as a constraint bi-objective test suite optimization problem
(TSO1 problem from the next section).

3.1 Optimization Criteria

Based on practical experience for industrial projects at SAP [15], we propose
here different test suite optimization criteria. In order to solve the optimization
problems described in this section using Multi-Objective Evolutionary Algo-
rithms, this criteria are mathematically formulated as six different constraint
multi-objective optimization problems.

TSO1-Minimizing the size of the test suite. Due to the restrictions of
time, obtaining a minimal test suite which achieves maximal level of coverage
is of particular interest among testers. Therefore the goal of this problem is to
produce a test suite that contains the smallest possible number of test cases
that achieve the same coverage (in our case, the event coverage) as the complete
test suite. We formulate this problem as a constraint bi-objective optimization
problem: maximize event coverage (the first objective) by a minimum number

6 I. Dinca

of test cases (the second objective) under the constraint that at least a test case
has been selected. The problem can be mathematically described in the following
manner.

Let be T'S = {t1, ta, ..., t,, } the initial set of m test cases and F = {eq, eq,...,€,}
the set of the events to be covered. We recall that cov(tc) is the set of events
covered by the test case tc. Given an order between the elements of a set, a
subset T C TS can be mathematically represented by a binary vector x =
(1,22, ..., Tm) € {0,1}™ with

1,t; €T .
i < < .
T; {O,ti¢T ,1<i<m

Therefore the constraint bi-objective test suite optimization problem to be
solved is the following:

Minimize (f1(x), fa(x))

Subject to:
> > 1(T #2)
i=1
Where:
- |cou(t;)| .
=1 (& - 2N th
fi(x) Z:Zl(gc -) (maximize the coverage)

m
i1 T (minimize the size of test suite).
m

fa(z) =

A Pareto-optimal solution of the above problem corresponds to a minimal
subset of the test suite T'S which achieves a maximal level of coverage. More, we
can see that f1 : {0,1}™ — [0,1) and f5 : {0,1}™ — (0, 1]. Therefore we avoid
to select the empty set as a solution.

TSO2-Minimizing the number of the executed events. In order to
reduce the effort of the testing process, the number of executed events from the
whole test suite should be minimized. Therefore we want to obtain test suites
which achieve the event coverage criterion with a minimum number of executed
events. The first objective function f; and the constraint from the problem TSO1
remain valid. Let be len(tc) the length of the test case t¢ € T'S. The second
objective function f, which can be used to minimize the number of executed
events by the subset T C T'S is

1 m
fa(z) = m . (x; - len(t;)).

i=1

TSO3-Minimizing the length of the longest execution path. The
longer execution paths are harder to maintain. In this problem we control the
lengths of the execution paths by minimizing the length of the longest test case.
The mathematical formulation is the following:

Minimize (f1(x), f2(x))

Multi-Objective Test Suite Optimization for Event-B Models 7

Where fi(x) is the same as for TSO1 problem and
fa(x) = max{len(t;)|z; = 1and 1 < i < m}.

The second objective function fy is used for minimizing the length of the
longest test case.

TSO4-Minimizing the execution time. We measure the execution time
for each test case tc from the initial test suite T'S. Let us denote by time(tc)
the execution time of tc. Then the execution time of a test suite T C T'S is
> ieer time(tc). In this problem the goal is to minimize the execution time of
the test suites. The first objective and the constraint are the same as for TSO1
problem. The second objective function f; to be minimized is

m
fa(z) = Z(Iz - time(t;)) (minimize the execution time).
i=1

TSO5-Maximizing the distribution quality. In order to understand
the problem proposed here, let us consider a simple example. Let be T3 =
{e1eseq, €169, e3e9e5} and Ty = {egeqey, €169, ese5} two test suites which cover
the set of events E = {e1, ea,...,e5}. The events e; and es are executed an equal
number of times in 73, while they are not in 7. We say that 77 has a bet-
ter distribution quality. Therefore the goal is to obtain test suites with a good
distribution of the events. This property is a practical requirement of users.

In the following, we propose an objective function which measures the dis-
tribution quality of a given test suite 7' C T'S. Let be T'S = {t1,to, ..., t;n} the
initial test suite and E = {ej, ea, ..., e, } the set of the events. Let be a matrix A
which captures the events covered by each test case tc in T'S; the number of rows
of A equals the number of events to be covered, n, and the number of columns
equals the number of test cases in the initial test suite, m. Therefore the entries
(@ij)1<i<ni<j<m of A are

aij:{k,tjcoverseibyktlmesJSiSn,lSJ_Sm.

0, e; is not covered by t;

Let be = (21,2, ..., Zsm) € {0,1}™ the mathematical representation of the
test suite T C T'S. We define the matrix D(z) to be

Z1
D(x)=Ax | *?

LTm

More exactly, D(x) is a vector of n components d;(z),1 < i < n. From the
definition, the entry d;(z) = >_/" , (aix - %) of D denotes the number of times
the event e; was covered by the test suite T

Now the mean amount of executions per event in T is exactly

8 I. Dinca

If the test suite 7" has a good distribution of the events, we would expect
di(z),1 < i < n values to stay near the mean value my(z). Therefore in order
to obtain a good distribution of the events we define the objective function to
be minimized in the following manner:

£@) = > (dsla) — (2.

Let us illustrate this definition on our simple example. We consider that T'.S =
T1UT, = {e1e3eq, €162, 36265, €2€2€y, €162, €3e5 . Then, 21 = (1,1,1,0,0,0) and
x9 = (0,0,0,1,1,1) are the mathematical descriptions of T} and T respectively.
Given that, the matrix A will be

110010
011210
A=1101001
100100
001001

and

D(:L'l) =AX

O OO = =
I
o= N DN DN
S
&
no
S~—
|
b
X
el e

0
0
0
1
1
1
)

Further calculation shows that f(z1) = 0.24 and f(z3) = 0.64. Therefore the
test suite T'1 has a better distribution of the events.

We formulate this problem as a constraint single-objective optimization prob-
lem and search for solutions which minimize f(x) subject to

di(z) > 1, 1 <i<n (each event is covered at least one time).

TSO6-Balancing the lengths while minimizing the longest path. Fi-
nally, we propose here to balance the lengths of the execution paths while we
keep valid the two objectives of TSO3 problem (achieve event coverage while
minimize the length of the longest path). Therefore this problem is a 3-objective
test suite optimization problem. We search here for test suites which achieve
event coverage by short and balanced execution paths. The third objective func-
tion can be mathematically formulated as below.

We remember that len(tc) denotes the length of the test case tc. Let be
T C TS a test suite and = its mathematical description. First, we define the
mean of the lengths as

mie™ (z :im x; - len(x;)).

Multi-Objective Test Suite Optimization for Event-B Models 9

Table 1. Summarize the six test suite optimization problems.

Problem[Type [Constraint Description

TSO1 |bi-objective yes Minimizing the size of the test suite

TSO2 |bi-objective yes Minimizing the number of the executed events
TSO3 |bi-objective no Minimizing the longest execution path

TSO4 |bi-objective yes Minimizing the execution time

TSO5 |single-obj. yes Maximizing the distribution quality

TSO6 |3-objective no Balancing the lengths + TSO3 problem

If the test suite T' contains balanced execution paths, the len(tc),tc € T
values will stay near the mean value m'¢"(z). Given that, the third objective

function to be minimized can be defined as

(z) |T| Z (len(t;) — mie™ ())?)

We solve all these six test suite optimization problems using multi-objective
evolutionary algorithms. In Table 1 we summarize the properties of our problems.

3.2 Multi-Objective Evolutionary Algorithms

We chose two modern and widely used Pareto efficient genetic algorithms, NSGA-
IT and SPEA-2[18].

NSGA-II is a multi-objective genetic algorithm developed by Deb et al
[6]. The output of NSGA-II is a set of solutions which are Pareto-optimal so-
lutions. NSGA-II differs from normal genetic algorithms in two main aspects.
First, Pareto-optimality is used in the process of selection of individuals for the
next generation. It performs the non-dominated sorting in each generation in
order to preserve the individuals on the current Pareto-frontier into the next
generation. For example, solutions on the current Pareto-frontier get assigned
dominance level 0. Then, after taking these solutions out, fast-non-dominated
sorting calculates the Pareto-frontier of the remaining population; solutions on
this second frontier get assigned dominance level of 1, and so on. The domi-
nance level becomes the basis of selection of individual solutions for the next
generation.

The second difference concerns the problem of selecting one individual out
of a non-dominated pair. In order to achieve a wider Pareto frontier, NSGA-II
uses crowding distance for make this decision. Crowding distance measures the
density of individuals near a particular individual. NSGA-II selects individuals
that are far from the others.

A high level outline of the main loop of NSGA-II is presented in the Algo-
rithm 1. First, in the line (1) a combined population R; = P, U Q; is formed.
Then, algorithm assigns (line (2)) dominance level to individuals. Inside the loop

10 I. Dinca

Algorithm1l. NSGAIIMainLoop

Input: The parent population, P;
The children population, Q:
The population size, N
Output: The next population, (Pit1, Qt+1)
(1) R +— P U Qt
2) F « FastNondominatedSort(Ry)
) Pt+1e®andi%1
) repeat
) CrowdingDistance Assignment(F;)
) Py~ Py UF
) 1+—1+1
) until ‘Pt+1|—|—|]:1| SN
) Sort(Fi, <n)
0) Piy1 ¢ Pry1 UF[1: (N — |Peyal)]
1) Qiy1 < MakeChildrenPopulation(Piy1)
2

(

(3
(4
(5
(6
(7
(8
9
(1
(1
(12) t+t+1

Fig. 1. Outline of the main loop for NSGA-II

(lines (4) to (8)), all the non-dominated frontiers are added to the next genera-
tion. The remaining members of the new generation (the population P;11) are
chosen from subsequent non-dominated front in according to the descending or-
der of crowding distance (lines (9,10)). The new population P, of size N is used
for selection, crossover and mutation to create a new children population Q11
(MakeChildrenPopulation from line (11)). The algorithm uses a binary tour-
nament selection operator, but the selection criterion is based on the crowded-
comparison operator <,. This operator states that between two solutions from
different dominance levels the solution with better level is preferred. Otherwise,
if both solutions belong to the same dominance level, then the solution that is
located in a lesser crowded region is preferred.

SPEA-2 uses a regular population and an archive (an external set). The
main loop is presented in Algorithm 2. We do not provide here a detailed
description of this second multi-objective evolutionary algorithm. For a more
detailed description the interested reader is referred to [18].

Solution Encodings. When using evolutionary algorithms for solving a
multi-objective test suite optimization problem, we must properly encode the
possible solutions of the problem. Let be T' C T'S a subset of the initial test suite
TS = {t1,ta,...,tm }. We use the mathematical representation = € {0,1}™ of T
(see Section 3.1) to encode the possible solutions. Therefore binary encoding is
considered to be a natural representation for the possible solutions. The inclusion
and exclusion of a test case within a subset of the initial test suite are represented
by 1 and 0 respectively in a binary string (chromosome string).

Multi-Objective Test Suite Optimization for Event-B Models 11

Algorithm2. SPEA2MainLoop

Input: The population size, N
The archive size, N
The maximum number of generations, T'

Output: The nondominated set, A

(Step 1) Imitialization: Generate an initial population Py
and create the empty archive Py = @. Set ¢t = 0.

(Step 2) Fitness assignment: Calculate fitness values of individuals in P;
and P; .

(Step 3) Environmental selection: Copy all nondominated individuals in P
and P; to m If size of P41 exceeds ‘N then reduce Pi4+1 by means
of the truncation operator; otherwise if size of P;11 is less N then fill
with dominated individuals in P; and P;.

(Step 4) Termination: If ¢t > T or another stopping condition is satisfied then
set A to the set of decision vectors represented by the nondominated
individuals in P;4+1. Stop.

(Step 5) Mating selection: Perform binary tournament selection with
replacement on P;41 in order to fill the mating pool.

(Step 6) Mating selection: Apply recombination and mutation operators to
the mating pool and set P11 to the resulting population.

Increment generation counter (t =t + 1) and go to (Step 2).

Fig. 2. Outline of the main loop for SPEA-2 [18].

4 Experiments

Subjects. We conducted the experiments with a total of 5 test suite subjects of
varying sizes and complexity levels. The test suites were generated from two in-
dustrial inspired Event-B models: the BepiColombo and SSFPilot models which
are publicly available DEPLOY model repository®. The first 4 machines are dif-
ferent levels of refinements of BepiColombo project and the last machine is the
high level of abstraction of SSFPilot model. The sizes of the machines are listed
in Table 2.
The two models are summarized below:

— BepiColombo: This is an abstract model* of two communication modules in
the embedded software on a space craft. The Event-B model was proposed
for formal validation of software parts of BepiColombo mission to Mars®.
The model has different levels of refinements. In the abstraction, My, the

3 http://deploy-eprints.ecs.soton.ac.uk

4 http://eprints.ecs.soton.ac.uk/22048/5/Rodin_Space_Craft.zip

® See http://deploy-eprints.ecs.soton.ac.uk/72/1/BepiColombo_- Modelling Approach.pdf
and http://en.wikipedia.org/wiki/BepiColombo

12 I. Dinca

Table 2. Sizes of five test suite subjects generated from two industrial inspired models
(number of events, size of test suites and maximum length of test cases).

Subject [No. of ev.[Size of TS[MaX. size of tcs
BepiColombo_MO0 5 40 7
BepiColombo_M1 10 170 7
BepiColombo_M2 12 256 7
BepiColombo_M3 16 240 7
SSFPilot_ TCTM 13 786 8

Table 3. TSO1. Average reduced sizes for optimized test suite 7.

[| NSGA-I | SPEA-2
Subject fo(zrs)|Avg fo(zr) Avg%|Avg folzr) Ave%
BepiColombo_MO| 40 1.03 97.42 1.01 97.47
BepiColombo_M1| 170 7.59 95.53 8.72 94.87
BepiColombo_M2| 256 28.87 88.72 30.98 87.89
BepiColombo_M3| 240 26.14 89.10 27.97 88.34
SSFPilot_ TCTM 786 228.42 70.93 232.5 70.41

main goal of the system is modeled. The details of the system are added
through three refinement levels, My, My and Mj3. The modeling approach
starts on the first level with 5 set-type variables and 5 events and ends up
with 18 variables and 16 events.

— SSFPilot: This is an Event-B model b of a pilot for a complex on-board satel-
lite mode-rich system: Attitude and Orbit Control System (AOCS). In [11]
the authors present a formal development of an AOCS in Event-B model-
ing language. They show that refinement in Event B provides the engineers
with a scalable formal technique that enables both development of mode-rich
systems and proof-based verification of their mode consistency.

Results. The test suite optimization techniques attempt to reduce the test
suite cost w.r.t. a given coverage criterion (event coverage in our case). Given
that, the percentage reduction will be used as a measure for comparative anal-
ysis. To increase the confidence, we compare the results produced by the two
algorithms: NSGA-IT and SPEA-2.

We have used the multi-objective evolutionary algorithm framework jMetal
[8] for our experiments. The two algorithms were configured with population size
of 100. The archive size of SPEA-2 was set to the same value, 100. The stopping
criterion is to reach the maximum number of generation which was set to 100.
The both algorithms use the following genetic operators: the binary tournament
selection operator, the single point crossover operator with probability of 0.9
and the single bit-flip mutation operator with the mutation rate of 1/m where
m is the length of the bit-string (i.e. the size of the initial test suite).

5 http://deploy-eprints.ecs.soton.ac.uk/58/

Multi-Objective Test Suite Optimization for Event-B Models

13

Table 4. TSO2. Average reduced number of executed events for optimized test suite

T.

[| NSGA-I | SPEA-2
Subject fa(zrs)|Avg fa(zr) Avg%|Avg folzr) Ave%
BepiColombo_MO0O| 252 8.02 96.8 8.02 96.8
BepiColombo_-M1| 1300 65.09 94.99 71.93 94.46
BepiColombo_M2| 1977 224.42 88.65| 236.34 88.04
BepiColombo_M3| 1873 204.77 89.06| 221.39 88.17
SSFPilot_ TCTM | 6554 1897.79 71.04| 1931.98 70.52

Table 5. TSO3. Average length of the longest path of optimized test suite 7.

Subject

[INSGA-II[SPEA-2

BepiColombo_MO0
BepiColombo_M1
BepiColombo_M2
BepiColombo_M3
SSFPilot_.TCTM

4.69 4.84
7 7
7 7
7 7
8 8

Table 6. TSO4. Average execution time (in seconds) of optimized test suite 7.

[| NSGA-I | SPEA-2
Subject fa(zrs)|Avg fa(zr) Avg%|Avg folzr) Ave%
BepiColombo_M0O| 4.6 0.13 97.07 0.14 96.95
BepiColombo_M1| 48.43 1.88 96.11 2.16 95.54
BepiColombo_M2| 130.16 12.39 90.48 13.40 89.70
BepiColombo_M3| 204.28 20.43 89.99 22.13 89.16
SSFPilot_.TCTM | 197.80 50.78 74.32 51.38 74.02

Table 7. TSO5. Average distribution quality of optimized test suite 7.

\ | NSGA-II [SPEA-2
Subject flzrs) |Avg f(zr) Avg%|Avg f(zr) Avg%
BepiColombo_-M0| 520.24 0.16 99.96 0.16 99.96
BepiColombo_M1| 8771.4 17.03 99.80 22.45 99.74
BepiColombo_-M2| 19840.90 | 238.98 98.79| 270.26 98.63
BepiColombo_M3| 14432.43 | 169.14 98.82| 191.42 98.67
SSFPilot_ TCTM [166187.40| 13251.76 92.02| 13667.67 91.77

[| NSGA-II [SPEA-2
Subject fa(zrs)|Avgfs(zr) Avg%|Avefs(zr) Avg%
BepiColombo_-M0O| 2.16 0.00 100 0.00 100
BepiColombo_M1| 1.81 0.21 88.27 0.22 87.52
BepiColombo_M2| 1.57 0.33 78.41 0.34 77.87
BepiColombo_-M3| 1.62 0.36 77.76 0.37 77.04
SSFPilot_ TCTM | 2.21 1.15 47.96 1.17 47.05

Table 8. TSO6. Average balancing values of the lengths of optimized test suite T'.

14 I. Dinca

For each test suite subject, each optimization problem and each algorithm,
100 independent runs were performed. The results are presented in Tables 3-8.
To compare the results, we computed for each problem the specific objective
function values for the initial test suite. For example, the column f3(xrg) from
the Table 8 indicates the values of the third objective function of the problem
TSO6 when computed for the initial test suite T'S. Otherwise, in each table,
the average values of specific objective functions of the solutions are indicated.
As shown in the tables, the results of the two algorithms are comparable. We
obtained high values for the percentage reduction of test suite because of the
simplicity of the event coverage criterion.

5 Conclusions

In this paper the multi-objective test suite optimization problem for Event-B
testing was introduced. Different optimization criteria were proposed and the
resulted problems were solved using two modern multi-objective evolutionary
algorithms. For all optimization problems the considered test adequacy criterion
was the event coverage. All our optimization problems can be easily formulated
in a more general framework: a test suite 7" must meet a set of n requirements
{r1,72,...,7n} to provide the desired ’adequate’ testing of the model. We will
consider in the future more complex coverage criteria.

Acknowledgment This work was supported by the FEuropean project DE-
PLOY (EC-grant no. 214158).

References

1. Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

2. H. Agrawal. Efficient coverage testing using global dominator graphs. In Proceed-
ings of the 1999 Workshop on Program analysis for software tools and engineering,
pages 11-20, 1999.

3. J. Black, E. Melachrinoudis, and D. Kaeli. Bi-criteria models for all-uses test
suite reduction. In Proceedings of the 26th International Conference on Software
Engineering (ICSE 2004), pages 106-115, Edinburgh, Scotland, United Kingdom,
2004.

4. V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4(3), 1979.

5. T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-
rithms. The MIT Press, Cambridge, Massachusetts, 2001.

6. K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In Proceed-
ings of the Parallel Problem Solving from Nature VI Conference, pages 849-858.
Springer LNCS No. 1917., 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Multi-Objective Test Suite Optimization for Event-B Models 15

Tonut Dinca, Alin Stefanescu, Florentin Ipate, Raluca Lefticaru, and Cristina Tu-
dose. Test data generation for Event-B models using genetic algorithms. In Proc.
of 2nd International Conference on Software Engineering and Computer Systems,
CCIS. Springer, Berlin, 2011.

J.J. Durillo, A.J. Nebro, and E. Alba. The jMetal framework for multi-objective
optimization: Design and architecture. In CEC 2010, pages 4138-4325, Barcelona,
Spain, July 2010.

M. Harman. Making the case for MORTO: Multi Objective Regression Test Opti-
mization. In Proceedings of the 1st International Workshop on Regression Testing
(Regression 2011), Berlin, Germany, 2011.

M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the
size of a test suite. ACM Transactions on Software Engineering and Methodology,
2(3):270-285, 1993.

A. Tliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic,
and T. Latvala. Developing mode-rich satellite software by refinement in Event B.
In 15th International Workshop on Formal Methods for Industrial Critical Systems
(FMICS 2010), CCIS, Antwerp, Belgium, 2010.

Florentin Ipate. Learning finite cover automata from queries. Jour-
nal of Computer and System Sciences, 2011. In Press. Online at:
http://doi:10.1016/j.jcss.2011.04.002.

Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for
the B method. Int. J. Softw. Tools Technol. Transf., 10(2):185-203, 2008.

M. Marre and A. Bertolino. Using spanning set for coverage testing. IEEFE Trans-
actions on Software Engineering, 29(11):974-984, 2003.

Sebastian Wieczorek, Vitaly Kozyura, Andreas Roth, Michael Leuschel, Jens
Bendisposto, Daniel Plagge, and Ina Schieferdecker. Applying model checking
to generate model-based integration tests from choreography models. In Proc.
TESTCOM’09, volume 5826 of LNCS, pages 179-194. Springer, 2009.

S. Yoo and M. Harman. Pareto efficient multi-objective test-case selection. In
Proceedings of International Symposium on Software Testing and Analysis (ISSTA
2007), pages 140-150. ACM Press, 2007.

S. Yoo and M. Harman. Using hybrid algorithm for pareto efficient multi-objective
test suite minimisation. Journal of Systems and Software, 83(4):689-701, 2010.
E. Zitzler, M. Laumanss, and L. Thiele. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. Tech. Rep., 103, 2001.

